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Absorbing polynomials

Expanded group

Definition
An algebra (A,Ω) is called an expanded group, if there exist a
binary operation +, a unary operation − and a constant 0 such
that the retract (A,+,−, 0) is a group.

Definition
Let A be an expanded group. A polynomial f(x1, . . . , xk), with
k > 1, is called absorbing, if, for all 1 6 i 6 k, and for all aj ∈ A,
with 1 6 j 6 k,

f(a1, . . . , ai−1, 0, ai+1, . . . , ak) = 0.
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Absorbing polynomials

Absorbing polynomials

Groups:

−x − y + x + y = [x, y]
[[x, y], z]

Rings:
x · y

Vector spaces:
0x + 0y + 0z

Lie algebras:
[x, y]

Loops:
((x + y) + z) − (x + (y + z))
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Absorbing polynomials

Center

Definition
Let A be an expanded group. An element c ∈ A is called central if,
for all binary absorbing polynomial f and for all a ∈ A,

f(a, c) = f(c, a) = 0.

The center Z(A) of A is the subset of all central elements of A.

Definition
An expanded group A is called abelian if Z(A) = A.
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Absorbing polynomials

Examples of centers

Groups:
Z(A) = {c | ∀a ∈ A : a + c = c + a}

Rings:

Z(A) = {c | ∀a ∈ A : a · c = c · a = 0} = AnnR(R)

Vector spaces:
Z(A) = A

Lie algebras:

Z(A) = {c | ∀a ∈ A : [a, c] = 0} = Rad([, ])

Loops:

Z(A) = {c | ∀a, b ∈ A : a + c = c + a & c + (a + b) = (c + a) + b}
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Absorbing polynomials

Nilpotency

Definition
A subalgebra I an expanded group A is called an ideal if there
exists an endomorphism ϕ of A such that ϕ(a) = 0 if and only
if a ∈ I.

Definition
An expanded group A is nilpotent of class n if there exists a chain
of ideals

0 = I0 6 I1 6 · · · 6 In = A,

such that Ij+1/Ij 6 Z(A/Ij), for every 0 6 j < n.

Proposition

A commutative ring R is nilpotent of class n if and only if
Rn+1 = 0.
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Skew braces

Absorbing polynomials of a skew brace

Definition
An algebra (A,+, ◦, 0) is called a skew brace if

(A,+, 0) is a group
(A, ◦, 0) is a group
a ◦ (b + c) = a ◦ b − a + a ◦ c, for all a, b, c ∈ A.

We denote
x ∗ y = −x + (x ◦ y) − y

Observation
Absorbing polynomials for a skew brace are

[x, y]+,

[x, y]◦,

x ∗ y,

y ∗ x.
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Skew braces

Center of a skew brace

Theorem (M. B. & P. J.)
Let B be a skew brace. Then

Z(B) = {c | ∀a ∈ B : c + a = a + c = c ◦ a = a ◦ c}.

Corollary

A skew brace B is abelian if and only if (B,+) is an abelian group
and a + b = a ◦ b, for all a, b ∈ B.
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Skew braces

(Central) nilpotency of skew braces

Upper central series:

ζ0(B) = 0

ζn(B) = {c | ∀a ∈ A : c ∗ a, a ∗ c, [a, c]+ ∈ ζn−1(B)}

Lower central series:

Γ0(B) = B
Γn(B) = 〈Γn−1(B) ∗ B, B ∗ Γn−1(B), [Γn−1(B), B]+〉+
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Skew braces

Other notions of nilpotency

Definitions (W. Rump; Ag. Smoktunowicz)

Let B be a skew brace. We define

B1 = B, Bn+1 = B ∗ Bn,

B(1) = B, B(n+1) = B(n) ∗ B,

B[1] = B, B[n+1] =

〈
n⋃

i=1

B[i] ∗ B[n+1−i]

〉
+

.

We say that B is
left nilpotent if Bn = 0,
right nilpotent if B(n) = 0,
nilpotent if B[n] = 0,

for some n ∈ N.
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Skew braces

Relations among nilpotencies

Theorem (F. Cedó, T. Gateva-Ivanova, Ag. Smoktunowicz)

A brace is right nilpotent of class n if and only if its associated
set-theoretic solution of Yang-Baxter equation is
multipermutational of level n.

Proposition (M. B. & P. J.)

Let B be a skew brace. Then the following properties are
equivalent:

B is centrally nilpotent,

B is a nilpotent brace and (B, ◦) is a nilpotent group,

B is a right nilpotent brace and both (B, ◦) and (B,+) are
nilpotent groups.
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Open problems

Commutator of ideals

Definition
Let A be an expanded group and let I, J be two ideals. We define
the commutator of I, J as the ideal

JI, JK = 〈 f(a, b) | a ∈ I, b ∈ J, f absorbing〉.

Groups:
JI, JK = [I, J] = {[a, b] | a ∈ I, b ∈ J}

Lie algebras:

JI, JK = [I, J] = {[a, b] | a ∈ I, b ∈ J}

Rings:
JI, JK = IJ + JI
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Open problems

Commutator of ideals 2

In general, absorbing polynomials may contain constants from
A r (I ∪ J).
Loops:

JI, JK = 〈(a + b) − (b + a),
((a + b) + c) − (a + (b + c)),
(c + (b + a)) − ((c + b) + a),
some other elements | a ∈ I, b ∈ J, c ∈ A〉

Skew braces:

JI, JK = 〈[a, b]+, a ∗ b, b ∗ a | a ∈ I, b ∈ J〉+ ???
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Open problems

Solvability

Definitions
Let A be an expanded group. We define

A0 = A and Ai+1 = JAi, AK.

If there exists n such that A0 = 0 then A is nilpotent of class n.
We define

A(0) = A and A(i+1) = JA(i), A(i)K.

If there exists n such that A0 = 0 then A is solvable of class n.
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Open problems

Abelianess

Definition
An expanded group A is called abelian if JA, AK = 0.

Definition
Let A be an expanded group and let I be an ideal of A. Then we
say that I is abelian in A if JI, IK = 0.

Definition
An expanded group A is solvable of class n if there exists a chain
of ideals

0 = I0 6 I1 6 · · · 6 In = A,

such that Ij+1/Ij is an abelian ideal in A/Ij, for every 0 6 j < n.
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Open problems

Supernilpotency

Definition
An expanded group A is called supernilpotent of class n if every
(n + 1)-ary absorbing polynomial is constant.

Theorem (E. Aichinger & J. Ecker)

A group is supernilpotent of class n if and only if it is nilpotent of
class n.

Theorem (E. Aichinger & N. Mudrinski)

Every supernilpotent expanded group is nilpotent.

Theorem
Every finite supernilpotent expanded group is a product of
expanded p-groups.
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