Yang-Baxter equation and a congruence of biracks

Přemysl Jedlička

with Agata Pilitowska and Anna Zamojska-Dzienio

Department of Mathematics
Faculty of Engineering (former Technical Faculty)

Czech University of Life Sciences (former Czech University of Agriculture) in Prague

Vienna, $2^{\text {nd }}$ March 2019

Yang-Baxter equation

Definition

Let V be a vector space. A homomorphism $R: V \otimes V \rightarrow V \otimes V$ is called a solution of Yang-Baxter equation if it satisfies

$$
\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)=\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right) .
$$

Set-theoretic solutions

Definition

Let X be a set. A mapping $r: X \times X \rightarrow X \times X$ is called a set-theoretic solution of Yang-Baxter equation if it satisfies

$$
\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)=\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right) .
$$

A solution $r:(x, y) \mapsto\left(\sigma_{x}(y), \tau_{y}(x)\right)$ is called non-degenerate if σ_{x} and τ_{y} are bijections, for all $x, y \in X$. A solution is called involutive if $r^{2}=\mathrm{id}_{X^{2}}$.

Observation

If r is involutive then $\tau_{y}(x)=\sigma_{\sigma_{x}(y)}^{-1}(x)$.

Set-theoretic solutions

Definition

Let X be a set. A mapping $r: X \times X \rightarrow X \times X$ is called a set-theoretic solution of Yang-Baxter equation if it satisfies

$$
\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)=\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)
$$

A solution $r:(x, y) \mapsto\left(\sigma_{x}(y), \tau_{y}(x)\right)$ is called non-degenerate if σ_{x} and τ_{y} are bijections, for all $x, y \in X$. A solution is called involutive if $r^{2}=\mathrm{id}_{X^{2}}$.

Observation

If r is involutive then $\tau_{y}(x)=\sigma_{\sigma_{x}(y)}^{-1}(x)$.

Examples of solutions

Example

If $\tau_{y}=\mathrm{id}_{X}$, for all $y \in X$, then (σ, τ) is a solution if and only if σ_{x} is a homomorphism, for all $x \in X$, that means

$$
\sigma_{x}\left(\sigma_{y}(z)\right)=\sigma_{\sigma_{x}(y)} \sigma_{x}(z)
$$

Example

If $\sigma_{\sigma_{x}(y)}=\sigma_{y}=\tau_{y}^{-1}$ then (σ, τ) is an involutive solution.

Example

σ	1	2	3
1	1	2	3
2	1	2	3
3	2	1	3

Examples of solutions

Example

If $\tau_{y}=\mathrm{id}_{X}$, for all $y \in X$, then (σ, τ) is a solution if and only if σ_{x} is a homomorphism, for all $x \in X$, that means

$$
\sigma_{x}\left(\sigma_{y}(z)\right)=\sigma_{\sigma_{x}(y)} \sigma_{x}(z)
$$

Example

If $\sigma_{\sigma_{x}(y)}=\sigma_{y}=\tau_{y}^{-1}$ then (σ, τ) is an involutive solution.

Example

Examples of solutions

Example

If $\tau_{y}=\mathrm{id}_{X}$, for all $y \in X$, then (σ, τ) is a solution if and only if σ_{x} is a homomorphism, for all $x \in X$, that means

$$
\sigma_{x}\left(\sigma_{y}(z)\right)=\sigma_{\sigma_{x}(y)} \sigma_{x}(z)
$$

Example

If $\sigma_{\sigma_{x}(y)}=\sigma_{y}=\tau_{y}^{-1}$ then (σ, τ) is an involutive solution.

Example

σ	1	2	3
1	1	2	3
2	1	2	3
3	2	1	3

τ	1	2	3
1	1	1	2
2	2	2	1
3	3	3	3

Vocabulary

universal algebra setting
support of a solution identity
idempotent
subsolution
(left) ideal
projection algebra

STSYBE setting

quadratic set condition square-free restricted solution (left) invariant subset trivial solution

Retraction relation

Definition

Let r be an involutive solution on a set X. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

Theorem (Etingof, Schedler, Soloviev)
Let r be an involutive solution on a set X. Then there is a well-defined involutive solution on the set X / \sim

Sketch of the proof.

Retraction relation

Definition

Let r be an involutive solution on a set X. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

Theorem (Etingof, Schedler, Soloviev)

Let r be an involutive solution on a set X. Then there is a well-defined involutive solution on the set X / \sim.

Sketch of the proof.

Retraction relation

Definition

Let r be an involutive solution on a set X. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

Theorem (Etingof, Schedler, Soloviev)

Let r be an involutive solution on a set X. Then there is a well-defined involutive solution on the set X / \sim.

Sketch of the proof.

Retraction relation

Definition

Let r be an involutive solution on a set X. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

Theorem (Etingof, Schedler, Soloviev)

Let r be an involutive solution on a set X. Then there is a well-defined involutive solution on the set X / \sim.

Sketch of the proof.

- Define a group $G=\left\langle X ; x y=\sigma_{x}(y) \tau_{y}(x)\right\rangle$.
- Prove that $f: x \mapsto \sigma_{x}$ is a group homomorphism.
- Clearly $x \sim y$ if and only if $f(x)=f(y)$.
- The groun $G / K e r f$ corresnonds to the solution X / \sim

Retraction relation

Definition

Let r be an involutive solution on a set X. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

Theorem (Etingof, Schedler, Soloviev)

Let r be an involutive solution on a set X. Then there is a well-defined involutive solution on the set X / \sim.

Sketch of the proof.

- Define a group $G=\left\langle X ; x y=\sigma_{x}(y) \tau_{y}(x)\right\rangle$.
- Prove that $f: x \mapsto \sigma_{x}$ is a group homomorphism.
- Clearly $x \sim y$ if and only if $f(x)=f(y)$. - The group $G / \operatorname{Ker} f$ corresponds to the solution X / \sim.

Retraction relation

Definition

Let r be an involutive solution on a set X. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

Theorem (Etingof, Schedler, Soloviev)

Let r be an involutive solution on a set X. Then there is a well-defined involutive solution on the set X / \sim.

Sketch of the proof.

- Define a group $G=\left\langle X ; x y=\sigma_{x}(y) \tau_{y}(x)\right\rangle$.
- Prove that $f: x \mapsto \sigma_{x}$ is a group homomorphism.
- Clearly $x \sim y$ if and only if $f(x)=f(y)$.

Retraction relation

Definition

Let r be an involutive solution on a set X. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

Theorem (Etingof, Schedler, Soloviev)

Let r be an involutive solution on a set X. Then there is a well-defined involutive solution on the set X / \sim.

Sketch of the proof.

- Define a group $G=\left\langle X ; x y=\sigma_{x}(y) \tau_{y}(x)\right\rangle$.
- Prove that $f: x \mapsto \sigma_{x}$ is a group homomorphism.
- Clearly $x \sim y$ if and only if $f(x)=f(y)$.
- The group $G / \operatorname{Ker} f$ corresponds to the solution X / \sim.

Definition of a birack

Definition

A birack is an algebra $(X, \circ, \bullet, \backslash, /)$ that satisfies

$$
\begin{array}{rr}
x \backslash(x \circ y)=y, & (x \bullet y) / y=x, \\
x \circ(x \backslash y)=y, & (x / y) \bullet y=x, \\
x \circ(y \circ z)=(x \circ y) \circ((x \bullet y) \circ z), \\
(x \circ y) \bullet((x \bullet y) \circ z)=(x \bullet(y \circ z)) \circ(y \bullet z), \\
(x \bullet y) \bullet z & =(x \bullet(y \circ z)) \bullet(y \bullet z),
\end{array}
$$

A birack is said to be involutive if it satisfies

$$
(x \circ y) \circ(x \bullet y)=x, \quad(x \circ y) \bullet(x \bullet y)=y .
$$

Observation

If $(X, \circ, \bullet, \backslash, /)$ is a birack then $(x \circ y, x \bullet y)$ is a solution.
Conversely, if (σ, τ) is a solution then, by setting $x \circ y=\sigma_{x}(y)$, $x \bullet y=\tau_{y}(x), x y y=\sigma_{x}^{-1}(y)$ and $x / y=\tau_{y}^{-1}(x)$, we obtain a birack.

Retraction relation of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \sim on X as follows:

$$
x \sim y \text { if and only if } x \circ z=y \circ z \text {, for all } z \in X .
$$

Theorem (Etingof, Schedler, Soloviev)

If a birack is involutory then \sim is a congruence.

Proposition (P. J., A. P., A. Z.-D.)
If \circ is left distributive, i.e., $x \circ(y \circ z)=(x \circ y) \circ(x \circ z)$, then \sim is a
congruence.

Fact
There ϵ xists a birack, for which ~ is not a congruence.

Retraction relation of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \sim on X as follows:

$$
x \sim y \text { if and only if } x \circ z=y \circ z \text {, for all } z \in X .
$$

Theorem (Etingof, Schedler, Soloviev)
If a birack is involutory then \sim is a congruence.

Proposition (P. J., A. P., A. Z.-D.)

If \circ is left distributive, i.e, $x \circ(y \circ z)=(x \circ y) \circ(x \circ z)$, then \sim is a
congruence.

Fact
There exists a birack, for which ~ is not a congruence.

Retraction relation of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \sim on X as follows:

$$
x \sim y \text { if and only if } x \circ z=y \circ z \text {, for all } z \in X \text {. }
$$

Theorem (Etingof, Schedler, Soloviev)

If a birack is involutory then ~ is a congruence.

```
Proposition (P. J., A. P., A. Z.-D.)
If \(\circ\) is left distributive, i.e., \(x \circ(y \circ z)=(x \circ y) \circ(x \circ z)\), then \(\sim\) is a congruence.
```

[^0]
Retraction relation of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \sim on X as follows:

$$
x \sim y \text { if and only if } x \circ z=y \circ z \text {, for all } z \in X .
$$

Theorem (Etingof, Schedler, Soloviev)

If a birack is involutory then \sim is a congruence.

Proposition (P. J., A. P., A. Z.-D.)

If \circ is left distributive, i.e., $x \circ(y \circ z)=(x \circ y) \circ(x \circ z)$, then \sim is a congruence.

Fact

There exists a birack, for which ~ is not a congruence.

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \approx on X as follows:
$x \approx y$ if and only if $x \circ z=y \circ z$ and $z \bullet x=z \bullet y$, for all $z \in X$.
Theorem (P. J., A. P., A. Z.-D.)
\approx is a congruence of every birack.

Proof.

For each $x \approx x^{\prime}, y \approx y^{\prime}$ and $z \in X$, we prove

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \approx on X as follows:

$$
x \approx y \text { if and only if } x \circ z=y \circ z \text { and } z \bullet x=z \bullet y \text {, for all } z \in X
$$

Theorem (P. J., A. P., A. Z.-D.)
\approx is a congruence of every birack.

Proof.

For each $x \approx x^{\prime}, y \approx y^{\prime}$ and $z \in X$, we prove

Retraction congruence of biracks

Definition

Let $(X, \circ, \bullet, \backslash, /)$ be a birack. We define a relation \approx on X as follows:

$$
x \approx y \text { if and only if } x \circ z=y \circ z \text { and } z \bullet x=z \bullet y \text {, for all } z \in X \text {. }
$$

Theorem (P. J., A. P., A. Z.-D.)

\approx is a congruence of every birack.

Proof.

For each $x \approx x^{\prime}, y \approx y^{\prime}$ and $z \in X$, we prove

$$
\begin{aligned}
& (x \circ y) \circ z=\left(x^{\prime} \circ y^{\prime}\right) \circ z \\
& z \bullet(x \circ y)=z \bullet\left(x^{\prime} \circ y^{\prime}\right) \\
& (x \bullet y) \circ z=\left(x^{\prime} \bullet y^{\prime}\right) \circ z \\
& z \bullet(x \bullet y)=z \bullet\left(x^{\prime} \bullet y^{\prime}\right) \\
& (x \backslash y) \circ z=\left(x^{\prime} \backslash y^{\prime}\right) \circ z \\
& z \bullet(x \backslash y)=z \bullet\left(x^{\prime} \backslash y^{\prime}\right) \\
& (x / y) \circ z=\left(x^{\prime} / y^{\prime}\right) \circ z \\
& z \bullet(x / y)=z \bullet\left(x^{\prime} / y^{\prime}\right)
\end{aligned}
$$

[^0]: Fact
 There exists a birack, for which ~ is not a congruence.

