Yang–Baxter equation and a congruence of biracks

Přemysl Jedlička with Agata Pilitowska and Anna Zamojska-Dzienio

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture) in Prague

Vienna, 2nd March 2019

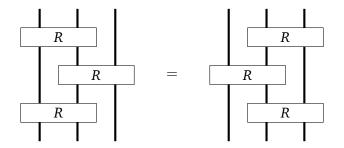
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Yang–Baxter equation

Definition

Let *V* be a vector space. A homomorphism $R: V \otimes V \rightarrow V \otimes V$ is called a *solution of Yang–Baxter equation* if it satisfies

 $(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V) = (\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R).$



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Set-theoretic solutions

Definition

Let *X* be a set. A mapping $r : X \times X \rightarrow X \times X$ is called a *set-theoretic solution of Yang–Baxter equation* if it satisfies

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$

A solution $r : (x, y) \mapsto (\sigma_x(y), \tau_y(x))$ is called *non-degenerate* if σ_x and τ_y are bijections, for all $x, y \in X$. A solution is called *involutive* if $r^2 = id_{X^2}$.

Observation

If *r* is involutive then $\tau_y(x) = \sigma_{\sigma_x(y)}^{-1}(x)$.

(日) (日) (日) (日) (日) (日) (日)

Set-theoretic solutions

Definition

Let *X* be a set. A mapping $r : X \times X \rightarrow X \times X$ is called a *set-theoretic solution of Yang–Baxter equation* if it satisfies

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$

A solution $r : (x, y) \mapsto (\sigma_x(y), \tau_y(x))$ is called *non-degenerate* if σ_x and τ_y are bijections, for all $x, y \in X$. A solution is called *involutive* if $r^2 = id_{X^2}$.

Observation

If *r* is involutive then
$$\tau_y(x) = \sigma_{\sigma_x(y)}^{-1}(x)$$
.

Examples of solutions

Example

If $\tau_y = id_X$, for all $y \in X$, then (σ, τ) is a solution if and only if σ_x is a homomorphism, for all $x \in X$, that means

$$\sigma_x(\sigma_y(z)) = \sigma_{\sigma_x(y)}\sigma_x(z).$$

Example

If
$$\sigma_{\sigma_x(y)} = \sigma_y = \tau_y^{-1}$$
 then (σ, τ) is an involutive solution.

Example

$$\begin{array}{c|cccc} \tau & 1 & 2 & 3 \\ \hline 1 & 1 & 1 & 2 \\ 2 & 2 & 2 & 1 \\ 3 & 3 & 3 & 3 \end{array}$$

Examples of solutions

Example

If $\tau_y = id_X$, for all $y \in X$, then (σ, τ) is a solution if and only if σ_x is a homomorphism, for all $x \in X$, that means

$$\sigma_x(\sigma_y(z)) = \sigma_{\sigma_x(y)}\sigma_x(z).$$

Example

If
$$\sigma_{\sigma_x(y)} = \sigma_y = \tau_y^{-1}$$
 then (σ, τ) is an involutive solution.

Example

Examples of solutions

Example

If $\tau_y = id_X$, for all $y \in X$, then (σ, τ) is a solution if and only if σ_x is a homomorphism, for all $x \in X$, that means

$$\sigma_x(\sigma_y(z)) = \sigma_{\sigma_x(y)}\sigma_x(z).$$

Example

If
$$\sigma_{\sigma_x(y)} = \sigma_y = \tau_y^{-1}$$
 then (σ, τ) is an involutive solution.

Example									
	σ	1	2	3	τ	1	2	3	
	1	1	2	3	 1	1	1	2	-
	2	1	2	3			2		
	3	2	1	3	3	3	3	3	

Vocabulary

universal algebra setting

support of a solution identity idempotent subsolution (left) ideal projection algebra

STSYBE setting

quadratic set condition square-free restricted solution (left) invariant subset trivial solution

(ロ) (同) (三) (三) (三) (○) (○)

Retraction relation

Definition

Let *r* be an involutive solution on a set *X*. We define a relation \sim on *X* as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

Theorem (Etingof, Schedler, Soloviev)

Let r be an involutive solution on a set X. Then there is a well-defined involutive solution on the set X/\sim .

- Define a group $G = \langle X; xy = \sigma_x(y)\tau_y(x) \rangle$.
- Prove that $f : x \mapsto \sigma_x$ is a group homomorphism.
- Clearly $x \sim y$ if and only if f(x) = f(y).
- The group *G*/Ker*f* corresponds to the solution *X*/~

Retraction relation

Definition

Let *r* be an involutive solution on a set *X*. We define a relation \sim on *X* as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

Theorem (Etingof, Schedler, Soloviev)

Let *r* be an involutive solution on a set *X*. Then there is a well-defined involutive solution on the set X/\sim .

- Define a group $G = \langle X; xy = \sigma_x(y)\tau_y(x) \rangle$.
- Prove that $f : x \mapsto \sigma_x$ is a group homomorphism.
- Clearly $x \sim y$ if and only if f(x) = f(y).
- The group G/Kerf corresponds to the solution X/~

Retraction relation

Definition

Let *r* be an involutive solution on a set *X*. We define a relation \sim on *X* as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

Theorem (Etingof, Schedler, Soloviev)

Let *r* be an involutive solution on a set *X*. Then there is a well-defined involutive solution on the set X/\sim .

- Define a group $G = \langle X; xy = \sigma_x(y)\tau_y(x) \rangle$.
- Prove that $f : x \mapsto \sigma_x$ is a group homomorphism.
- Clearly $x \sim y$ if and only if f(x) = f(y).
- The group $G/\operatorname{Ker} f$ corresponds to the solution X/\sim .

Retraction relation

Definition

Let *r* be an involutive solution on a set *X*. We define a relation \sim on *X* as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

Theorem (Etingof, Schedler, Soloviev)

Let *r* be an involutive solution on a set *X*. Then there is a well-defined involutive solution on the set X/\sim .

- Define a group $G = \langle X; xy = \sigma_x(y)\tau_y(x) \rangle$.
- Prove that $f : x \mapsto \sigma_x$ is a group homomorphism.
- Clearly $x \sim y$ if and only if f(x) = f(y).
- The group $G/\operatorname{Ker} f$ corresponds to the solution X/\sim .

Retraction relation

Definition

Let *r* be an involutive solution on a set *X*. We define a relation \sim on *X* as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

Theorem (Etingof, Schedler, Soloviev)

Let *r* be an involutive solution on a set *X*. Then there is a well-defined involutive solution on the set X/\sim .

Sketch of the proof.

- Define a group $G = \langle X; xy = \sigma_x(y)\tau_y(x) \rangle$.
- Prove that $f : x \mapsto \sigma_x$ is a group homomorphism.

• Clearly $x \sim y$ if and only if f(x) = f(y).

• The group $G/\operatorname{Ker} f$ corresponds to the solution X/\sim .

Retraction relation

Definition

Let *r* be an involutive solution on a set *X*. We define a relation \sim on *X* as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

Theorem (Etingof, Schedler, Soloviev)

Let *r* be an involutive solution on a set *X*. Then there is a well-defined involutive solution on the set X/\sim .

Sketch of the proof.

- Define a group $G = \langle X; xy = \sigma_x(y)\tau_y(x) \rangle$.
- Prove that $f : x \mapsto \sigma_x$ is a group homomorphism.
- Clearly $x \sim y$ if and only if f(x) = f(y).

• The group $G/\operatorname{Ker} f$ corresponds to the solution X/\sim .

Retraction relation

Definition

Let *r* be an involutive solution on a set *X*. We define a relation \sim on *X* as

$$x \sim y$$
 if and only if $\sigma_x = \sigma_y$.

Theorem (Etingof, Schedler, Soloviev)

Let *r* be an involutive solution on a set *X*. Then there is a well-defined involutive solution on the set X/\sim .

- Define a group $G = \langle X; xy = \sigma_x(y)\tau_y(x) \rangle$.
- Prove that $f : x \mapsto \sigma_x$ is a group homomorphism.
- Clearly $x \sim y$ if and only if f(x) = f(y).
- The group $G/\operatorname{Ker} f$ corresponds to the solution X/\sim .

Yang–Baxter equation and a congruence of biracks Biracks

Definition of a birack

Definition

A *birack* is an algebra $(X, \circ, \bullet, \backslash, /)$ that satisfies

 $\begin{aligned} x \setminus (x \circ y) &= y, & (x \bullet y)/y = x, \\ x \circ (x \setminus y) &= y, & (x/y) \bullet y = x, \\ x \circ (y \circ z) &= (x \circ y) \circ ((x \bullet y) \circ z), \\ (x \circ y) \bullet ((x \bullet y) \circ z) &= (x \bullet (y \circ z)) \circ (y \bullet z), \\ (x \bullet y) \bullet z &= (x \bullet (y \circ z)) \bullet (y \bullet z), \end{aligned}$ A birack is said to be *involutive* if it satisfies

 $(x \circ y) \circ (x \bullet y) = x,$ $(x \circ y) \bullet (x \bullet y) = y.$

Observation

If $(X, \circ, \bullet, \backslash, /)$ is a birack then $(x \circ y, x \bullet y)$ is a solution. Conversely, if (σ, τ) is a solution then, by setting $x \circ y = \sigma_x(y)$, $x \bullet y = \tau_y(x), x \backslash y = \sigma_x^{-1}(y)$ and $x/y = \tau_y^{-1}(x)$, we obtain a birack.

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \sim on X as follows:

 $x \sim y$ if and only if $x \circ z = y \circ z$, for all $z \in X$.

Theorem (Etingof, Schedler, Soloviev)

If a birack is involutory then ~ is a congruence.

Proposition (P. J., A. P., A. Z.-D.)

If \circ is left distributive, i.e., $x \circ (y \circ z) = (x \circ y) \circ (x \circ z)$, then \sim is a congruence.

Fact

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \sim on X as follows:

 $x \sim y$ if and only if $x \circ z = y \circ z$, for all $z \in X$.

Theorem (Etingof, Schedler, Soloviev)

If a birack is involutory then \sim is a congruence.

Proposition (P. J., A. P., A. Z.-D.)

If \circ is left distributive, i.e., $x \circ (y \circ z) = (x \circ y) \circ (x \circ z)$, then \sim is a congruence.

Fact

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \sim on X as follows:

 $x \sim y$ if and only if $x \circ z = y \circ z$, for all $z \in X$.

Theorem (Etingof, Schedler, Soloviev)

If a birack is involutory then ~ is a congruence.

Proposition (P. J., A. P., A. Z.-D.)

If \circ is left distributive, i.e., $x \circ (y \circ z) = (x \circ y) \circ (x \circ z)$, then \sim is a congruence.

Fact

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \sim on X as follows:

 $x \sim y$ if and only if $x \circ z = y \circ z$, for all $z \in X$.

Theorem (Etingof, Schedler, Soloviev)

If a birack is involutory then ~ is a congruence.

Proposition (P. J., A. P., A. Z.-D.)

If \circ is left distributive, i.e., $x \circ (y \circ z) = (x \circ y) \circ (x \circ z)$, then \sim is a congruence.

Fact

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \approx on *X* as follows:

 $x \approx y$ if and only if $x \circ z = y \circ z$ and $z \bullet x = z \bullet y$, for all $z \in X$.

Theorem (P. J., A. P., A. Z.-D.)

 \approx is a congruence of every birack.

Proof.

For each
$$x \approx x', y \approx y'$$
 and $z \in X$, we prove
 $(x \circ y) \circ z = (x' \circ y') \circ z$ $z \circ (x \circ y) = z \circ (x' \circ y')$
 $(x \circ y) \circ z = (x' \circ y') \circ z$ $z \circ (x \circ y) = z \circ (x' \circ y')$
 $(x \setminus y) \circ z = (x' \setminus y') \circ z$ $z \circ (x \setminus y) = z \circ (x' \setminus y')$
 $(x/y) \circ z = (x'/y') \circ z$ $z \circ (x/y) = z \circ (x'/y')$

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \approx on *X* as follows:

 $x \approx y$ if and only if $x \circ z = y \circ z$ and $z \bullet x = z \bullet y$, for all $z \in X$.

Theorem (P. J., A. P., A. Z.-D.)

pprox is a congruence of every birack.

Proof.

For each
$$x \approx x', y \approx y'$$
 and $z \in X$, we prove
 $(x \circ y) \circ z = (x' \circ y') \circ z$ $z \circ (x \circ y) = z \circ (x' \circ y')$
 $(x \circ y) \circ z = (x' \circ y') \circ z$ $z \circ (x \circ y) = z \circ (x' \circ y')$
 $(x \setminus y) \circ z = (x' \setminus y') \circ z$ $z \circ (x \setminus y) = z \circ (x' \setminus y')$
 $(x/y) \circ z = (x'/y') \circ z$ $z \circ (x/y) = z \circ (x'/y')$

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \approx on *X* as follows:

 $x \approx y$ if and only if $x \circ z = y \circ z$ and $z \bullet x = z \bullet y$, for all $z \in X$.

Theorem (P. J., A. P., A. Z.-D.)

pprox is a congruence of every birack.

Proof.

For each
$$x \approx x', y \approx y'$$
 and $z \in X$, we prove
 $(x \circ y) \circ z = (x' \circ y') \circ z$ $z \circ (x \circ y) = z \circ (x' \circ y')$
 $(x \circ y) \circ z = (x' \circ y') \circ z$ $z \circ (x \circ y) = z \circ (x' \circ y')$
 $(x \setminus y) \circ z = (x' \setminus y') \circ z$ $z \circ (x \setminus y) = z \circ (x' \setminus y')$
 $(x/y) \circ z = (x'/y') \circ z$ $z \circ (x/y) = z \circ (x'/y')$