166 36 52

Citations of publications by Přemysl Jedlička

+
22 3 6
The structure of medial quandles
Jedlička P., Pilitowska A., Stanovský D. and Zamojska-Dzienio A.; J. Algebra 443 (2015), 300–334

Citations: 22
  • Đapić P. and Marković P.: Residual character of quasilinear varieties of groupoids, Publications de l'Institut Mathématique 99,113 (2016), 15–30
  • Ishihara Y. and Tamaru H.: Flat connected finite quandles, Proc. Amer. Math. Soc. 144,11 (2016), 4959–4971
  • Ashford M. and Riordan O.: Counting racks of order n, Electronic Journal of Combinatorics 24,2 (2017), 1–21
  • Bonatto M. and Vojtěchovský P.: Simply connected latin quandles, Journal of Knot Theory and Ramifications 27,11 (2018), 32 pages
  • Vojtěchovský P. and Yang S. Y.: Enumeration of racks and quandles up to isomorphism, Mathematics of Computation 88,319 (2019), 2523–2540
  • Bonatto M., Crans A. S. and Whitney G.: On the structure of Hom quandles, Journal of Pure and Applied Algebra 223,11 (2019), 5017–5029
  • Ogurinade S. O., Ajala S. O., Olaleru J. O. and Jaíyéọlá T. G.: Holomorph of self-distributive quasigroup with key laws, Intern. J. of Math. Analysis and Optimization: Theory and Applications 2019,1 (2019), 426–432
  • Traldi L.: Multivariate Alexander quandles, II. The involutory medial quandle of a link, Journal of Knot Theory and its Ramifications 29,5 (2020), 39 pages
  • Nagy T.: Nonaffine latin quandles of order 2k, Journal of Algebra and its Applications 20,6 (2021)
  • Lebed V. and Mortier A.: Abelian quandles and quandles with abelian structure group, Journal of Pure and Applied Algebra 225,1 (2021), 691–717
  • Bonatto M.: Medial and semimedial left quasigroups, Journal of Algebra and its Applications 21,1 (2022), 31 pages
  • Horvat E.: Constructing biquandles, Fundamenta mathematicae 251,2 (2020), 203–218
  • Abchir H., Abid F.-E. and Boucetta M.: A class of Lie racks associated to symmetric Leibniz algebras, Journal of Algebra and its Applications 21,11 (2022), 31 pages
  • Smith N.: Group object quandles and their endomorphism nearrings, Journal of Knot Theory and Its Ramifications 31,7 (2022), 13 pages
  • Traldi L.: Multivariate Alexander quandles, IV., the medial quandle of a link, Journal of Knot Theory and its Ramifications 31,12 (2022), 43 pages
  • Bonatto M. and Cattabriga A.: On the axioms of singquandles, Journal of Knot Theory and its Ramifications 31,13 (2022), 21 pages
  • Cazet N.: Quandles with one nontrivial column, to appear in Journal of Algebra and its Applications
  • Furuki K. and Tamaru H.: Homogeneous Quandles with Abelian Inner Automorphism Groups and Vertex-Transitive Graphs, International Electronic Journal of Geometry 17,1 (2024), 184–198
  • Tada Y.: On categories of faithful quandles with surjective or injective quandle homomorphisms, Hiroshima Mathematical Journal 54 (2024), 61–86
  • Saito T. and Sugawara S.: Homogeneous quandles with abelian inner automorphism groups, Journal of Algebra 663 (2025), 150–170
  • Chao-Haft M. and Nelson S.: Biracks and switch braid quivers, Journal of Knot Theory and Its Ramifications 33,12 (2024)
  • Traldi L.: Multivariate Alexander quandles, V.: Constructing the medial quandle of a link, Journal of Knot Theory and its Ramifications 33,10 (2024), 34 pages
Self-citations by coauthors: 3
  • Hulpke A., Stanovský D. and Vojtěchovský P.: Connected quandles and transitive groups, J. of Pure and Applied Algebra 220,2 (2016), 735–758
  • Bonatto M. and Stanovský D.: Commutator theory for racks and quandles, Journal of Mathematical Society of Japan 73,1 (2021), 41–75
  • Bonatto M., Kinyon M. K., Stanovský D. and Vojtěchovský P.: Involutive latin solutions of the Yang-Baxter equation, Journal of Algebra 565,1 (2021), 128–159
Self-citations: 6
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: Free medial quandles, Algebra Universalis 78,1 (2017), 43–54
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: Subdirectly irreducible medial quandles, Communications in Algebra 46,11 (2018), 4803–4829
  • Jedlička P., Pilitowska A., Stanovský D. and Zamojska-Dzienio A.: Subquadles of affine quandles, J. Algebra 510,15 (2018), 259–288
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: The construction of multipermutation solutions of the Yang-Baxter equation of level 2, Journal of Combinatorial Theory, Series A 176 (2020), 24 pages
  • Jedlička P. and Stanovský D.: Homomorphic images of affine quandles, Algebra Universalis 82,3 (2021), 11 pages
  • Jedlička P. and Pilitowska A.: Skew left braces and 2-reductive solutions of the Yang-Baxter equation, Journal of Pure and Applied Algebra 228 (2024)
Book citations: 3
  • Clark W. E. and Saito M.: Quandle identities and homology (Book chapter), Volume 689, Contemporary Mathematics (2016),
  • Abid F.-E.: Lie racks and Leibniz algebras, dissertation at Université Cadi Ayyad (2022),
  • Cazet N.: Quandle Theoretic Knot Invariants, dissertation at University of California (2024),
+
15 0 0
Central nilpotency of skew braces
Bonatto M. and Jedlička P.; Journal of Algebra and its Applications 22,12 (2023)

Citations: 15
  • Jespers E., van Antwerpen A. and Vendramin L.: Nilpotency of skew braces and multipermutation solutions of the Yang-Baxter equation, Communications in Contemporary Mathematics 25,9 (2022)
  • Bardakov V. and Gubarev V.: Rota–Baxter groups, skew left braces, and the Yang–Baxter equation, Journal of Algebra 596,15 (2022), 328–351
  • Brzeziński T., Colazzo I., Doikou A. and Vendramin L.: Mini-Workshop: Skew Braces and the Yang-Baxter Equation, Oberwolfach Reports 20,1 (2023), 537–563
  • Facchini A. and Pompili M.: Multiplicative lattices, idempotent endomorphisms, and left skew braces, Journal of Algebra and its Applications 23,8 (2024)
  • Trombetti M.: The structure skew brace associated with a finite non-degenerate solution of the Yang-Baxter equation is finitely presented, Proceedings of the American Mathematical Socitety 152 (2024), 573–583
  • Dixon M., Kurdachenko L. and Subbotin I.: Generalized Nilpotent Braces and Nilpotent Groups, International Journal of Group Theory 14,1 (2025), 25–45
  • Letourmy T. and Vendramin L.: Schur covers of skew braces, Journal of Algebra 644,15 (2024), 609–654
  • Catino F., Mazzotta M. and Stefanelli P.: Solutions of the Yang-Baxter Equation and Strong Semilattices of Skew Braces, Mediterranean Journal of Mathematics 21,2 (2024)
  • Ballester-Bolinches A., Esteban-Romero R., Ferrara M., Pérez-Calabuig V. and Trombetti M.: Finite skew braces of square-free order and supersolubility, Forum of Mathematics, Sigma 12 (2024)
  • Ballester-Bolinches A., Esteban-Romero R., Jiménez-Seral P. and Pérez-Calabuig V.: Soluble skew left braces and soluble solutions of the Yang-Baxter equation, Advances in Mathematics 455 (2024)
  • Ballester-Bolinches A., Esteban-Romero R., Kurdachenko L. and Pérez-Calabuig V.: On the Structure of Some Left Braces, International Journal of Group Theory 14,2 (2025), 47–58
  • Ballester-Bolinches A., Esteban-Romero R., Kurdachenko L. and Pérez-Calabuig V.: On Dedekind Left Braces, Southeast Asian Bulletin of Mathematics 48,6 (2024), 741–750
  • Ballester-Bolinches A., Esteban-Romero R., Kurdachenko L. and Pérez-Calabuig V.: On Left Braces in Which Every Subbrace is an Ideal, Results in Mathematics 80,1 (2025)
  • Colazzo I., Ferrara M. and Trombetti M.: On derived-indecomposable solutions of the Yang–Baxter equation, Publicacions Matematiques 69,1 (2025), 171–193
  • Ballester-Bolinches A., Esteban-Romero R., Kurdachenko L. and Pérez-Calabuig V.: From actions of an abelian group on itself to left braces, to appear in Mathematical Proceedings of the Cambridge Philosophical Society
+
13 10 7
The structure of commutative automorphic loops
Jedlička P., Kinyon M. K. and Vojtěchovský P.; Trans. Amer. Math. Soc. 363,1 (2011), 365–384

Citations: 13
  • Csörgő P.: Multiplication groups of commutative automorphic p-loops of odd order are p-groups, J. Algebra 350 (2012), 77–83
  • Csörgő P.: All automorphic loops of order p2 for some prime p are associative, J. Algebra Appl. 12,6 (2013), 8 pages
  • Kirshtein J.: Multiplication groups and inner mapping groups of Cayley-Dickson loops, J. Algebra Appl. 13 (2014), 26 pages
  • Phillips J. D. and Stanovský D.: Automated theorem proving in quasigroup and loop theory, AI Communications 23,2 (2010), 267–283
  • Jaíyéọlá T. G. and Adéníran J. O.: On the Existence of A-Loops with Some Commutative Inner Mappings and Others of Order 2, Southeast Asian Bull. Math. 33,5 (2009), 853–864
  • Baumeister B.: Do finite Bruck loops behave like groups?, Acta Univ. Carolin. Math. Phys. 53,3 (2012), 337–346
  • Nagy G. P.: On centerless commutative automorphic loops, Comment. Math. Univ. Carol. 55,4 (2014), 485–491
  • Greer M.: A Class of Loops Categorically Isomorphic to Bruck Loops of Odd Order, Communications in Algebra 42,8 (2014), 3682–3697
  • Aboras M.: Dihedral-like constructions of automorphic loops, Commun. Math. Univ. Carol. 55,3 (2014), 269–284
  • Csörgő P.: All finite automorphic loops have the elementwise Lagrange property, Rocky Mountain Journal of Math. 45,4 (2015), 1101–1105
  • Grishkov A. and Pérez-Izquierdo J. M.: Lie's correspondence for commutative automorphic formal loops, Linear algebra and its applications 544,1 (2018), 460–501
  • Merlini Giuliani M. d. L. and Dos Anjos G. S.: Lie automorphic loops under half-automorphisms, Journal of Algebra and its Applications 19,11 (2020)
  • Greer M. and Raney L.: Automorphic loops and metabelian groups, Comment. Math. Univ. Carol. 61,4 (2020), 523–534
Self-citations by coauthors: 10
  • Johnson K. W., Kinyon M. K., Nagy G. P. and Vojtěchovský P.: Searching for small simple automorphic loops, LMS J. Comput. Math. 14 (2011), 200–213
  • Stones D. S., Vojtěchovský P. and Wanless I. M.: Cycle structure of autotopisms of quasigroups and Latin squares, J. Combin. Des. 20,5 (2012), 227–263
  • De Barros D. A. S., Grishkov A. and Vojtěchovský P.: Commutative automorphic loops of order p3, J. Algebra Appl. 11,5 (2012), 15 pages
  • De Barros D. A. S., Grishkov A. and Vojtěchovský P.: The free commutative automorphic 2-generated loop of nilpotency class 3, Comment. Math. Univ. Carolin. 53,3 (2012), 321–336
  • Stanovský D. and Vojtěchovský P.: Commutator theory for loops, J. Algebra 399 (2014), 290–322
  • Kinyon M. K., Pula K. and Vojtěchovský P.: Incidence properties of cosets in loops, J. Combin. Designs 20,3 (2012), 179–197
  • Grishkov A., Kinyon M. K. and Nagy G. P.: Solvability of commutative automorphic loops, Proceedings AMS 142,9 (2012), 3029–3037
  • Vojtěchovský P.: Three lectures on automorphic loops, Quasigroups and related systems 23 (2015), 129–163
  • Kinyon M. K., Kunen K., Phillips J. D. and Vojtěchovský P.: The structure of automorphic loops, Trans. Amer. Math. Soc. 368,12 (2016), 8901–8927
  • Stuhl I. and Vojtěchovský P.: Enumeration of involutory latin quandles, Bruck loops and commutative automorphic loops of odd prime power order, Contemporary Mathematics 721 (2019), 261–276
Self-citations: 7
  • Jedlička P., Kinyon M. K. and Vojtěchovský P.: Constructions of commutative automorphic loops, Comm. Algebra 38,9 (2010), 3243–3267
  • Jedlička P., Kinyon M. K. and Vojtěchovský P.: Nilpotency in automorphic loops of prime power order, J. Algebra 350 (2012), 64–76
  • Hora J. and Jedlička P.: Nuclear semidirect product of commutative automorphic loops, J. Algebra Appl. 13,1 (2014), 15 pages
  • Jedlička P.: Odd order semidirect extensions of commutative automorphic loops, Comment. Math. Univ. Carolin. 55,4 (2014), 447–456
  • Jedlička P. and Simon D.: On commutative A-loops of order pq, J. Algebra Appl. 14,3 (2014), 20 pages
  • Jedlička P.: Semidirect extensions of the Klein group leading to automorphic loops of exponent 2, Quasigroups and Related Systems 23 (2015), 237–242
  • Jedlička P.: Involutory quandles of order pq, Publicationes Mathematicae 95,3-4 (2019), 505–514
Book citations: 5
  • Kirshtein J.: Cayley-Dickinson Loops, dissertation at Denver University (2012),
  • Greer M.: Loops and their permutation groups, dissertation at Denver University (2013),
  • Aboras M.: Dihedral-like constructions of automorphic loops, dissertation at Denver University (2015),
  • Shcherbakov V.: Elements of Quasigroups Theory and Applications, New York: Chapman and Hall/CRC (2017),
  • Barnes M. K.: On Loop Commutators, Quaternionic Automorphic Loops, and Related Topics, dissertation at University of Denver (2022),
+
12 7 0
On loop identities that can be obtained by a nuclear identification
Drápal A. and Jedlička P.; European J. Combin. 31,7 (2010), 1907–1923

Citations: 12
  • Stones D. S., Vojtěchovský P. and Wanless I. M.: Cycle structure of autotopisms of quasigroups and Latin squares, J. Combin. Des. 20,5 (2012), 227–263
  • Phillips J. D. and Stanovský D.: Automated theorem proving in quasigroup and loop theory, AI Communications 23,2 (2010), 267–283
  • Keedwell A. D.: When is it hard to show that a quasigroup is a loop?, Comment. Math. Univ. Carolin. 49,3 (2008), 241–248
  • Csörgő P.: On loops that are abelian groups over the nucleus and Buchsteiner loops, Comment. Math. Univ. Carolin. 49,2 (2008), 197–208
  • Coté B., Harvill B., Huhn M. and Kirchman A.: Classification of loops of generalized Bol-Moufang type, Quasigroups and Related Systems 19 (2011), 193–206
  • Keedwell A. D.: The existence of Buchsteiner and conjugacy-closed quasigroups, Europ. J. Combinatorics 30,5 (2009), 1382–1385
  • Jaíyéọlá T. G. and Adéníran J. O.: A new characterisation of Osborn-Buchsteiner loops, Quasigroups and Related Systems 20,2 (2012), 233–238
  • Jaíyéọlá T. G., Ilojide E., Olatinwo M. O. and Smarandache F.: On the Classification of Bol-Moufang Type of Some Varieties of Quasi Neutrosophic Triplet Loop (Fenyves BCI-Algebras), Symmetry 10 (2018), 427–443
  • Horosh G., Malyutina N., Şçerbacova A. and Shcherbakov V.: Identities and generalized derivatives of quasigroups, Computer Science Journal of Moldova 30,2 (2022), 10 pages
  • O. O. George: Semidirect product of weak inverse property power associative conjugacy closed loops, Annals of Mathematics and Computer Science 29 (2022), 91–100
  • O. O. George and Jaíyéọlá T. G.: Nuclear Identification of Some New Loop Identities of Length Five, Buletinul Academiei de Ştiinţe a Republicii Moldova 99,2 (2022), 39–58
  • O. O. George: On Holomorph of WIP PACC Loops, Jordan Journal of Mathematics and Statistics 16,3 (2023), 463–482
Self-citations by coauthors: 7
  • Csörgő P., Drápal A. and Kinyon M. K.: Buchsteiner loops, Inter. J. Algebra and Comput. 19,8 (2009), 1049–1088
  • Drápal A.: A class of commutative loops with metacyclic inner mapping groups, Comment. Math. Univ. Carolin. 49,3 (2008), 357–382
  • Csörgő P. and Drápal A.: Buchsteiner loops and conjugacy closedness, Commun. in Algebra 38,1 (2009), 11–27
  • Drápal A.: A simplified proof of Moufang’s theorem, Proc. Amer. Math. Soc. 139,1 (2011), 93–98
  • Drápal A.: A nuclear construction of loops with small inner mapping groups, Abhandl. Math. Sem. Univ. Hamburg 77,1 (2007), 201–218
  • Drápal A. and Kinyon M. K.: Buchsteiner loops: Associators and constructions, J. Algebra and its applic. 14,4 (2015)
  • Drápal A. and Kinyon M. K.: Normality, nuclear squares and Osborn identities, Comment. Math. Univ. Carol. 61,4 (2020), 481–500
Book citations: 1
  • Shcherbakov V.: Elements of Quasigroups Theory and Applications, New York: Chapman and Hall/CRC (2017),
+
12 0 2
Indecomposable involutive solutions of the Yang–Baxter equation of multipermutational level 2 with abelian permutation group
Jedlička P., Pilitowska A. and Zamojska-Dzienio A.; Forum Mathematicum 33,5 (2021), 1083–1096

Citations: 12
  • Cedó F. and Okniński J.: Constructing finite simple solutions of the Yang-Baxter equation, Advances in Mathematics 391 (2022)
  • Castelli M., Catino F. and Stefanelli P.: Indecomposable Involutive Set-Theoretic Solutions of the Yang–Baxter Equation and Orthogonal Dynamical Extensions of Cycle Sets, Mediterranean Journal of Mathematics 18 (2021), 27 pages
  • Castelli M., Mazzotta M. and Stefanelli P.: Simplicity of indecomposable set-theoretic solutions of the Yang-Baxter equation, Forum Mathematicum 34,2 (2022), 531–546
  • Castelli M.: Classification of Uniconnected Involutive Solutions of the Yang-Baxter Equation With Odd Size and Z-Group Permutation Group, International Mathematics Research Notices 2023,14 (2023), 11962–11985
  • Cedó F. and Okniński J.: New simple solutions of the Yang-Baxter equation and solutions associated to simple left braces, Journal of Algebra 600 (2022), 125–151
  • Ramírez S.: Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p2q, Communications in Algebra 51,10 (2023), 4185–4194
  • Cedó F. and Okniński J.: Indecomposable solutions of the Yang–Baxter equation of square-free cardinality, Advances in Mathematics 430 (2023)
  • Zadunaisky P.: A note on set theoretical solutions of the Yang-Baxter equation with trivial retraction, Journal of Pure and Applied Algebra 228,4 (2024)
  • Castelli M.: A characterization of finite simple set-theoretic solutions of the Yang-Baxter equation, Proceedings of the American Mathematical Socitety 151 (2023), 5047–5057
  • Castelli M. and Ramírez S.: On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class, Journal of Algebra 657 (2024), 57–80
  • Vendramin L.: Skew Braces: A Brief Survey, Geometry Methods in Physics, Trends in Mathematics (2024), 153–175
  • Ballester-Bolinches A., Esteban-Romero R., Kurdachenko L. and Pérez-Calabuig V.: On Left Braces in Which Every Subbrace is an Ideal, Results in Mathematics 80,1 (2025)
Self-citations: 2
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: Cocyclic braces and indecomposable cocyclic solutions of the Yang-Baxter equation, Proceedings of the American Mathematical Society 150,10 (2022), 4223–4239
  • Jedlička P. and Pilitowska A.: Indecomposable involutive solutions of the Yang-Baxter equation of multipermutation level 2 with non-abelian permutation group, Journal of Combinatorial Theory. Series A 197 (2023)
Book citations: 1
  • Verwimp C.: Set-theoretic solutions of the Yang-Baxter equation and associated algebraic structures, dissertation at Vrije Universiteit Brussel (2022),
+
11 0 4
The retraction relation for biracks
Jedlička P., Pilitowska A. and Zamojska-Dzienio A.; Journal of Pure and Applied Algebra 223,8 (2019), 3594–3610

Citations: 11
  • Acri E., Lutowski R. and Vendramin L.: Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces, International Journal of Algebra and Computations 30,1 (2020), 91–115
  • Castelli M., Pinto G. and Rump W.: On the indecomposable involutive set-theoretic solutions of the Yang-Baxter equation of prime-power size, Communications in Algebra 48,5 (2020), 1941–1955
  • Castelli M., Catino F. and Pinto G.: About a question of Gateva-Ivanova and Cameron on square-free set-theoretic solutions of the Yang-Baxter equation, Communications in Algebra 48,6 (2020), 2369–2381
  • Doikou A. and Smoktunowicz A.: Set-theoretic Yang–Baxter & reflection equations and quantum group symmetries, Letters in Mathematical Physics 111 (2021), 40 pages
  • Smoktunowicz A.: A new formula for Lazard's correspondence for finite braces and pre-Lie algebras, Journal of Algebra 594 (2022), 202–229
  • Castelli M., Mazzotta M. and Stefanelli P.: Simplicity of indecomposable set-theoretic solutions of the Yang-Baxter equation, Forum Mathematicum 34,2 (2022), 531–546
  • Castelli M., Catino F. and Stefanelli P.: Left non-degenerate set-theoretic solutions of the Yang-Baxter equation and dynamical extensions of q-cycle sets, Journal of Algebra and its Applications 21,8 (2022), 22 pages
  • Smoktunowicz A.: On the passage from finite braces to pre-Lie rings, Advances in Mathematics 409,1 (2022), 33 pages
  • Doikou A. and Smoktunowicz A.: From braces to Hecke algebras and quantum groups, Journal of Algebra and Its Applications 22,8 (2023)
  • Doikou A., Rybołowicz B. and Stefanelli P.: Quandles as pre-Lie skew braces, set-theoretic Hopf algebras & universal -matrices, Journal of Physics A: Mathematical and Theoretical 57,40 (2024)
  • Smoktunowicz A.: More on skew braces and their ideal, Amtritsar Centennial Symposium, Contemporary Mathematics 800 (2024)
Self-citations: 4
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: Distributive biracks and soultions of the Yang-Baxter equation, International Journal of Algebra and Computation 30,3 (2020), 667–683
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: The construction of multipermutation solutions of the Yang-Baxter equation of level 2, Journal of Combinatorial Theory, Series A 176 (2020), 24 pages
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: Indecomposable involutive solutions of the Yang–Baxter equation of multipermutational level 2 with abelian permutation group, Forum Mathematicum 33,5 (2021), 1083–1096
  • Jedlička P. and Pilitowska A.: Skew left braces and 2-reductive solutions of the Yang-Baxter equation, Journal of Pure and Applied Algebra 228 (2024)
Book citations: 1
  • Verwimp C.: Set-theoretic solutions of the Yang-Baxter equation and associated algebraic structures, dissertation at Vrije Universiteit Brussel (2022),
+
11 0 1
A combinatorial construction of the weak order of a Coxeter group
Jedlička P.; Comm. Algebra 33,5 (2005), 1447–1460

Citations: 11
  • Reading N.: Lattice congruences of the weak order, Order 21,4 (2005), 315–344
  • Reading N. and Speyer D. E.: Cambrian fans, J. Eur. Math. Soc. 11,2 (2009), 407–447
  • Reading N. and Speyer D. E.: Sortable elements for quivers with cycles, Electron. J. Combin. 17,1 (2010), 19 pages
  • Reading N. and Speyer D. E.: Sortable elements in infinite Coxeter groups, Trans. Amer. Math. Soc. 363,2 (2011), 699–761
  • Reading N.: Noncrossing partitions and the shard intersection order, J. Algebraic Combin. 33,4 (2011), 483–530
  • Wu Y. and Zhao S.: Incidence matrix and cover matrix of nested interval orders, Electron. J. Linear Algebra 23 (2012), 43–65
  • Kallipoliti M. and Mühle H.: On the topology of the Cambrian semilattices, Electron. J. Combin. 20,2 (2013), 21 pages
  • Reading N.: Lattice homomorphisms between weak orders, Electronic Journal of Combinatorics 26,2 (2019), 50 pages
  • Kim J. S. and Yun S.-M.: Characteristic Polynomials of the Weak Order on Classical and Affine Coxeter Groups, Order 41,2 (2024), 319–334
  • Yu H.: The weak order on the hyperoctahedral group and the monomial basis for the Hopf algebra of signed permutations, Discrete mathematics 347,6 (2024)
  • Zhang P., Liu M., Wang Z. and Yu H.: Order-Preserving Mappings Induced by Parabolic Decompositions on Coxeter Groups, Southeast Asian Bulletin of Mathematics 48,5 (2024), 729–740
Self-citations: 1
  • Jedlička P.: Semidirect products of lattices, Algebra Universalis 57,3 (2007), 259–272
Book citations: 1
  • Grätzer G. and Wehrung F. (editors): Lattice Theory: Special Topics and Applications, Volume 2, Springer (2016),
+
9 8 7
Constructions of commutative automorphic loops
Jedlička P., Kinyon M. K. and Vojtěchovský P.; Comm. Algebra 38,9 (2010), 3243–3267

Citations: 9
  • Csörgő P.: Multiplication groups of commutative automorphic p-loops of odd order are p-groups, J. Algebra 350 (2012), 77–83
  • Csörgő P.: All automorphic loops of order p2 for some prime p are associative, J. Algebra Appl. 12,6 (2013), 8 pages
  • Jaíyéọlá T. G. and Adéníran J. O.: On the Existence of A-Loops with Some Commutative Inner Mappings and Others of Order 2, Southeast Asian Bull. Math. 33,5 (2009), 853–864
  • Nagy G. P.: On centerless commutative automorphic loops, Comment. Math. Univ. Carol. 55,4 (2014), 485–491
  • Greer M.: A Class of Loops Categorically Isomorphic to Bruck Loops of Odd Order, Communications in Algebra 42,8 (2014), 3682–3697
  • Aboras M.: Dihedral-like constructions of automorphic loops, Commun. Math. Univ. Carol. 55,3 (2014), 269–284
  • Csörgő P.: All finite automorphic loops have the elementwise Lagrange property, Rocky Mountain Journal of Math. 45,4 (2015), 1101–1105
  • Grishkov A. and Pérez-Izquierdo J. M.: Lie's correspondence for commutative automorphic formal loops, Linear algebra and its applications 544,1 (2018), 460–501
  • Nagy P. T.: Nuclear properties of loop extensions, Results in Mathematics 74,3 (2019), 27 pages
Self-citations by coauthors: 8
  • De Barros D. A. S., Grishkov A. and Vojtěchovský P.: Commutative automorphic loops of order p3, J. Algebra Appl. 11,5 (2012), 15 pages
  • De Barros D. A. S., Grishkov A. and Vojtěchovský P.: The free commutative automorphic 2-generated loop of nilpotency class 3, Comment. Math. Univ. Carolin. 53,3 (2012), 321–336
  • Grishkov A., Kinyon M. K. and Nagy G. P.: Solvability of commutative automorphic loops, Proceedings AMS 142,9 (2012), 3029–3037
  • Vojtěchovský P.: Three lectures on automorphic loops, Quasigroups and related systems 23 (2015), 129–163
  • Aboras M. and Vojtěchovský P.: Automorphisms of Dihedral-Like Automorphic Loops, Communications in Algebra 44,2 (2016), 613–627
  • Grishkov A., Rasskazova M. and Vojtěchovský P.: Automorphic loops arising from module endomorphisms, Publicationes Mathematicae Debrecen 88,3-4 (2016), 287–303
  • Kinyon M. K., Kunen K., Phillips J. D. and Vojtěchovský P.: The structure of automorphic loops, Trans. Amer. Math. Soc. 368,12 (2016), 8901–8927
  • Stuhl I. and Vojtěchovský P.: Enumeration of involutory latin quandles, Bruck loops and commutative automorphic loops of odd prime power order, Contemporary Mathematics 721 (2019), 261–276
Self-citations: 7
  • Jedlička P., Kinyon M. K. and Vojtěchovský P.: The structure of commutative automorphic loops, Trans. Amer. Math. Soc. 363,1 (2011), 365–384
  • Jedlička P., Kinyon M. K. and Vojtěchovský P.: Nilpotency in automorphic loops of prime power order, J. Algebra 350 (2012), 64–76
  • Hora J. and Jedlička P.: Nuclear semidirect product of commutative automorphic loops, J. Algebra Appl. 13,1 (2014), 15 pages
  • Jedlička P.: Odd order semidirect extensions of commutative automorphic loops, Comment. Math. Univ. Carolin. 55,4 (2014), 447–456
  • Jedlička P. and Simon D.: On commutative A-loops of order pq, J. Algebra Appl. 14,3 (2014), 20 pages
  • Jedlička P.: Semidirect extensions of the Klein group leading to automorphic loops of exponent 2, Quasigroups and Related Systems 23 (2015), 237–242
  • Jedlička P.: Involutory quandles of order pq, Publicationes Mathematicae 95,3-4 (2019), 505–514
Book citations: 2
  • Greer M.: Loops and their permutation groups, dissertation at Denver University (2013),
  • Aboras M.: Dihedral-like constructions of automorphic loops, dissertation at Denver University (2015),
+
9 0 4
The construction of multipermutation solutions of the Yang-Baxter equation of level 2
Jedlička P., Pilitowska A. and Zamojska-Dzienio A.; Journal of Combinatorial Theory, Series A 176 (2020), 24 pages

Citations: 9
  • Castelli M., Pinto G. and Rump W.: On the indecomposable involutive set-theoretic solutions of the Yang-Baxter equation of prime-power size, Communications in Algebra 48,5 (2020), 1941–1955
  • Bonatto M., Kinyon M. K., Stanovský D. and Vojtěchovský P.: Involutive latin solutions of the Yang-Baxter equation, Journal of Algebra 565,1 (2021), 128–159
  • Rump W.: Two theorems on balanced braces, Proceedings of the Edinburgh Mathematical Society 64,2 (2021), 262–278
  • Rump W.: Classification of Non-Degenerate Involutive Set-Theoretic Solutions to the Yang-Baxter Equation with Multipermutation Level Two, Algebras and Representation Theory 25,5 (2022), 1293–1307
  • Castelli M., Catino F. and Stefanelli P.: Indecomposable Involutive Set-Theoretic Solutions of the Yang–Baxter Equation and Orthogonal Dynamical Extensions of Cycle Sets, Mediterranean Journal of Mathematics 18 (2021), 27 pages
  • Stefanello L. and Trappeniers S.: On bi-skew braces and brace blocks, Journal of Pure and Applied Algebra 227,5 (2023), 22 pages
  • Zadunaisky P.: A note on set theoretical solutions of the Yang-Baxter equation with trivial retraction, Journal of Pure and Applied Algebra 228,4 (2024)
  • Shalev A. and Smoktunowicz A.: From braces to pre-Lie rings, Proceeding of American Mathematical Society 152,4 (2024), 1545–1559
  • Shalev A. and Smoktunowicz A.: Groups, Lie rings and braces, Bulletin of the Belgian Mathematical Society 31,4 (2024), 422–433
Self-citations: 4
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: Distributive biracks and soultions of the Yang-Baxter equation, International Journal of Algebra and Computation 30,3 (2020), 667–683
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: Indecomposable involutive solutions of the Yang–Baxter equation of multipermutational level 2 with abelian permutation group, Forum Mathematicum 33,5 (2021), 1083–1096
  • Jedlička P. and Pilitowska A.: Indecomposable involutive solutions of the Yang-Baxter equation of multipermutation level 2 with non-abelian permutation group, Journal of Combinatorial Theory. Series A 197 (2023)
  • Jedlička P. and Pilitowska A.: Skew left braces and 2-reductive solutions of the Yang-Baxter equation, Journal of Pure and Applied Algebra 228 (2024)
Book citations: 1
  • Verwimp C.: Set-theoretic solutions of the Yang-Baxter equation and associated algebraic structures, dissertation at Vrije Universiteit Brussel (2022),
+
8 1 3
Subquadles of affine quandles
Jedlička P., Pilitowska A., Stanovský D. and Zamojska-Dzienio A.; J. Algebra 510,15 (2018), 259–288

Citations: 8
  • Mukherjee S. and Przytycki J. H.: On the rack homology of graphic quandles, Contemporary Mathematics 721,183 (2019), 197–12
  • Bonatto M.: Principal and doubly homogeneous quandles, Monatshefte für Mathematik 191 (2020), 691–717
  • Traldi L.: Multivariate Alexander quandles, II. The involutory medial quandle of a link, Journal of Knot Theory and its Ramifications 29,5 (2020), 39 pages
  • Bonatto M.: Medial and semimedial left quasigroups, Journal of Algebra and its Applications 21,1 (2022), 31 pages
  • Bonatto M., Crans A. S., Nasybullov T. and Whitney G.: Quandles with orbit series conditions, Journal of Algebra 567,1 (2021), 284–309
  • Bardakov V., Nasybullov T. and Singh M.: General constructions of biquandles and their symmetries, Journal of Pure and Applied Algebra 226,7 (2022), 40 pages
  • Traldi L.: Multivariate Alexander quandles, IV., the medial quandle of a link, Journal of Knot Theory and its Ramifications 31,12 (2022), 43 pages
  • Traldi L.: Multivariate Alexander quandles, V.: Constructing the medial quandle of a link, Journal of Knot Theory and its Ramifications 33,10 (2024), 34 pages
Self-citations by coauthors: 1
  • Bonatto M. and Stanovský D.: Commutator theory for racks and quandles, Journal of Mathematical Society of Japan 73,1 (2021), 41–75
Self-citations: 3
  • Jedlička P.: Involutory quandles of order pq, Publicationes Mathematicae 95,3-4 (2019), 505–514
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: Distributive biracks and soultions of the Yang-Baxter equation, International Journal of Algebra and Computation 30,3 (2020), 667–683
  • Jedlička P. and Stanovský D.: Homomorphic images of affine quandles, Algebra Universalis 82,3 (2021), 11 pages
+
6 7 3
Nilpotency in automorphic loops of prime power order
Jedlička P., Kinyon M. K. and Vojtěchovský P.; J. Algebra 350 (2012), 64–76

Citations: 6
  • Csörgő P.: Multiplication groups of commutative automorphic p-loops of odd order are p-groups, J. Algebra 350 (2012), 77–83
  • Csörgő P.: All automorphic loops of order p2 for some prime p are associative, J. Algebra Appl. 12,6 (2013), 8 pages
  • Nagy G. P.: On centerless commutative automorphic loops, Comment. Math. Univ. Carol. 55,4 (2014), 485–491
  • Greer M.: A Class of Loops Categorically Isomorphic to Bruck Loops of Odd Order, Communications in Algebra 42,8 (2014), 3682–3697
  • Atanasov R. and Foguel T.: Loops that are partitioned by groups, J. Group Theory 17,5 (2014), 851–861
  • Csörgő P.: All finite automorphic loops have the elementwise Lagrange property, Rocky Mountain Journal of Math. 45,4 (2015), 1101–1105
Self-citations by coauthors: 7
  • De Barros D. A. S., Grishkov A. and Vojtěchovský P.: Commutative automorphic loops of order p3, J. Algebra Appl. 11,5 (2012), 15 pages
  • Stanovský D. and Vojtěchovský P.: Commutator theory for loops, Journal of Algebra 399,1 (2013), 290–322
  • Grishkov A., Kinyon M. K. and Nagy G. P.: Solvability of commutative automorphic loops, Proceedings AMS 142,9 (2012), 3029–3037
  • Vojtěchovský P.: Three lectures on automorphic loops, Quasigroups and related systems 23 (2015), 129–163
  • Grishkov A., Rasskazova M. and Vojtěchovský P.: Automorphic loops arising from module endomorphisms, Publicationes Mathematicae Debrecen 88,3-4 (2016), 287–303
  • Kinyon M. K., Kunen K., Phillips J. D. and Vojtěchovský P.: The structure of automorphic loops, Trans. Amer. Math. Soc. 368,12 (2016), 8901–8927
  • Stuhl I. and Vojtěchovský P.: Enumeration of involutory latin quandles, Bruck loops and commutative automorphic loops of odd prime power order, Contemporary Mathematics 721 (2019), 261–276
Self-citations: 3
  • Jedlička P., Kinyon M. K. and Vojtěchovský P.: The structure of commutative automorphic loops, Trans. Amer. Math. Soc. 363,1 (2011), 365–384
  • Hora J. and Jedlička P.: Nuclear semidirect product of commutative automorphic loops, J. Algebra Appl. 13,1 (2014), 15 pages
  • Jedlička P.: Semidirect extensions of the Klein group leading to automorphic loops of exponent 2, Quasigroups and Related Systems 23 (2015), 237–242
Book citations: 2
  • Greer M.: Loops and their permutation groups, dissertation at Denver University (2013),
  • Aboras M.: Dihedral-like constructions of automorphic loops, dissertation at Denver University (2015),
+
6 0 1
Cocyclic braces and indecomposable cocyclic solutions of the Yang-Baxter equation
Jedlička P., Pilitowska A. and Zamojska-Dzienio A.; Proceedings of the American Mathematical Society 150,10 (2022), 4223–4239

Citations: 6
  • Castelli M.: Classification of Uniconnected Involutive Solutions of the Yang-Baxter Equation With Odd Size and Z-Group Permutation Group, International Mathematics Research Notices 2023,14 (2023), 11962–11985
  • Rump W.: Classification of Non-Degenerate Uniconnected Cycle Sets, Pacific Journal of Mathematics 323,1 (2023), 205–221
  • Cedó F. and Okniński J.: Indecomposable solutions of the Yang–Baxter equation of square-free cardinality, Advances in Mathematics 430 (2023)
  • Castelli M.: A characterization of finite simple set-theoretic solutions of the Yang-Baxter equation, Proceedings of the American Mathematical Socitety 151 (2023), 5047–5057
  • Castelli M. and Ramírez S.: On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class, Journal of Algebra 657 (2024), 57–80
  • Colazzo I., Ferrara M. and Trombetti M.: On derived-indecomposable solutions of the Yang–Baxter equation, Publicacions Matematiques 69,1 (2025), 171–193
Self-citations: 1
  • Jedlička P. and Pilitowska A.: Indecomposable involutive solutions of the Yang-Baxter equation of multipermutation level 2 with non-abelian permutation group, Journal of Combinatorial Theory. Series A 197 (2023)
+
6 0 0
Indecomposable involutive solutions of the Yang-Baxter equation of multipermutation level 2 with non-abelian permutation group
Jedlička P. and Pilitowska A.; Journal of Combinatorial Theory. Series A 197 (2023)

Citations: 6
  • Zadunaisky P.: A note on set theoretical solutions of the Yang-Baxter equation with trivial retraction, Journal of Pure and Applied Algebra 228,4 (2024)
  • Castelli M. and Ramírez S.: On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class, Journal of Algebra 657 (2024), 57–80
  • Vendramin L.: Skew Braces: A Brief Survey, Geometry Methods in Physics, Trends in Mathematics (2024), 153–175
  • Dietzel C., Properzi S. and Trappeniers S.: Indecomposable involutive set-theoretical solutions to the Yang-Baxter equation of size p2, to appear in Communications in Algebra
  • Kanrar A. and Rump W.: A decomposition problem for involutive solutions to the Yang-Baxter equation, Bulletin of the Belgian Mathematical Society – Simon Stevin 31,5 (2024), 688–702
  • Ballester-Bolinches A., Esteban-Romero R., Kurdachenko L. and Pérez-Calabuig V.: On Left Braces in Which Every Subbrace is an Ideal, Results in Mathematics 80,1 (2025)
+
4 0 2
On left distributive left idempotent groupoids
Jedlička P.; Comment. Math. Univ. Carolin. 46,1 (2005), 15–20

Citations: 4
  • Stanovský D.: Subdirectly irreducible nonidempotent left distributive left quasigroups, Comm. Algebra 36,7 (2008), 2654–2669
  • Stanovský D.: On varieties of left distributive left idempotent groupoids, Discuss. Math.–General Algebra and Appl 24,2 (2004), 267–275
  • Stanovský D.: Selfdistributive grupoids, Part A2: Non-idempotent left distributive quasigroups, Acta Univ. Carolin. Math. Phys. 52,2 (2011), 7–28
  • Dehornoy P.: Some aspects of the SD-world, Contemporary Mathematics 721 (2019), 69–96
Self-citations: 2
  • Jedlička P.: Geometry monoid of the left distributivity and the left idempotency, Algebra Discrete Math. no. 4 (2007), 12–39
  • Jedlička P.: On a partial syntactical criterion for the left distributivity and the idempotency, Math. Slovaca 60,2 (2010), 213–222
Book citations: 1
  • Stanovský D.: Left distributive left quasigroups, dissertation at Charles University in Prague (2004),
+
4 0 1
Distributive biracks and soultions of the Yang-Baxter equation
Jedlička P., Pilitowska A. and Zamojska-Dzienio A.; International Journal of Algebra and Computation 30,3 (2020), 667–683

Citations: 4
  • Bonatto M.: Medial and semimedial left quasigroups, Journal of Algebra and its Applications 21,1 (2022), 31 pages
  • Bonatto M., Crans A. S., Nasybullov T. and Whitney G.: Quandles with orbit series conditions, Journal of Algebra 567,1 (2021), 284–309
  • Mellor B. and Smith R.: N-quandles of links, Topology and its Applications 294 (2021)
  • Senturk I. and Bozdağ Ş. N.: Geometrical approach on set theoretical solutions of Yang-Baxter equation in Lie algebras, Malaya Journal of Matematik 10,3 (2022), 237–256
Self-citations: 1
  • Jedlička P. and Pilitowska A.: Skew left braces and 2-reductive solutions of the Yang-Baxter equation, Journal of Pure and Applied Algebra 228 (2024)
+
4 0 0
Distributive and trimedial quasigroups of order 243
Jedlička P., Stanovský D. and Vojtěchovský P.; J. Discrete Mathematics 340,3 (2017), 404–415

Citations: 4
  • Ogurinade S. O., Ajala S. O., Olaleru J. O. and Jaíyéọlá T. G.: Holomorph of self-distributive quasigroup with key laws, Intern. J. of Math. Analysis and Optimization: Theory and Applications 2019,1 (2019), 426–432
  • Nowak A.: Affine Mendelsohn triple systems and the Eisenstein integers, Journal of Combinatorial Designs 28,10 (2020), 724–744
  • Nowak A.: The module theory of semisymmetric quasigroups, totally symmetric quasigroups, and triple systems, Journal of Algebraic Combinatorics 56,2 (2022)
  • Young B., Hacker A. and Connamacher H.: The number of labeled n-ary abelian groups and totally symmetric medial quasigroups, Journal of Algebraic Combinatorics 57,2 (2023), 461–479
Book citations: 3
  • Shcherbakov V.: Elements of Quasigroups Theory and Applications, New York: Chapman and Hall/CRC (2017),
  • Nowak A.: Linear aspects of equational triality in quasigroups, dissertation at Iowa State University (2020),
  • Barnes M. K.: On Loop Commutators, Quaternionic Automorphic Loops, and Related Topics, dissertation at University of Denver (2022),
+
3 0 2
Nuclear semidirect product of commutative automorphic loops
Hora J. and Jedlička P.; J. Algebra Appl. 13,1 (2014), 15 pages

Citations: 3
  • Nagy G. P.: On centerless commutative automorphic loops, Comment. Math. Univ. Carol. 55,4 (2014), 485–491
  • Aboras M. and Vojtěchovský P.: Automorphisms of Dihedral-Like Automorphic Loops, Communications in Algebra 44,2 (2016), 613–627
  • Nagy P. T.: Nuclear properties of loop extensions, Results in Mathematics 74,3 (2019), 27 pages
Self-citations: 2
  • Jedlička P.: Odd order semidirect extensions of commutative automorphic loops, Comment. Math. Univ. Carolin. 55,4 (2014), 447–456
  • Jedlička P.: Semidirect extensions of the Klein group leading to automorphic loops of exponent 2, Quasigroups and Related Systems 23 (2015), 237–242
Book citations: 1
  • Aboras M.: Dihedral-like constructions of automorphic loops, dissertation at Denver University (2015),
+
2 0 1
Subdirectly irreducible medial quandles
Jedlička P., Pilitowska A. and Zamojska-Dzienio A.; Communications in Algebra 46,11 (2018), 4803–4829

Citations: 2
  • Lebed V. and Mortier A.: Abelian quandles and quandles with abelian structure group, Journal of Pure and Applied Algebra 225,1 (2021), 691–717
  • Cazet N.: Quandles with one nontrivial column, to appear in Journal of Algebra and its Applications
Self-citations: 1
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: The retraction relation for biracks, Journal of Pure and Applied Algebra 223,8 (2019), 3594–3610
+
2 0 0
Geometry monoid of the left distributivity and the left idempotency
Jedlička P.; Algebra Discrete Math. no. 4 (2007), 12–39

Citations: 2
  • Dehornoy P. and van Oostrom V.: Using groups for investigating rewrite systems, Math. Structures Comput. Sci. 18,6 (2008), 1133–1167
  • Dehornoy P.: Some aspects of the SD-world, Contemporary Mathematics 721 (2019), 69–96
+
2 0 0
The rings which are Boolean II
Jedlička P.; Acta Univ. Carolin. Math. Phys. 53,1 (2012), 73–75

Citations: 2
  • Chajda I. and Eigenthaler G.: On Boolean Subrings of Rings, Commutative Algebra (2014), 113–117
  • Chajda I., Länger H. and Švrček F.: Multiplicatively idempotent semirings, Math. Bohemica 140,1 (2015), 35–42
+
1 0 4
On commutative A-loops of order pq
Jedlička P. and Simon D.; J. Algebra Appl. 14,3 (2014), 20 pages

Citations: 1
  • Vojtěchovský P.: Three lectures on automorphic loops, Quasigroups and related systems 23 (2015), 129–163
Self-citations: 4
  • Jedlička P.: On commutative loops of order pq with metacyclic inner mapping group and trivial center, Comment. Math. Univ. Carolin. 51,2 (2010), 253–261
  • Hora J. and Jedlička P.: Nuclear semidirect product of commutative automorphic loops, J. Algebra Appl. 13,1 (2014), 15 pages
  • Jedlička P.: Odd order semidirect extensions of commutative automorphic loops, Comment. Math. Univ. Carolin. 55,4 (2014), 447–456
  • Jedlička P.: Involutory quandles of order pq, Publicationes Mathematicae 95,3-4 (2019), 505–514
+
1 0 1
Semidirect products of lattices
Jedlička P.; Algebra Universalis 57,3 (2007), 259–272

Citations: 1
  • Czédli G.: Sums of lattices and a relational category, Order 26,4 (2009), 309–318
Self-citations: 1
  • Jedlička P.: A combinatorial construction of the weak order of a Coxeter group, Comm. Algebra 33,5 (2005), 1447–1460
+
1 0 0
On a partial syntactical criterion for the left distributivity and the idempotency
Jedlička P.; Math. Slovaca 60,2 (2010), 213–222

Citations: 1
  • Dehornoy P.: Some aspects of the SD-world, Contemporary Mathematics 721 (2019), 69–96
+
1 0 0
Integral minimisation improvement for Murphy's polynomial selection algorithm
Jedlička P.; An. Ştiinţ. Univ. Ovidius Constanţa 18,2 (2010), 125–130

Citations: 1
  • Li Q. X., He R. Q. and Lu Z. Y.: Accelerating optimization by tracing valley, Computer Physics Communications 203 (2016), 168–177
Book citations: 1
  • Coxon N. V.: On the number field sieve: polynomial selection and smooth elements in number fields, dissertation at University of Queensland (2012),
+
1 0 0
Odd order semidirect extensions of commutative automorphic loops
Jedlička P.; Comment. Math. Univ. Carolin. 55,4 (2014), 447–456

Citations: 1
  • Nagy P. T.: Nuclear properties of loop extensions, Results in Mathematics 74,3 (2019), 27 pages
+
0 0 3
Free medial quandles
Jedlička P., Pilitowska A. and Zamojska-Dzienio A.; Algebra Universalis 78,1 (2017), 43–54

Self-citations: 3
  • Jedlička P., Pilitowska A. and Zamojska-Dzienio A.: Subdirectly irreducible medial quandles, Communications in Algebra 46,11 (2018), 4803–4829
  • Jedlička P., Pilitowska A., Stanovský D. and Zamojska-Dzienio A.: Subquadles of affine quandles, J. Algebra 510,15 (2018), 259–288
  • Jedlička P. and Stanovský D.: Homomorphic images of affine quandles, Algebra Universalis 82,3 (2021), 11 pages
+
0 0 0
On commutative loops of order pq with metacyclic inner mapping group and trivial center
Jedlička P.; Comment. Math. Univ. Carolin. 51,2 (2010), 253–261

+
0 0 0
On equational theory of left divisible left distributive groupoids
Jedlička P.; Acta Univ. Palack. Olomuc. 51,2 (2012), 67–72

+
0 0 0
Azimuthal optimization of stationary solar panels with respect to the dispersed sunlight in Middle Bohemia region
Jedlička P. and Zeman J.; Trends in Agricultural Engineering (2013), 282–286

+
0 0 0
Semidirect extensions of the Klein group leading to automorphic loops of exponent 2
Jedlička P.; Quasigroups and Related Systems 23 (2015), 237–242

+
0 0 0
Examples to Birkhoff's quasigroup axioms
Jedlička P.; J. Algebra 466 (2016), 204–207

+
0 0 0
The lattice of quasivarieties of modules over a Dedekind ring
Jedlička P., Matczak K. and Mućka A.; Algebra and Discrete Mathematics 27,1 (2019), 37–49

+
0 0 0
Involutory quandles of order pq
Jedlička P.; Publicationes Mathematicae 95,3-4 (2019), 505–514

+
0 0 0
Homomorphic images of affine quandles
Jedlička P. and Stanovský D.; Algebra Universalis 82,3 (2021), 11 pages

+
0 0 0
Skew left braces and 2-reductive solutions of the Yang-Baxter equation
Jedlička P. and Pilitowska A.; Journal of Pure and Applied Algebra 228 (2024)

Most frequent citers

13.67: Petr Vojtěchovský
10.83: Piroska Csörgő
8.17: Marco Castelli
7.33: Marco Bonatto
6.83: David Stanovský
6.00: Lorenzo Traldi
5.25: Gábor P. Nagy
5.00: Agata Smoktunowicz
4.83: Aleš Drápal
4.50: Nathan Reading
4.33: Alexander N. Grishkov
4.17: Michael K. Kinyon; Wolfgang Rump
3.50: Mike Greer; Patrick Dehornoy
3.42: Leandro Vendramin
3.00: Péter T. Nagy; Mouna Aboras; Pablo Mauricio Zadunaisky Bustillos
2.75: Tèmítọ́pẹ́ Gbọ́láhàn Jaíyéọlá
2.50: S. Ramírez; Olufemi Olakunle George
2.33: Paola Stefanelli
2.00: Jan Okniński; Anthony D. Keedwell; Alex W. Nowak; Ferran Cedó; Nicholas Cazet
1.95: Adolfo Ballester-Bolinches; Ramón Esteban-Romero; Vicent Pérez-Calabuig
1.87: Marco Trombetti
1.83: Leonid A. Kurdachenko
1.75: J. D. Phillips
1.67: Francesco Catino; Dylene Agda Souza de Barros
1.58: Anastasia Doikou
1.50: Izabella Stuhl; David E. Speyer; John Olúsọlá Adéníran
1.25: Houyi Yu
1.00: Marzia Mazzotta; Nathan Smith; Tomáš Nagy; Hiroshi Tamaru; Victoria Lebed; Arnaud Mortier; Eva Horvat; Aner Shalev; José María Pérez-Izquierdo; Giuseppina Pinto; Barbara Baumeister; Jenya Kirshtein; Gábor Czédli; Yasuki Tada
0.92: Ilaria Colazzo
0.87: Maria Ferrara
0.83: Valeriy Bardakov; Alissa S. Crans; Timur R. Nasybullov; Glen Whitney; Senne Trappeniers; Ivan Chajda
0.75: Kenneth Kunen
0.67: Ian M. Wanless; Douglas S. Stones; Marina N. Rasskazova
0.50: Risto Atanasov; Tuval Foguel; S. O. Ogurinade; S. O. Ajala; J. O. Olaleru; Petar Đapić; Józef H. Przytycki; Sujoy Mukherjee; Petar Marković; Yoshikata Ishihara; Vsevolod Gubarev; Ibrahim Senturk; Şerife Nur Bozdağ; Alessia Cattabriga; Lorenzo Stefanello; Shizhen Zhao; Vincent van Oostrom; Jang Soo Kim; Sun-mi Yun; Myrto Kallipoliti; Maria de Lourdes Merlini Giuliani; Alberto Facchini; Mara Pompili; Giliard Souza Dos Anjos; Matthew Ashford; Thomas Letourmy; Oliver Riordan; Henri Mühle; Günter Eigenthaler; Seung Yeop Yang; Yaokun Wu; Lee Raney; Blake Mellor; Konomi Furuki; Riley Smith; Takuya Saito; Sakumi Sugawara; Max Chao-Haft; Sam Nelson; Arpan Kanrar
0.33: Eric Jespers; Arne van Antwerpen; Martyn R. Dixon; Emiliano Acri; Igor Ya. Subbotin; Rafał Lutowski; Qing-Xiao Li; Rong-Qiang He; Hamid Abchir; Fatima Ezzahrae Abid; Mohamed Boucetta; Ben Young; Austin Hacker; Harold Connamacher; Zhong-Yi Lu; Bernard Rybołowicz; Helmut Länger; Filip Švrček; Carsten Dietzel; Silvia Properzi; Mahender Singh; Kyle Pula; Alexander Hulpke
0.25: Tomasz Brzeziński; Ben Coté; Ben Harvill; Mike Huhn; Abigail Kirchman; Paz Jiménez-Seral; Grigorii Horosh; Nadeghda Malyutina; Alexandra Şçerbacova; Ilojide E.; Memudu O. Olatinwo; Florentin Smarandache; Kenneth W. Johnson; Victor V. Shcherbakov; Pan Zhang; Ming Liu; Zhangpan Wang

Most frequent citing countries

56.00: United States
25.50: Colorado
7.75: Pennsylvania
5.67: California
4.00: North Carolina
2.25: Michigan
2.00: Indiana
1.83: Massachusets
1.33: Alabama
1.17: District of Columbia
1.00: Iowa, Texas, Ohio
0.75: Wisconsin
0.25: Minnesota, Idaho, New Mexico
20.08: Hungary
19.15: Italy
14.17: Apulia
2.73: Campania
1.00: Emilia-Romagna
0.50: Tuscany, Veneto
0.25: Piedmont
15.17: Czechia
14.00: Bohemia
1.17: Moravia
12.00: Argentina
10.96: United Kingdom
6.92: Scotland
3.92: England
0.12: Wales
9.35: Spain
8.75: Nigeria
6.50: Brazil
5.75: Belgium
5.50: France
5.17: Germany
3.88: China
3.75: Japan
3.58: Russia
2.71: Poland
2.33: Austria
1.50: South Korea
1.46: Ukraine
1.33: Australia
1.00: Morocco, Serbia, Turkey, Slovenia, Israel
0.83: India
0.75: Moldova
0.50: Netherlands