Involutive solutions of the Yang–Baxter equation of multipermutation level 2 and their permutation groups

Přemysl Jedlička with Agata Pilitowska and Anna Zamojska-Dzienio

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture) in Prague

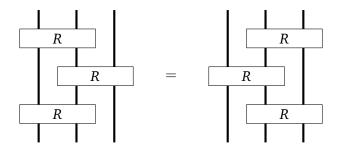
Caen, 25th March 2022

Yang–Baxter equation

Definition

Let *V* be a vector space. A homomorphism $R: V \otimes V \rightarrow V \otimes V$ is called a *solution of Yang–Baxter equation* if it satisfies

 $(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V) = (\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R).$



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Set-theoretic solutions

Definition

Let *X* be a set. A mapping $r : X \times X \rightarrow X \times X$ is called a *set-theoretic solution of Yang–Baxter equation* if it satisfies

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$

A solution $r : (x, y) \mapsto (\sigma_x(y), \tau_y(x))$ is called *non-degenerate* if σ_x and τ_y are bijections, for all $x, y \in X$. A solution is called *involutive* if $r^2 = id_{X^2}$.

Observation

If *r* is involutive then $\tau_y(x) = \sigma_{\sigma_x(y)}^{-1}(x)$.

Set-theoretic solutions

Definition

Let *X* be a set. A mapping $r : X \times X \rightarrow X \times X$ is called a *set-theoretic solution of Yang–Baxter equation* if it satisfies

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$

A solution $r : (x, y) \mapsto (\sigma_x(y), \tau_y(x))$ is called *non-degenerate* if σ_x and τ_y are bijections, for all $x, y \in X$. A solution is called *involutive* if $r^2 = id_{X^2}$.

Observation

If *r* is involutive then
$$\tau_y(x) = \sigma_{\sigma_x(y)}^{-1}(x)$$
.

Retracts of involutive solutions

Definition

Let (X, σ, τ) be an involutive solution. We define a relation \sim on X as

 $x \sim y$ if and only if $\sigma_x = \sigma_y$.

The set $\{[x]_{\sim} \mid x \in X\}$ with operations

 $\sigma_{[x]_{\sim}}([y]_{\sim}) = [\sigma_x(y)]_{\sim}$ and $\tau_{[y]_{\sim}}([x]_{\sim}) = [\tau_y(x)]_{\sim}$

is called the *retract* of X and denoted by Ret(X).

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Retracts of involutive solutions

Definition

Let (X, σ, τ) be an involutive solution. We define a relation ~ on X as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

The set $\{[x]_{\sim} \mid x \in X\}$ with operations

 $\sigma_{[x]_{\sim}}([y]_{\sim}) = [\sigma_x(y)]_{\sim}$ and $\tau_{[y]_{\sim}}([x]_{\sim}) = [\tau_y(x)]_{\sim}$

is called the *retract* of *X* and denoted by Ret(X).

(日) (日) (日) (日) (日) (日) (日)

Retract is a solution

Theorem (Etingof, Schedler, Soloviev)

Let (X, σ, τ) be an involutive solution. Then Ret(X) is a well-defined involutive solution.

Definition

We say that an involutive solution (X, σ, τ) has *multipermutation level* k if k is the smallest integer such that $|\text{Ret}^k(X)| = 1$.

Sketch of the proof. $egin{array}{ccc} X & o & \operatorname{Ret}(X) \ & \downarrow & & \downarrow \ & G(X) & o & \mathfrak{G}(X) \end{array}$

Retract is a solution

Theorem (Etingof, Schedler, Soloviev)

Let (X, σ, τ) be an involutive solution. Then Ret(X) is a well-defined involutive solution.

Definition

We say that an involutive solution (X, σ, τ) has *multipermutation level* k if k is the smallest integer such that $|\text{Ret}^k(X)| = 1$.

Sketch of the proof.

$$\begin{array}{cccc} X & \to & \operatorname{Ret}(X) \\ \downarrow & & \downarrow \\ G(X) & \to & \mathcal{G}(X) \end{array} \quad \Box$$

Retract is a solution

Theorem (Etingof, Schedler, Soloviev)

Let (X, σ, τ) be an involutive solution. Then Ret(X) is a well-defined involutive solution.

Definition

We say that an involutive solution (X, σ, τ) has *multipermutation level* k if k is the smallest integer such that $|\text{Ret}^k(X)| = 1$.

Sketch of the proof.

$$egin{array}{cccc} X &
ightarrow & \operatorname{Ret}(X) \ \downarrow & \downarrow \ G(X) &
ightarrow & {\mathfrak G}(X) \end{array}$$

Retracts of non-involutive solutions

Definition

Let (X, σ, τ) be a solution. We define a relation ~ on X as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$ and $\tau_x = \tau_y$

Theorem (P. J., A. P., A. Z.-D.)

Let (X, σ, τ) be a solution. Then Ret(X) is a well-defined solution.

Sketch of the proof.

Let $x \sim x'$ and $y \sim y'$. Then

• $\sigma_x(y) \sim \sigma_{x'}(y')$ • $\sigma_x^{-1}(y) \sim \sigma_{x'}^{-1}(y')$ • $\tau_y(x) \sim \tau_{y'}(x')$ • $\tau_y^{-1}(x) \sim \tau_{y'}^{-1}(x')$

Retracts of non-involutive solutions

Definition

Let (X, σ, τ) be a solution. We define a relation ~ on X as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$ and $\tau_x = \tau_y$

Theorem (P. J., A. P., A. Z.-D.)

Let (X, σ, τ) be a solution. Then Ret(X) is a well-defined solution.

Sketch of the proof.

Let $x \sim x'$ and $y \sim y'$. Then

• $\sigma_x(y) \sim \sigma_{x'}(y')$ • $\sigma_x^{-1}(y) \sim \sigma_{x'}^{-1}(y')$ • $\tau_y(x) \sim \tau_{y'}(x')$ • $\tau_y^{-1}(x) \sim \tau_{y'}^{-1}(x')$

Retracts of non-involutive solutions

Definition

Let (X, σ, τ) be a solution. We define a relation ~ on X as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$ and $\tau_x = \tau_y$

Theorem (P. J., A. P., A. Z.-D.)

Let (X, σ, τ) be a solution. Then Ret(X) is a well-defined solution.

Sketch of the proof.

Let $x \sim x'$ and $y \sim y'$. Then

• $\sigma_x(y) \sim \sigma_{x'}(y')$ • $\sigma_x^{-1}(y) \sim \sigma_{x'}^{-1}(y')$ • $\tau_y(x) \sim \tau_{y'}(x')$ • $\tau_y^{-1}(x) \sim \tau_{y'}^{-1}(x')$

Multipermutation solutions of level 1

Proposition

Let X be a set and let f be a permutation on X. We define, for all $x, y \in X$,

$$\sigma_x(y) = f(y)$$
 and $\tau_y(x) = f^{-1}(x)$.

Then (X, σ, τ) is an involutive solution of multipermutation level 1. Such a solution is called Lyubashenko solution or permutation solution.

On the other hand, every multipermutation solution of level 1 is a permutation solution.

Definition

If $f = id_X$ then X is called a *trivial* solution.

Multipermutation solutions of level 1

Proposition

Let X be a set and let f be a permutation on X. We define, for all $x, y \in X$,

$$\sigma_x(y) = f(y)$$
 and $\tau_y(x) = f^{-1}(x)$.

Then (X, σ, τ) is an involutive solution of multipermutation level 1. Such a solution is called Lyubashenko solution or permutation solution.

On the other hand, every multipermutation solution of level 1 is a permutation solution.

Definition

If $f = id_X$ then X is called a *trivial* solution.

Multipermutation solutions of level 1

Proposition

Let X be a set and let f be a permutation on X. We define, for all $x, y \in X$,

$$\sigma_x(y) = f(y)$$
 and $\tau_y(x) = f^{-1}(x)$.

Then (X, σ, τ) is an involutive solution of multipermutation level 1. Such a solution is called Lyubashenko solution or permutation solution.

On the other hand, every multipermutation solution of level 1 is a permutation solution.

Definition

If $f = id_X$ then X is called a *trivial* solution.

Reductivity

Definition

Let (X, σ, τ) be an involutive solution. We say that X is *k*-reductive if

$$\sigma_{\sigma_{\cdots\sigma_{x_{1}}(x_{1})}(x_{2})\cdots}(x_{k-1})}(x_{k}) = \sigma_{\sigma_{\cdots\sigma_{x_{1}}(x_{2})\cdots}(x_{k-1})}(x_{k})$$

Proposition (T. Gateva-Ivanova)

multipermutation level at most $k - 1 \Rightarrow k$ -reductivity \Rightarrow multipermutation level at most k

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution satisfying

 $\forall x \in X \exists y \in X \sigma_y(x) = x.$

Then X is k-reductive if and only if it has multipermutation level at most k.

Reductivity

Definition

Let (X, σ, τ) be an involutive solution. We say that X is *k*-reductive if

$$\sigma_{\sigma_{\cdots\sigma_{x_{1}}(x_{1})}(x_{2})\cdots}(x_{k-1})}(x_{k}) = \sigma_{\sigma_{\cdots\sigma_{x_{1}}(x_{2})\cdots}(x_{k-1})}(x_{k})$$

Proposition (T. Gateva-Ivanova)

 $\begin{array}{l} \mbox{multipermutation level at most } k-1 \Rightarrow k\mbox{-reductivity} \Rightarrow \\ \mbox{multipermutation level at most } k \end{array}$

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution satisfying

 $\forall x \in X \exists y \in X \sigma_y(x) = x.$

Then X is k-reductive if and only if it has multipermutation level at most k.

Reductivity

Definition

Let (X, σ, τ) be an involutive solution. We say that X is *k*-reductive if

$$\sigma_{\sigma_{\cdots\sigma_{\sigma_{x_0}(x_1)}(x_2)\cdots(x_{k-1})}(x_k) = \sigma_{\sigma_{\cdots\sigma_{x_1}(x_2)\cdots(x_{k-1})}(x_k)}$$

Proposition (T. Gateva-Ivanova)

multipermutation level at most $k - 1 \Rightarrow k$ -reductivity \Rightarrow multipermutation level at most k

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution satisfying

$$\forall x \in X \exists y \in X \sigma_y(x) = x.$$

Then X is k-reductive if and only if it has multipermutation level at most k.

Permutation group

Definition

Let (X, σ, τ) be an involutive solution. The group

$$\mathfrak{G}(X) = \langle \sigma_x \mid x \in X \rangle$$

is called the *permutation group* of *X* or the *involutive Yang-Baxter* group of *X*.

Observation

Let (X, σ, τ) be a k-reductive involutive solution. Then each orbit of the action of $\mathcal{G}(X)$ is a subsolution of X of multipermutation level at most k - 1.

Permutation group

Definition

Let (X, σ, τ) be an involutive solution. The group

$$\mathfrak{G}(X) = \langle \sigma_x \mid x \in X \rangle$$

is called the *permutation group* of *X* or the *involutive Yang-Baxter group* of *X*.

Observation

Let (X, σ, τ) be a k-reductive involutive solution. Then each orbit of the action of $\mathcal{G}(X)$ is a subsolution of X of multipermutation level at most k - 1.

2-reductive solutions

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive, i.e. $\sigma_{\sigma_x(y)}(z) = \sigma_y(z)$,
- $\sigma_x \in \operatorname{Aut}(X)$, for each $x \in X$, i.e. $\sigma_x \sigma_y(z) = \sigma_{\sigma_x(y)} \sigma_x(z)$,
- *X* has multip. level at most 2 and, for all $x \in X$, $\tau_x = \sigma_x^{-1}$,
- Ret(*X*) is a trivial solution.

Corollary

Let (X, σ, τ) be a 2-reductive involutive solution. Then $\mathfrak{G}(X)$ is abelian.

Theorem (W. Rump)

For each $k \in \mathbb{N}$, there exists an involutive solution of multipermutation level k with cyclic permutation group.

2-reductive solutions

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive, i.e. $\sigma_{\sigma_x(y)}(z) = \sigma_y(z)$,
- $\sigma_x \in Aut(X)$, for each $x \in X$, i.e. $\sigma_x \sigma_y(z) = \sigma_{\sigma_x(y)} \sigma_x(z)$,
- *X* has multip. level at most 2 and, for all $x \in X$, $\tau_x = \sigma_x^{-1}$,
- Ret(X) is a trivial solution.

Corollary

Let (X, σ, τ) be a 2-reductive involutive solution. Then $\mathfrak{G}(X)$ is abelian.

Theorem (W. Rump)

For each $k \in \mathbb{N}$, there exists an involutive solution of multipermutation level k with cyclic permutation group.

2-reductive solutions

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive, i.e. $\sigma_{\sigma_x(y)}(z) = \sigma_y(z)$,
- $\sigma_x \in Aut(X)$, for each $x \in X$, i.e. $\sigma_x \sigma_y(z) = \sigma_{\sigma_x(y)} \sigma_x(z)$,
- *X* has multip. level at most 2 and, for all $x \in X$, $\tau_x = \sigma_x^{-1}$,
- Ret(X) is a trivial solution.

Corollary

Let (X, σ, τ) be a 2-reductive involutive solution. Then $\mathfrak{G}(X)$ is abelian.

Theorem (W. Rump)

For each $k \in \mathbb{N}$, there exists an involutive solution of multipermutation level k with cyclic permutation group.

2-reductive solutions

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive, i.e. $\sigma_{\sigma_x(y)}(z) = \sigma_y(z)$,
- $\sigma_x \in Aut(X)$, for each $x \in X$, i.e. $\sigma_x \sigma_y(z) = \sigma_{\sigma_x(y)} \sigma_x(z)$,
- X has multip. level at most 2 and, for all $x \in X$, $\tau_x = \sigma_x^{-1}$,
- Ret(X) is a trivial solution.

Corollary

Let (X, σ, τ) be a 2-reductive involutive solution. Then $\mathfrak{G}(X)$ is abelian.

Theorem (W. Rump)

For each $k \in \mathbb{N}$, there exists an involutive solution of multipermutation level k with cyclic permutation group.

2-reductive solutions

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive, i.e. $\sigma_{\sigma_x(y)}(z) = \sigma_y(z)$,
- $\sigma_x \in Aut(X)$, for each $x \in X$, i.e. $\sigma_x \sigma_y(z) = \sigma_{\sigma_x(y)} \sigma_x(z)$,
- X has multip. level at most 2 and, for all $x \in X$, $\tau_x = \sigma_x^{-1}$,
- Ret(X) is a trivial solution.

Corollary

Let (X, σ, τ) be a 2-reductive involutive solution. Then $\mathcal{G}(X)$ is abelian.

Theorem (W. Rump)

For each $k \in \mathbb{N}$, there exists an involutive solution of multipermutation level k with cyclic permutation group

2-reductive solutions

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive, i.e. $\sigma_{\sigma_x(y)}(z) = \sigma_y(z)$,
- $\sigma_x \in Aut(X)$, for each $x \in X$, i.e. $\sigma_x \sigma_y(z) = \sigma_{\sigma_x(y)} \sigma_x(z)$,
- X has multip. level at most 2 and, for all $x \in X$, $\tau_x = \sigma_x^{-1}$,
- Ret(X) is a trivial solution.

Corollary

Let (X, σ, τ) be a 2-reductive involutive solution. Then $\mathfrak{G}(X)$ is abelian.

Theorem (W. Rump)

For each $k \in \mathbb{N}$, there exists an involutive solution of multipermutation level k with cyclic permutation group.

2-reductive solutions

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive, i.e. $\sigma_{\sigma_x(y)}(z) = \sigma_y(z)$,
- $\sigma_x \in Aut(X)$, for each $x \in X$, i.e. $\sigma_x \sigma_y(z) = \sigma_{\sigma_x(y)} \sigma_x(z)$,
- X has multip. level at most 2 and, for all $x \in X$, $\tau_x = \sigma_x^{-1}$,
- Ret(X) is a trivial solution.

Corollary

Let (X, σ, τ) be a 2-reductive involutive solution. Then $\mathfrak{G}(X)$ is abelian.

Theorem (W. Rump)

For each $k \in \mathbb{N}$, there exists an involutive solution of multipermutation level k with cyclic permutation group.

Construction of 2-reductive solutions

Theorem (P. J., A. P., A. Z.-D.)

Let us have

- an index set I,
- abelian groups A_i , for $i \in I$,
- a matrix of constants $c_{i,j} \in A_j$, for $i, j \in I$.

Then the set $X = \bigsqcup_{i \in I} A_i$ with operation $\sigma : X \times X \to X$ defined by $\sigma_a(b) = b + c_{i,j}$, for $a \in A_i$ and $b \in A_j$

is a 2-reductive involutive solution.

Conversely, every 2-reductive involutive solution can be obtained this way.

Corollary

Each abelian group is isomorphic to the permutation group of a 2-reductive involutive solution.

Construction of 2-reductive solutions

Theorem (P. J., A. P., A. Z.-D.)

Let us have

- an index set I,
- abelian groups A_i , for $i \in I$,
- a matrix of constants $c_{i,j} \in A_j$, for $i, j \in I$.

Then the set $X = \bigsqcup_{i \in I} A_i$ with operation $\sigma : X \times X \to X$ defined by $\sigma_a(b) = b + c_{i,j}$, for $a \in A_i$ and $b \in A_j$

is a 2-reductive involutive solution.

Conversely, every 2-reductive involutive solution can be obtained this way.

Corollary

Each abelian group is isomorphic to the permutation group of a **2**-reductive involutive solution.

Numbers of 2-reductive solutions

n	1	2	3	4	5	6	7	8
involutive solutions	1	2	5	23	88	595	3456	34528
multip. level 2	1	2	5	19	70	359	2095	16332
2-reductive	1	2	5	17	65	323	1960	15421
mp level 2, not 2-red.	0	0	0	2	5	36	135	911

n	9	10	11
2-reductive	155889	2064688	35982357

n	12	13	14
2-reductive	832698007	25731050861	1067863092309

Theorem (S. Blackburn)

There are at least $2^{n^2/4+o(n \cdot \log n)}$ 2-reductive involutive solutions.

Numbers of 2-reductive solutions

n	1	2	3	4	5	6	7	8
involutive solutions	1	2	5	23	88	595	3456	34528
multip. level 2	1	2	5	19	70	359	2095	16332
2-reductive	1	2	5	17	65	323	1960	15421
mp level 2, not 2-red.	0	0	0	2	5	36	135	911

n	9	10	11
2-reductive	155889	2064688	35982357

n	12	13	14
2-reductive	832698007	25731050861	1067863092309

Theorem (S. Blackburn)

There are at least $2^{n^2/4+o(n \cdot \log n)}$ 2-reductive involutive solutions.

Displacement group

Definition

Let (X, σ, τ) be an involutive solution. Then *displacement* group or the *transvection* group of *X* is the group

$$\operatorname{Dis}(X) = \langle \sigma_x \sigma_y^{-1} \mid x, y \in X \rangle.$$

Theorem (P. J., A. P.)

Let (X, σ, τ) be an involutive solution of multipermutation level at most 2. Then Dis(X) is a normal abelian subgroup of $\mathcal{G}(X)$. Moreover, $\mathcal{G}(X) = Dis(X)\langle \sigma_x \rangle$, for any $x \in X$.

Displacement group

Definition

Let (X, σ, τ) be an involutive solution. Then *displacement* group or the *transvection* group of *X* is the group

$$\operatorname{Dis}(X) = \langle \sigma_x \sigma_y^{-1} \mid x, y \in X \rangle.$$

Theorem (P.J., A. P.)

Let (X, σ, τ) be an involutive solution of multipermutation level at most 2. Then Dis(X) is a normal abelian subgroup of $\mathcal{G}(X)$. Moreover, $\mathcal{G}(X) = \text{Dis}(X)\langle \sigma_x \rangle$, for any $x \in X$.

Example on groups

Example

Let $X = \{1, 2, 3, 4, 5\}$ and let

$$\begin{split} \sigma_1 &= (1,2)(3,5) \\ \sigma_2 &= (1,2)(4,5) \\ \sigma_3 &= \sigma_4 = \sigma_5 = (1,2)(3,4) \end{split}$$

Then

 $G(X) = \{ id_X, (1, 2)(3, 5), (1, 2)(4, 5), (1, 2)(3, 4), (3, 4, 5), (5, 4, 3) \}$ and $D_{i}(X) = \{ id_X, (1, 2)(3, 5), (1, 2)(4, 5), (1, 2)(3, 4), (3, 4, 5), (5, 4, 3) \}$

$$Dis(X) = \{ id_X, (3, 4, 5), (5, 4, 3) \}.$$

From multipermutation level 2 to 2-reductivity

Proposition (P. J., A. P. A. Z.-D.)

Let (X, σ, τ) be an involutive solution of multipermutation level at most 2 and choose $e \in X$. Let (X', σ', τ') be the following:

•
$$X' = X$$
, • $\sigma'_x = \sigma_x \sigma_e^{-1}$, • $\tau'_y = \sigma_e \tau_{\sigma_e^{-1}(y)}$.

Then (X', σ', τ') is a 2-reductive involutive solution with $\mathfrak{G}(X') = \mathrm{Dis}(X') = \mathrm{Dis}(X).$

Proposition (P. J., A. P. A. Z.-D.)

Let (X, σ, τ) be a 2-reductive involutive solution and let $\pi \in S_X$ satisfy $\sigma_{\pi(y)}\pi\sigma_x = \sigma_{\pi(x)}\pi\sigma_y$. Let (X', σ', τ') be:

•
$$X' = X$$
, • $\sigma'_{\chi} = \sigma_{\chi} \pi$, • $\tau'_{y} = \pi^{-1} \tau_{\pi(y)}$.

Then (X', σ', τ') is an involutive solution of multipermutation level 2 with $\mathcal{G}(X') = \mathcal{G}(X)\langle \pi \rangle$.

From multipermutation level 2 to 2-reductivity

Proposition (P. J., A. P. A. Z.-D.)

Let (X, σ, τ) be an involutive solution of multipermutation level at most 2 and choose $e \in X$. Let (X', σ', τ') be the following:

•
$$X' = X$$
, • $\sigma'_x = \sigma_x \sigma_e^{-1}$, • $\tau'_y = \sigma_e \tau_{\sigma_e^{-1}(y)}$.

Then (X', σ', τ') is a 2-reductive involutive solution with $\mathcal{G}(X') = \text{Dis}(X') = \text{Dis}(X).$

Proposition (P. J., A. P. A. Z.-D.)

Let (X, σ, τ) be a 2-reductive involutive solution and let $\pi \in S_X$ satisfy $\sigma_{\pi(y)}\pi\sigma_x = \sigma_{\pi(x)}\pi\sigma_y$. Let (X', σ', τ') be:

•
$$X' = X$$
, • $\sigma'_x = \sigma_x \pi$, • $\tau'_y = \pi^{-1} \tau_{\pi(y)}$.

Then (X', σ', τ') is an involutive solution of multipermutation level 2 with $\mathfrak{G}(X') = \mathfrak{G}(X)\langle \pi \rangle$.

Example on isotopy

Example

Let
$$X = \{1, 2, 3, 4, 5\}$$
 and let $\sigma_1 = (1, 2)(3, 5)$, $\sigma_2 = (1, 2)(4, 5)$,
 $\sigma_3 = \sigma_4 = \sigma_5 = (1, 2)(3, 4)$.
Let $\sigma'_x = \sigma_x \sigma_1^{-1}$, then

$$\begin{aligned} \sigma_1' &= id_{X'} \\ \sigma_2' &= (3, 4, 5) \\ \sigma_3' &= \sigma_4' = \sigma_5' = (5, 4, 3) \end{aligned}$$

Let $\sigma_x'' = \sigma_x \sigma_3^{-1}$, then

$$\begin{split} \sigma_1'' &= (3,4,5) \\ \sigma_2'' &= (5,4,3) \\ \sigma_3'' &= \sigma_4'' = \sigma_5'' = id_{X''} \end{split}$$

16/23

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQの

Indecomposable solutions

Definition

We say that an ivolutive solution (X, σ, τ) is *indecomposable* if $\mathcal{G}(X)$ acts transitively on *X*.

Proposition

Let (X, σ, τ) be a k-reductive involutive solution of multipermutation level k. Then X is decomposable.

Proof.

X is *k*-reductive and therefore the orbits of $\mathcal{G}(X)$ are of multipermutation level at most k - 1. Hence $\mathcal{G}(X)$ is not transitive.

Indecomposable solutions

Definition

We say that an ivolutive solution (X, σ, τ) is *indecomposable* if $\mathcal{G}(X)$ acts transitively on *X*.

Proposition

Let (X, σ, τ) be a k-reductive involutive solution of multipermutation level k. Then X is decomposable.

Proof.

X is k-reductive and therefore the orbits of $\mathcal{G}(X)$ are of multipermutation level at most k - 1. Hence $\mathcal{G}(X)$ is not transitive.

Indecomposable solutions

Definition

We say that an ivolutive solution (X, σ, τ) is *indecomposable* if $\mathcal{G}(X)$ acts transitively on *X*.

Proposition

Let (X, σ, τ) be a k-reductive involutive solution of multipermutation level k. Then X is decomposable.

Proof.

X is *k*-reductive and therefore the orbits of $\mathcal{G}(X)$ are of multipermutation level at most k - 1. Hence $\mathcal{G}(X)$ is not transitive.

Abelian permutation group

Theorem (M. Castelli, G. Pinto, W. Rump)

Let (X, σ, τ) be an indecomposable involutive solution of size pq, where p, q are primes, such that $\mathfrak{G}(X)$ is abelian. Then X is of multipermutation level at most 2.

There is only one such solution, up to isomorphism if $p \neq q$, and there are p + 1 such solutions if p = q.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Abelian permutation group

Theorem (M. Castelli, G. Pinto, W. Rump)

Let (X, σ, τ) be an indecomposable involutive solution of size pq, where p, q are primes, such that $\mathcal{G}(X)$ is abelian. Then X is of multipermutation level at most 2. There is only one such solution, up to isomorphism if $p \neq q$, and there are p + 1 such solutions if p = q.

Abelian permutation group

Theorem (M. Castelli, G. Pinto, W. Rump)

Let (X, σ, τ) be an indecomposable involutive solution of size pq, where p, q are primes, such that $\mathcal{G}(X)$ is abelian. Then X is of multipermutation level at most 2. There is only one such solution, up to isomorphism if $p \neq q$, and there are p + 1 such solutions if p = q.

Generators of the displacement group

Proposition (P. J., A. P.)

Let (X, σ, τ) be an indecomposable involutive solution of multipermutation level at most 2. Choose $e \in X$ and let $d = \sigma_e(e)$. Then $o(\sigma_e) = o(\sigma_d)$ and

$$\mathfrak{G}(X) = \langle \sigma_e, \sigma_d \rangle$$
 and $\mathrm{Dis}(X) = \langle \sigma_e^{-i} \sigma_d \sigma_e^{i-1} | i \in \mathbb{Z} \rangle$.

• $n_1 = |C_1|,$ • $n_2 = |C_2|,$

• $\sigma_d^{n_1} = (\sigma_e^{n_1})^{r+1}$.

Generators of the displacement group

Proposition (P. J., A. P.)

Let (X, σ, τ) be an indecomposable involutive solution of multipermutation level at most 2. Choose $e \in X$ and let $d = \sigma_e(e)$. Then $o(\sigma_e) = o(\sigma_d)$ and

$$\mathfrak{G}(X) = \langle \sigma_e, \sigma_d \rangle$$
 and $\mathrm{Dis}(X) = \langle \sigma_e^{-i} \sigma_d \sigma_e^{i-1} | i \in \mathbb{Z} \rangle$.

Corollary

If $\mathfrak{G}(X)$ is abelian then Dis(X) is cyclic and $\mathfrak{G}(X) \cong C_1 \times C_2$, where C_1 , C_2 are cyclic and $|C_1|$ divides $|C_2|$.

Observation |

For finite solutions, there are 3 parameters:

• $n_1 = |C_1|$, • $n_2 = |C_2|$,

• $\sigma_d^{n_1} = (\sigma_e^{n_1})^{r+1}$.

Generators of the displacement group

Proposition (P. J., A. P.)

Let (X, σ, τ) be an indecomposable involutive solution of multipermutation level at most 2. Choose $e \in X$ and let $d = \sigma_e(e)$. Then $o(\sigma_e) = o(\sigma_d)$ and

$$\mathfrak{G}(X) = \langle \sigma_e, \sigma_d \rangle$$
 and $\mathrm{Dis}(X) = \langle \sigma_e^{-i} \sigma_d \sigma_e^{i-1} | i \in \mathbb{Z} \rangle$.

Corollary

If $\mathfrak{G}(X)$ is abelian then Dis(X) is cyclic and $\mathfrak{G}(X) \cong C_1 \times C_2$, where C_1, C_2 are cyclic and $|C_1|$ divides $|C_2|$.

Observation

For finite solutions, there are 3 parameters: • $n_1 = |C_1|$, • $n_2 = |C_2|$,

•
$$\sigma_d^{n_1} = (\sigma_e^{n_1})^{r+1}$$
.

Construction of indecomposable solutions with abelian permutation group

Theorem (P. J., A. P., A. Z.-D.)

Let $n_1, n_2 \in \mathbb{Z}^+$ be such that $n_1 \mid n_2$. Let $r \in \{0, 1, \dots, n_2/n_1 - 1\}$ be such that $n_2 \mid n_1 r^2$. Then (X, σ, τ) with $X = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ and

$$\sigma_{(a,i)}((b,j)) = (b - ar + i, j + ir - ar^2 + 1)$$

is an indecomposable involutive solution of size n_1n_2 and multipermutational level at most 2 with the permutation group $\mathcal{G}(X)$ isomorphic to $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$.

Different choices of n_1 , n_2 and r give non-isomorphic solutions. Every finite indecomposable involutive solution of multipermutation level 2 with abelian permutation group is isomorphic to a solution so constructed.

Construction of indecomposable solutions with abelian permutation group

Theorem (P. J., A. P., A. Z.-D.)

Let $n_1, n_2 \in \mathbb{Z}^+$ be such that $n_1 \mid n_2$. Let $r \in \{0, 1, \dots, n_2/n_1 - 1\}$ be such that $n_2 \mid n_1 r^2$. Then (X, σ, τ) with $X = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ and

$$\sigma_{(a,i)}((b,j)) = (b - ar + i, j + ir - ar^2 + 1)$$

is an indecomposable involutive solution of size n_1n_2 and multipermutational level at most 2 with the permutation group $\mathcal{G}(X)$ isomorphic to $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$. Different choices of n_1 , n_2 and r give non-isomorphic solutions. Every finite indecomposable involutive solution of multipermutation level 2 with abelian permutation group is isomorphic to a solution so constructed.

Construction of indecomposable solutions with abelian permutation group

Theorem (P. J., A. P., A. Z.-D.)

Let $n_1, n_2 \in \mathbb{Z}^+$ be such that $n_1 \mid n_2$. Let $r \in \{0, 1, \dots, n_2/n_1 - 1\}$ be such that $n_2 \mid n_1 r^2$. Then (X, σ, τ) with $X = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ and

$$\sigma_{(a,i)}((b,j)) = (b - ar + i, j + ir - ar^2 + 1)$$

is an indecomposable involutive solution of size n_1n_2 and multipermutational level at most 2 with the permutation group $\mathcal{G}(X)$ isomorphic to $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$. Different choices of n_1 , n_2 and r give non-isomorphic solutions. Every finite indecomposable involutive solution of multipermutation level 2 with abelian permutation group is isomorphic to a solution so constructed.

Indecomposable solutions of size pq

Conditions: $|X| = n_1 \cdot n_2$, $n_1 \mid n_2$, $0 \leq r < \frac{n_2}{n_1}$, $n_2 \mid n_1 r^2$

Example

• Case
$$p \neq q$$
: $n_1 = 1$, $n_2 = pq$, $r = 0$

• Case
$$\mathbb{Z}_p \times \mathbb{Z}_p$$
: $n_1 = p$, $n_2 = p$, $r = 0$

• Case
$$\mathbb{Z}_p^2$$
: $n_1 = 1, n_2 = p^2, r \in \{0, p, 2p, \dots, p^2 - p\}$

Indecomposable solutions of size pq

Conditions: $|X| = n_1 \cdot n_2$, $n_1 \mid n_2$, $0 \leq r < \frac{n_2}{n_1}$, $n_2 \mid n_1 r^2$

Example

• Case
$$p \neq q$$
: $n_1 = 1$, $n_2 = pq$, $r = 0$

• Case
$$\mathbb{Z}_p \times \mathbb{Z}_p$$
: $n_1 = p$, $n_2 = p$, $r = 0$
• Case \mathbb{Z}_p^2 : $n_1 = 1$, $n_2 = p^2$, $r \in \{0, p, 2p, \dots, p^2 - p\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Indecomposable solutions of size pq

Conditions: $|X| = n_1 \cdot n_2$, $n_1 \mid n_2$, $0 \leq r < \frac{n_2}{n_1}$, $n_2 \mid n_1 r^2$

Example

• Case $p \neq q$: $n_1 = 1$, $n_2 = pq$, r = 0

• **Case**
$$\mathbb{Z}_p \times \mathbb{Z}_p$$
: $n_1 = p, n_2 = p, r = 0$

• Case
$$\mathbb{Z}_p^2$$
: $n_1 = 1, n_2 = p^2, r \in \{0, p, 2p, \dots, p^2 - p\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Indecomposable solutions of size pq

Conditions: $|X| = n_1 \cdot n_2$, $n_1 \mid n_2$, $0 \leq r < \frac{n_2}{n_1}$, $n_2 \mid n_1 r^2$

Example

• Case
$$p \neq q$$
: $n_1 = 1$, $n_2 = pq$, $r = 0$

• Case
$$\mathbb{Z}_p \times \mathbb{Z}_p$$
: $n_1 = p, n_2 = p, r = 0$

• Case
$$\mathbb{Z}_p^2$$
: $n_1 = 1, n_2 = p^2, r \in \{0, p, 2p, \dots, p^2 - p\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Indecomposable solutions with non-abelian permutation group

Theorem (P. J., A. P.)

There exists an indecomposable solution that homomorphically maps onto any indecomposable involutive solution of multipermutation level 2.

Idea of the proof.

 $\mathbb{Z} \quad \dots \quad \text{free cyclic group} \\ \bigoplus_{\mathbb{Z}} \mathbb{Z} \quad \dots \quad \text{free abelian group with } \omega \text{ generators} \\ \bigoplus_{\mathbb{Z}} \mathbb{Z}) \rtimes \mathbb{Z} \text{ maps onto } \mathcal{G}(X) = \text{Dis}(X) \langle \sigma_X \rangle$

Indecomposable solutions with non-abelian permutation group

Theorem (P. J., A. P.)

There exists an indecomposable solution that homomorphically maps onto any indecomposable involutive solution of multipermutation level 2.

Idea of the proof.

- \mathbb{Z} ... free cyclic group
 - $_{\mathbb{Z}}\mathbb{Z}$... free abelian group with ω generators

 $(\bigoplus_{\mathbb{Z}} \mathbb{Z}) \rtimes \mathbb{Z}$ maps onto $\mathfrak{G}(X) = \mathrm{Dis}(X) \langle \sigma_x \rangle$

Indecomposable solutions with non-abelian permutation group

Theorem (P.J., A.P.)

There exists an indecomposable solution that homomorphically maps onto any indecomposable involutive solution of multipermutation level 2.

Idea of the proof.

- $\mathbb{Z} \quad \dots \ \text{free cyclic group}$
- $\bigoplus_{\mathbb{Z}} \mathbb{Z} \quad \dots \quad \text{free abelian group with } \omega \text{ generators}$

 $(\bigoplus_{\mathbb{Z}} \mathbb{Z}) \rtimes \mathbb{Z}$ maps onto $\mathcal{G}(X) = \text{Dis}(X) \langle \sigma_x \rangle$

Indecomposable solutions with non-abelian permutation group

Theorem (P. J., A. P.)

There exists an indecomposable solution that homomorphically maps onto any indecomposable involutive solution of multipermutation level 2.

Idea of the proof.

 \mathbb{Z} ... free cyclic group $\bigoplus_{\mathbb{Z}} \mathbb{Z}$... free abelian group with ω generators

 $(\bigoplus_{\mathbb{Z}} \mathbb{Z}) \rtimes \mathbb{Z}$ maps onto $\mathcal{G}(X) = \text{Dis}(X) \langle \sigma_x \rangle$

Caen

Caen

