Distributive biracks and solutions of Yang-Baxter equation

Přemysl Jedlička with Agata Pilitowska and Anna Zamojska-Dzienio

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture) in Prague

Siena, 21st February 2020

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Distributive biracks and solutions of Yang-Baxter equation

Yang-Baxter equation

Yang–Baxter equation

Definition

Let *V* be a vector space. A homomorphism $R: V \otimes V \rightarrow V \otimes V$ is called a *solution of Yang–Baxter equation* if it satisfies

 $(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V) = (\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R).$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Set-theoretic solutions

Definition

Let *X* be a set. A mapping $r : X \times X \rightarrow X \times X$ is called a *set-theoretic solution of Yang–Baxter equation* if it satisfies

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$

A solution $r : (x, y) \mapsto (\sigma_x(y), \tau_y(x))$ is called *non-degenerate* if σ_x and τ_y are bijections, for all $x, y \in X$. A solution r is called *involutive* if $r^2 = id_{X \times X}$.

Example

```
Let (G, \cdot) be a group. Then

r_1 : (a, b) \mapsto (a^{-1}ba, a)

r_2 : (a, b) \mapsto (ab^{-1}a^{-1}, ab)

are both non-degenerate solutions.
```

Set-theoretic solutions

Definition

Let *X* be a set. A mapping $r : X \times X \rightarrow X \times X$ is called a *set-theoretic solution of Yang–Baxter equation* if it satisfies

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$

A solution $r : (x, y) \mapsto (\sigma_x(y), \tau_y(x))$ is called *non-degenerate* if σ_x and τ_y are bijections, for all $x, y \in X$. A solution r is called *involutive* if $r^2 = id_{X \times X}$.

Example

Let (G, \cdot) be a group. Then

$$r_1: (a,b) \mapsto (a^{-1}ba,a)$$

$$r_2: (a,b) \mapsto (ab^{-1}a^{-1},ab^2)$$

are both non-degenerate solutions.

Definition of a birack

Definition

A birack is an algebra $(X, \circ, \bullet, \backslash, /)$ that satisfies $x \backslash (x \circ y) = y,$ $(x \bullet y)/y = x,$

$$\begin{aligned} x \circ (x \setminus y) &= y, & (x/y) \bullet y = x, \\ x \circ (y \circ z) &= (x \circ y) \circ ((x \bullet y) \circ z), \\ (x \circ y) \bullet ((x \bullet y) \circ z) &= (x \bullet (y \circ z)) \circ (y \bullet z), \\ (x \bullet y) \bullet z &= (x \bullet (y \circ z)) \bullet (y \bullet z), \end{aligned}$$

Observation

If $(X, \circ, \bullet, \backslash, /)$ is a birack then $(x \circ y, x \bullet y)$ is a non-degenerate solution. Conversely, if (σ_x, τ_y) is a non-degenerate solution then, by setting $x \circ y = \sigma_x(y)$, $x \bullet y = \tau_y(x)$, $x \backslash y = \sigma_x^{-1}(y)$ and $x/y = \tau_y^{-1}(x)$, we obtain a birack.

Definition of a birack

Definition

A *birack* is an algebra $(X, \circ, \bullet, \backslash, /)$ that satisfies

$$\begin{aligned} x \setminus (x \circ y) &= y, & (x \bullet y)/y = x, \\ x \circ (x \setminus y) &= y, & (x/y) \bullet y = x, \\ x \circ (y \circ z) &= (x \circ y) \circ ((x \bullet y) \circ z), \\ (x \circ y) \bullet ((x \bullet y) \circ z) &= (x \bullet (y \circ z)) \circ (y \bullet z), \\ (x \bullet y) \bullet z &= (x \bullet (y \circ z)) \bullet (y \bullet z), \end{aligned}$$

Observation

If $(X, \circ, \bullet, \backslash, /)$ is a birack then $(x \circ y, x \bullet y)$ is a non-degenerate solution. Conversely, if (σ_x, τ_y) is a non-degenerate solution then, by setting $x \circ y = \sigma_x(y)$, $x \bullet y = \tau_y(x)$, $x \backslash y = \sigma_x^{-1}(y)$ and $x/y = \tau_y^{-1}(x)$, we obtain a birack.

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We say that *X* is *distributive* if it satisfies

$$\begin{aligned} x \circ (y \circ z) &= (x \circ y) \circ (x \circ z), \\ (x \bullet y) \bullet z &= (x \bullet z) \bullet (y \bullet z). \end{aligned}$$

Example

Let (X, \circ, \setminus) be a left distributive left quasigroup. Then $(X, \circ, \circ, \setminus, /)$ with \bullet defined by $x \bullet y = x/y = x$, for all $x, y \in X$, is a distributive birack. Let $(Y, \bullet, /)$ be a right distributive right quasigroup. Then $(Y, \circ, \bullet, \setminus, /)$ with \circ defined by $x \circ y = x \setminus y = y$, for all $x, y \in Y$, is a distributive birack. Moreover, $X \times Y$ is a distributive birack.

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We say that *X* is *distributive* if it satisfies

$$\begin{aligned} x \circ (y \circ z) &= (x \circ y) \circ (x \circ z), \\ (x \bullet y) \bullet z &= (x \bullet z) \bullet (y \bullet z). \end{aligned}$$

Example

Let (X, \circ, \setminus) be a left distributive left quasigroup. Then $(X, \circ, \bullet, \setminus, /)$ with \bullet defined by $x \bullet y = x/y = x$, for all $x, y \in X$, is a distributive birack.

Let $(Y, \bullet, /)$ be a right distributive right quasigroup. Then $(Y, \circ, \bullet, \backslash, /)$ with \circ defined by $x \circ y = x \backslash y = y$, for all $x, y \in Y$, is a distributive birack. Moreover, $X \times Y$ is a distributive birack.

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We say that *X* is *distributive* if it satisfies

$$\begin{aligned} x \circ (y \circ z) &= (x \circ y) \circ (x \circ z), \\ (x \bullet y) \bullet z &= (x \bullet z) \bullet (y \bullet z). \end{aligned}$$

Example

Let (X, \circ, \setminus) be a left distributive left quasigroup. Then $(X, \circ, \bullet, \setminus, /)$ with \bullet defined by $x \bullet y = x/y = x$, for all $x, y \in X$, is a distributive birack.

Let $(Y, \bullet, /)$ be a right distributive right quasigroup. Then $(Y, \circ, \bullet, \backslash, /)$ with \circ defined by $x \circ y = x \backslash y = y$, for all $x, y \in Y$, is a distributive birack.

Moreover, $X \times Y$ is a distributive birack.

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We say that *X* is *distributive* if it satisfies

$$\begin{aligned} x \circ (y \circ z) &= (x \circ y) \circ (x \circ z), \\ (x \bullet y) \bullet z &= (x \bullet z) \bullet (y \bullet z). \end{aligned}$$

Example

Let (X, \circ, \setminus) be a left distributive left quasigroup. Then $(X, \circ, \bullet, \setminus, /)$ with \bullet defined by $x \bullet y = x/y = x$, for all $x, y \in X$, is a distributive birack. Let $(Y, \bullet, /)$ be a right distributive right quasigroup. Then $(Y, \circ, \bullet, \setminus, /)$ with \circ defined by $x \circ y = x \setminus y = y$, for all $x, y \in Y$, is a distributive birack.

Moreover, $X \times Y$ is a distributive birack.

Distributive biracks and solutions of Yang-Baxter equation Distributive biracks

Multiplication group

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define permutations

$$L_x: a \mapsto x \circ a$$
 and $\mathbf{R}_x: a \mapsto a \bullet x$,

for all $x \in X$. We define the *mutliplication group* Mlt(X) as

$$\operatorname{Mlt}(X) = \langle L_x, \mathbf{R}_x; x \in X \rangle.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Characterisations of distributive biracks

Theorem (P.J., A.P., A.Z.-D.)

Let X be a birack. Then the following conditions are equivalent:

- X is distributive,
- $Mlt(X) \leq Aut(X)$.

Theorem (P.J., A.P., A.Z.-D.)

Let $(X, \circ, \bullet, \backslash, /)$ be a binary algebra. Then TFAE:

- X is a distributive birack,
- X satisfies the following five properties:
 - (X, \circ, \setminus) is a left distributive left quasigroup,
 - $(Y, \bullet, /)$ is a right distributive right quasigroup,
 - $L_x = L_{x \bullet y}$, for all $x, y \in X$,
 - $\mathbf{R}_y = \mathbf{R}_{x \circ y}$, for all $x, y \in X$,
 - $L_x \mathbf{R}_y = \mathbf{R}_y L_x$, for all $x, y \in X$.

Characterisations of distributive biracks

Theorem (P.J., A.P., A.Z.-D.)

Let X be a birack. Then the following conditions are equivalent:

- X is distributive,
- $Mlt(X) \leq Aut(X)$.

Theorem (P.J., A.P., A.Z.-D.)

Let $(X, \circ, \bullet, \backslash, /)$ be a binary algebra. Then TFAE:

- X is a distributive birack,
- X satisfies the following five properties:
 - (X, \circ, \setminus) is a left distributive left quasigroup,
 - $(Y, \bullet, /)$ is a right distributive right quasigroup,

•
$$L_x = L_{x \bullet y}$$
, for all $x, y \in X$,

•
$$\mathbf{R}_y = \mathbf{R}_{x \circ y}$$
, for all $x, y \in X$,

•
$$L_x \mathbf{R}_y = \mathbf{R}_y L_x$$
, for all $x, y \in X$.

Nilpotency of groups

Definition

Let G be a group. The lower central series of G is defined as

- $G_0 = G_i$
- $G_i = [G_{i-1}, G]$, for all i > 0.

We say that *G* is *nilpotent of class k* if *k* is the smallest number such that $|G_k| = 1$. In particular, the trivial group is nilpotent of class 0.

Question:

Does the nilpotency class of Mlt(X) imply some algebraic property of the birack *X*?

Nilpotency of groups

Definition

Let G be a group. The lower central series of G is defined as

- $G_0 = G_i$
- $G_i = [G_{i-1}, G]$, for all i > 0.

We say that *G* is *nilpotent of class k* if *k* is the smallest number such that $|G_k| = 1$. In particular, the trivial group is nilpotent of class 0.

Question:

Does the nilpotency class of Mlt(X) imply some algebraic property of the birack *X*?

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \approx on *X* as follows:

$$x \approx y$$
 if and only if $L_x = L_y$ and $\mathbf{R}_x = \mathbf{R}_y$.

This equivalence is called the *retraction* of *X*.

Theorem (P. J., A. P., A. Z.-D.)

pprox is a congruence of every birack.

(日) (日) (日) (日) (日) (日) (日)

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \approx on *X* as follows:

$$x \approx y$$
 if and only if $L_x = L_y$ and $\mathbf{R}_x = \mathbf{R}_y$.

This equivalence is called the *retraction* of *X*.

Theorem (P. J., A. P., A. Z.-D.)

 \approx is a congruence of every birack.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Distributive biracks and solutions of Yang-Baxter equation Nilpotent multiplication group

Multipermutation level

Definition

Let *X* be a birack. We denote by $\operatorname{Ret}(X)$ the quotient birack X/\approx . We say that a birack has *multipermutation level k* if *k* is the smallest positive integer such that $|\operatorname{Ret}^k(X)| = 1$.

Observation

A birack X has multipermutation level 1 if and only if there exist permutations $f, g \in S_X$ such that fg = gf and $L_x = f$ and $\mathbf{R}_x = g$, for each $x \in X$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Distributive biracks and solutions of Yang-Baxter equation Nilpotent multiplication group

Multipermutation level

Definition

Let *X* be a birack. We denote by $\operatorname{Ret}(X)$ the quotient birack $X/_{\approx}$. We say that a birack has *multipermutation level k* if *k* is the smallest positive integer such that $|\operatorname{Ret}^k(X)| = 1$.

Observation

A birack X has multipermutation level 1 if and only if there exist permutations $f, g \in S_X$ such that fg = gf and $L_x = f$ and $\mathbf{R}_x = g$, for each $x \in X$.

(日) (日) (日) (日) (日) (日) (日)

Nilpotency vs. multipermutation, idempotent version

Theorem (P.J., A.P., A.Z.-D.)

Let *X* be a distributive **idempotent** birack. Then TFAE

- X has multipermutation level k,
- Mlt(X) is nilpotent of class k 1,
- k is the smallest number such that

$$(\cdots (x_0 \circ x_1) \circ x_2) \circ \cdots) \circ x_k = (\cdots (x_1 \circ x_1) \circ \cdots) \circ x_k$$

$$c_1 \bullet (\cdots \bullet (x_{k-1} \bullet (x_k \bullet x_{k+1}) \cdots) = x_1 \bullet (\cdots \bullet (x_{k-1} \bullet x_k) \cdots)$$

Corollary

Let Q be a quandle. Then Q has multipermutation level k if and only if LMlt(Q) is nilpotent of class k - 1.

Nilpotency vs. multipermutation, idempotent version

Theorem (P.J., A.P., A.Z.-D.)

Let *X* be a distributive **idempotent** birack. Then TFAE

- X has multipermutation level k,
- Mlt(X) is nilpotent of class k 1,
- k is the smallest number such that

$$(\cdots (x_0 \circ x_1) \circ x_2) \circ \cdots) \circ x_k = (\cdots (x_1 \circ x_1) \circ \cdots) \circ x_k$$

$$x_1 \bullet (\cdots \bullet (x_{k-1} \bullet (x_k \bullet x_{k+1}) \cdots) = x_1 \bullet (\cdots \bullet (x_{k-1} \bullet x_k) \cdots)$$

Corollary

х

Let Q be a quandle. Then Q has multipermutation level k if and only if LMlt(Q) is nilpotent of class k - 1.

Distributive biracks and solutions of Yang-Baxter equation

Nilpotent multiplication group

Nilpotency vs. multipermutation, non-idempotent version

Theorem (P.J., A.P., A.Z.-D.)

Let X be a distributive birack and let $k \ge 2$. Then TFAE

- X has multipermutation level k,
- Mlt(X) is nilpotent of class k 1,
- k is the smallest number such that

$$(\cdots (x_0 \circ x_1) \circ \cdots) \circ x_k = (\cdots (x'_0 \circ x_1) \circ \cdots) \circ x_k$$
$$x_1 \bullet (\cdots \bullet (x_k \bullet x_{k+1}) \cdots) = x_1 \bullet (\cdots \bullet (x_k \bullet x'_{k+1}) \cdots)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで