## Subdirectly irreducible medial quandles

### Přemysl Jedlička with Agata Pilitowska and Anna Zamojska-Dzienio

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture) in Prague

## New Orchard, 18<sup>th</sup> June 2017





・ロット (雪) (日) (日) (日)

# Definition of a medial quandle

### Definition

A medial quandle is an algebra  $(A, *, \setminus)$  satisfying

• 
$$x * x = x$$
,

• 
$$(x * y) * (z * u) = (x * z) * (y * u),$$

• 
$$x \setminus (x * y) = y$$
,

• 
$$x * (x \setminus y) = y$$

#### Observation

Every medial quandle satisfies

$$\begin{aligned} x \setminus x &= x \\ (x \setminus y) \setminus (z \setminus u) &= (x \setminus z) \setminus (y \setminus u) \\ (x \setminus y) &* (z \setminus u) &= (x * z) \setminus (y * u) \end{aligned}$$

# Definition of a medial quandle

## Definition

A medial quandle is an algebra  $(A, *, \setminus)$  satisfying

• 
$$x * x = x$$
,

• 
$$(x * y) * (z * u) = (x * z) * (y * u),$$

• 
$$x \setminus (x * y) = y$$
,

• 
$$x * (x \setminus y) = y$$
.

### Observation

Every medial quandle satisfies

$$\begin{aligned} x \setminus x &= x \\ (x \setminus y) \setminus (z \setminus u) &= (x \setminus z) \setminus (y \setminus u) \\ (x \setminus y) &* (z \setminus u) &= (x * z) \setminus (y * u) \end{aligned}$$

Subdirectly irreducible medial quandles

**Basic definitions** 

## The smallest subdirectly irreducible medial quandles

| * 1                                                                        | r | * |   |   |   |   | * | 6 | 7 | 8 |
|----------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $\begin{array}{c c} \uparrow & 1 \\ \hline 1 & 1 \end{array}$              |   | 3 | 3 | 5 | 4 | - |   | - | 7 | - |
| $     \begin{array}{c c}       1 \\       2 \\       1     \end{array}   $ |   |   | 5 |   |   |   | 7 | 6 | 7 | 8 |
|                                                                            | Z | 5 | 4 | 3 | 5 |   | 8 | 7 | 6 | 8 |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Affine quandles

#### Definition

Let *A* be an abelian group and let  $f \in Aut(A)$ . Define

$$\begin{aligned} x * y &= x + f(y - x) = (1 - f)(x) + f(y) \\ x \setminus y &= x + f^{-1}(y - x) = (1 - f^{-1})(x) + f^{-1}(y) \end{aligned}$$

Then  $(A, *, \setminus)$  is a medial quandle called *affine* quandle or *Alexander* quandle and denoted by Aff(A, f).

#### Observation

An affine quandle is a reduct of a  $\mathbb{Z}[x, x^{-1}]$ -module. It is polynomially equivalent to a module if and only if (1 - f) is an automorphism (iff the quandle is a quasigroup).

# Affine quandles

#### Definition

Let *A* be an abelian group and let  $f \in Aut(A)$ . Define

$$\begin{aligned} x * y &= x + f(y - x) = (1 - f)(x) + f(y) \\ x \setminus y &= x + f^{-1}(y - x) = (1 - f^{-1})(x) + f^{-1}(y) \end{aligned}$$

Then  $(A, *, \setminus)$  is a medial quandle called *affine* quandle or *Alexander* quandle and denoted by Aff(A, f).

### Observation

An affine quandle is a reduct of a  $\mathbb{Z}[x, x^{-1}]$ -module. It is polynomially equivalent to a module if and only if (1-f) is an automorphism (iff the quandle is a quasigroup).

Subdirectly irreducible medial quandles Subdirectly irreducible medial quasigroups

## Simple quandles

### Theorem (D. Joyce (1982))

All simple quandles are

- Aff( $\mathbb{Z}_2, 1$ ),
- Aff(A, x), where A is a simple  $\mathbb{Z}[x, x^{-1}]$ -module and  $0 \neq xa \neq a$ , for all  $0 \neq a \in A$ .

# Types of subdirectly irreducible modes

### Theorem (K. Kearnes (1999))

Let *M* be a subdirectly irreducible medial quandle with the monolith  $\mu$ . Then the type of the interval  $[1, \mu]$  is one of the following:

- type 1 (set type),
- type 2 (quasi-affine type).

#### Theorem (K. Kearnes (1999))

All subdirectly irreducible medial quandles of type 2 are quasigroups.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

# Types of subdirectly irreducible modes

### Theorem (K. Kearnes (1999))

Let *M* be a subdirectly irreducible medial quandle with the monolith  $\mu$ . Then the type of the interval  $[1, \mu]$  is one of the following:

- type 1 (set type),
- type 2 (quasi-affine type).

### Theorem (K. Kearnes (1999))

All subdirectly irreducible medial quandles of type 2 are quasigroups.

## Minimal left ideals

### Proposition (P.J., A.P., A.Z.-D.)

Let Q be a medial quandle and let I be one of its minimal left ideals. Then, using operations \* and  $\setminus$  on Q, we can endow I with a structure of a  $\mathbb{Z}[x, x^{-1}]$ -module.

### Proposition (P.J., A.P., A.Z.-D.)

Let Q be a subdirectly irreducible medial quandle. Then some minimal left ideal is a subdirectly irreducible  $\mathbb{Z}[x, x^{-1}]$ -module.

(日) (日) (日) (日) (日) (日) (日) (日)

## Minimal left ideals

### Proposition (P.J., A.P., A.Z.-D.)

Let Q be a medial quandle and let I be one of its minimal left ideals. Then, using operations \* and  $\setminus$  on Q, we can endow I with a structure of a  $\mathbb{Z}[x, x^{-1}]$ -module.

### Proposition (P.J., A.P., A.Z.-D.)

Let Q be a subdirectly irreducible medial quandle. Then some minimal left ideal is a subdirectly irreducible  $\mathbb{Z}[x, x^{-1}]$ -module.

(日) (日) (日) (日) (日) (日) (日) (日)

## Divisible SIMQ

#### Lemma

### Every divisible medial quandle is affine.

#### Example

Let *p* be a prime and

$$\mathbb{Z}_{p^{\infty}} = \left\{ \left[ rac{a}{p^k} 
ight]_{\sim}; a, k \in \mathbb{N} 
ight\},$$

where  $\frac{a}{p^k} \sim \frac{b}{p^n}$  iff  $ap^n \equiv bp^k \pmod{p^{k+n}}$ . Then  $(\mathbb{Z}_{p^{\infty}}, 1-p)$  is a subdirectly irreducible affine quandle of the set type.

## Divisible SIMQ

#### Lemma

Every divisible medial quandle is affine.

#### Example

Let p be a prime and

$$\mathbb{Z}_{p^\infty} = \left\{ \left[ rac{a}{p^k} 
ight]_{\sim}; \ a,k \in \mathbb{N} 
ight\},$$

where  $\frac{a}{p^k} \sim \frac{b}{p^n}$  iff  $ap^n \equiv bp^k \pmod{p^{k+n}}$ . Then  $(\mathbb{Z}_{p^{\infty}}, 1-p)$  is a subdirectly irreducible affine quandle of the set type.

## Theorem (P.J., A.P., A.Z.-D.)

## Let A be a subdirectly irreducible $\mathbb{Z}[x, x^{-1}]$ -module.

Suppose that the endomorphism  $\varphi : a \mapsto a - xa$  is not injective. Let C be a (non-empty) subset of a transversal to  $\varphi(A)$  in A such that  $\varphi(A) \cup C$  generates A.

We define an operation \* on  $Q = A \cup (\varphi(A) \times C)$  as follows:

$$a * b = a - xa + xb$$
  
(a, c) \* (b, d) = (xb + (1 - x) \cdot (a + c - d), d)  
(a, c) \* b = a + xb + c  
a \* (b, d) = (xb + (1 - x) \cdot (a - xa - d), d).

### Theorem (P.J., A.P., A.Z.-D.)

Let A be a subdirectly irreducible  $\mathbb{Z}[x, x^{-1}]$ -module. Suppose that the endomorphism  $\varphi : a \mapsto a - xa$  is not injective. Let C be a (non-empty) subset of a transversal to  $\varphi(A)$  in A such that  $\varphi(A) \cup C$  generates A. We define an operation \* on  $Q = A \cup (\varphi(A) \times C)$  as follows:

$$a * b = a - xa + xb$$
  
(a, c) \* (b, d) = (xb + (1 - x) \cdot (a + c - d), d)  
(a, c) \* b = a + xb + c  
a \* (b, d) = (xb + (1 - x) \cdot (a - xa - d), d).

### Theorem (P.J., A.P., A.Z.-D.)

Let A be a subdirectly irreducible  $\mathbb{Z}[x, x^{-1}]$ -module. Suppose that the endomorphism  $\varphi : a \mapsto a - xa$  is not injective. Let C be a (non-empty) subset of a transversal to  $\varphi(A)$  in A such that  $\varphi(A) \cup C$  generates A.

We define an operation \* on  $Q = A \cup (\varphi(A) \times C)$  as follows:

$$a * b = a - xa + xb$$
  
(a, c) \* (b, d) = (xb + (1 - x) \cdot (a + c - d), d)  
(a, c) \* b = a + xb + c  
a \* (b, d) = (xb + (1 - x) \cdot (a - xa - d), d).

### Theorem (P.J., A.P., A.Z.-D.)

Let A be a subdirectly irreducible  $\mathbb{Z}[x, x^{-1}]$ -module. Suppose that the endomorphism  $\varphi : a \mapsto a - xa$  is not injective. Let C be a (non-empty) subset of a transversal to  $\varphi(A)$  in A such that  $\varphi(A) \cup C$  generates A.

We define an operation \* on  $Q = A \cup (\varphi(A) \times C)$  as follows:

$$a * b = a - xa + xb$$
  
(a, c) \* (b, d) = (xb + (1 - x) \cdot (a + c - d), d)  
(a, c) \* b = a + xb + c  
a \* (b, d) = (xb + (1 - x) \cdot (a - xa - d), d).

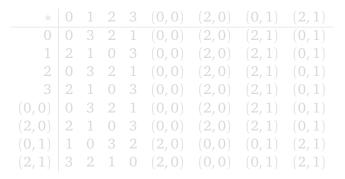
### Theorem (P.J., A.P., A.Z.-D.)

Let A be a subdirectly irreducible  $\mathbb{Z}[x, x^{-1}]$ -module. Suppose that the endomorphism  $\varphi : a \mapsto a - xa$  is not injective. Let C be a (non-empty) subset of a transversal to  $\varphi(A)$  in A such that  $\varphi(A) \cup C$  generates A.

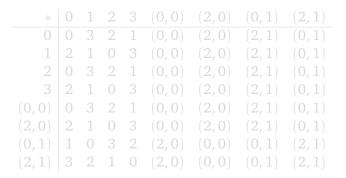
We define an operation \* on  $Q = A \cup (\varphi(A) \times C)$  as follows:

$$a * b = a - xa + xb$$
  
(a, c) \* (b, d) = (xb + (1 - x) \cdot (a + c - d), d)  
(a, c) \* b = a + xb + c  
a \* (b, d) = (xb + (1 - x) \cdot (a - xa - d), d).

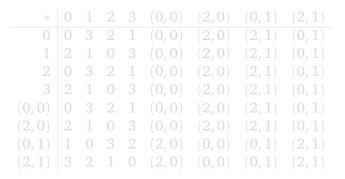
### $A = \mathbb{Z}_4, x = 3, \phi = 2, C = \{0, 1\}.$



#### $A = \mathbb{Z}_4, x = 3, \varphi = 2, C = \{0, 1\}.$



#### $A = \mathbb{Z}_4, x = 3, \phi = 2, C = \{0, 1\}.$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

$$A = \mathbb{Z}_4, x = 3, \phi = 2, C = \{0, 1\}.$$

| *      | 0 | 1 | 2 | 3 | (0, 0) | (2, 0) | (0, 1) | (2, 1) |
|--------|---|---|---|---|--------|--------|--------|--------|
|        |   |   |   |   | (0,0)  |        |        |        |
| 1      | 2 | 1 | 0 | 3 | (0,0)  | (2, 0) | (2, 1) | (0, 1) |
| 2      | 0 | 3 | 2 | 1 | (0,0)  | (2, 0) | (2, 1) | (0, 1) |
| 3      | 2 | 1 | 0 | 3 | (0,0)  | (2, 0) | (2, 1) | (0, 1) |
| (0,0)  | 0 | 3 | 2 | 1 | (0,0)  | (2, 0) | (2, 1) | (0, 1) |
| (2,0)  | 2 | 1 | 0 | 3 | (0,0)  | (2, 0) | (2, 1) | (0, 1) |
| (0, 1) | 1 | 0 | 3 | 2 | (2, 0) | (0, 0) | (0, 1) | (2, 1) |
| (2, 1) | 3 | 2 | 1 | 0 | (2, 0) | (0, 0) | (0, 1) | (2, 1) |

<ロト < @ ト < E ト < E ト E のQ @</p>

## Involutory medial quandles

### Definition

A groupoid is called involutory if 
$$x * (x * y) = y$$
.

#### Lemma

An affine quandle is involutory iff it is Aff(A, -1).

### Proposition (P.J., A.P., A.Z.-D.)

All SI involutory medial quandles are obtained via

- Aff( $\mathbb{Z}_{p^k}$ , -1), where p is an odd prime,  $k \in \{1, 2, 3, \dots, \infty\}$ ;
- construction with  $A = \mathbb{Z}_{2^k}$ ,  $k \in \mathbb{N}^+$ , x = -1,  $C = \{1\}$ ;
- construction with  $A = \mathbb{Z}_{2^k}$ ,  $k \in \mathbb{N}^+$ , x = -1,  $C = \{0, 1\}$ ;
- Aff( $\mathbb{Z}_2, -1$ ) and Aff( $\mathbb{Z}_{2^{\infty}}, -1$ );
- construction with  $A = \mathbb{Z}_{2^{\infty}}$ , x = -1,  $C = \{0\}$ .

## Involutory medial quandles

### Definition

A groupoid is called involutory if 
$$x * (x * y) = y$$
.

#### Lemma

An affine quandle is involutory iff it is Aff(A, -1).

## Proposition (P.J., A.P., A.Z.-D.)

All SI involutory medial quandles are obtained via

- Aff $(\mathbb{Z}_{p^k}, -1)$ , where p is an odd prime,  $k \in \{1, 2, 3, \dots, \infty\}$ ;
- construction with  $A = \mathbb{Z}_{2^k}$ ,  $k \in \mathbb{N}^+$ , x = -1,  $C = \{1\}$ ;
- construction with  $A = \mathbb{Z}_{2^k}, k \in \mathbb{N}^+, x = -1, C = \{0, 1\};$
- Aff $(\mathbb{Z}_2, -1)$  and Aff $(\mathbb{Z}_{2^{\infty}}, -1)$ ;
- construction with  $A = \mathbb{Z}_{2^{\infty}}$ , x = -1,  $C = \{0\}$ .

## Involutory medial quandles

### Definition

A groupoid is called involutory if 
$$x * (x * y) = y$$
.

#### Lemma

An affine quandle is involutory iff it is Aff(A, -1).

## Proposition (P.J., A.P., A.Z.-D.)

All SI involutory medial quandles are obtained via

- Aff $(\mathbb{Z}_{p^k}, -1)$ , where p is an odd prime,  $k \in \{1, 2, 3, \dots, \infty\}$ ;
- construction with  $A = \mathbb{Z}_{2^k}$ ,  $k \in \mathbb{N}^+$ , x = -1,  $C = \{1\}$ ;
- construction with  $A = \mathbb{Z}_{2^k}$ ,  $k \in \mathbb{N}^+$ , x = -1,  $C = \{0, 1\}$ ;
- Aff( $\mathbb{Z}_2, -1$ ) and Aff( $\mathbb{Z}_{2^{\infty}}, -1$ );
- construction with  $A = \mathbb{Z}_{2^{\infty}}$ , x = -1,  $C = \{0\}$ .

## Involutory medial quandles

### Definition

A groupoid is called involutory if 
$$x * (x * y) = y$$
.

#### Lemma

An affine quandle is involutory iff it is Aff(A, -1).

## Proposition (P.J., A.P., A.Z.-D.)

All SI involutory medial quandles are obtained via

- Aff $(\mathbb{Z}_{p^k}, -1)$ , where p is an odd prime,  $k \in \{1, 2, 3, \dots, \infty\}$ ;
- construction with  $A = \mathbb{Z}_{2^k}$ ,  $k \in \mathbb{N}^+$ , x = -1,  $C = \{1\}$ ;
- construction with  $A = \mathbb{Z}_{2^k}$ ,  $k \in \mathbb{N}^+$ , x = -1,  $C = \{0, 1\}$ ;
- Aff $(\mathbb{Z}_2, -1)$  and Aff $(\mathbb{Z}_{2^{\infty}}, -1)$ ;
- construction with  $A = \mathbb{Z}_{2^{\infty}}$ , x = -1,  $C = \{0\}$ .

11/11