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Basic definitions

Definition of a medial quandle

Definition
A medial quandle is an algebra (A, ∗, \) satisfying

x ∗ x = x,
(x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u),
x \ (x ∗ y) = y,
x ∗ (x \ y) = y.

Observation
Every medial quandle satisfies

x \ x = x
(x \ y) \ (z \ u) = (x \ z) \ (y \ u)
(x \ y) ∗ (z \ u) = (x ∗ z) \ (y ∗ u)
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Basic definitions

The smallest subdirectly irreducible medial quandles

∗ 1 2
1 1 2
2 1 2

∗ 3 4 5
3 3 5 4
4 5 4 3
5 4 3 5

∗ 6 7 8
6 6 7 8
7 6 7 8
8 7 6 8
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Subdirectly irreducible medial quasigroups

Affine quandles

Definition
Let A be an abelian group and let f ∈ Aut(A). Define

x ∗ y = x + f(y − x) = (1 − f)(x) + f(y)

x \ y = x + f−1(y − x) = (1 − f−1)(x) + f−1(y)

Then (A, ∗, \) is a medial quandle called affine quandle or
Alexander quandle and denoted by Aff(A, f).

Observation

An affine quandle is a reduct of a Z[x, x−1]-module. It is
polynomially equivalent to a module if and only if (1 − f) is an
automorphism (iff the quandle is a quasigroup).
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Subdirectly irreducible medial quasigroups

Simple quandles

Theorem (D. Joyce (1982))

All simple quandles are

Aff(Z2, 1),

Aff(A, x), where A is a simple Z[x, x−1]-module and
0 6= xa 6= a, for all 0 6= a ∈ A.
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Subdirectly irreducible medial quasigroups

Types of subdirectly irreducible modes

Theorem (K. Kearnes (1999))
Let M be a subdirectly irreducible medial quandle with the
monolith µ. Then the type of the interval [1,µ] is one of the
following:

type 1 (set type),

type 2 (quasi-affine type).

Theorem (K. Kearnes (1999))
All subdirectly irreducible medial quandles of type 2 are
quasigroups.
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Subdirectly irreducible medial quandles of set type

Minimal left ideals

Proposition (P.J., A.P., A.Z.-D.)

Let Q be a medial quandle and let I be one of its minimal left
ideals. Then, using operations ∗ and \ on Q, we can endow I with
a structure of a Z[x, x−1]-module.

Proposition (P.J., A.P., A.Z.-D.)

Let Q be a subdirectly irreducible medial quandle. Then some
minimal left ideal is a subdirectly irreducible Z[x, x−1]-module.
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Subdirectly irreducible medial quandles of set type

Divisible SIMQ

Lemma
Every divisible medial quandle is affine.

Example

Let p be a prime and

Zp∞ =

{[
a
pk

]
∼

; a, k ∈ N
}

,

where a
pk ∼ b

pn iff apn ≡ bpk (mod pk+n).
Then (Zp∞ , 1 − p) is a subdirectly irreducible affine quandle of the
set type.
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Subdirectly irreducible medial quandles of set type

Construction of SIMQ

Theorem (P.J., A.P., A.Z.-D.)

Let A be a subdirectly irreducible Z[x, x−1]-module.
Suppose that the endomorphism ϕ : a 7→ a − xa is not injective.
Let C be a (non-empty) subset of a transversal to ϕ(A) in A such
that ϕ(A) ∪ C generates A.
We define an operation ∗ on Q = A ∪ (ϕ(A)× C) as follows:

a ∗ b = a − xa + xb
(a, c) ∗ (b, d) = (xb + (1 − x) · (a + c − d), d)

(a, c) ∗ b = a + xb + c
a ∗ (b, d) = (xb + (1 − x) · (a − xa − d), d).

Then (Q, ∗) is a subdirectly irreducible medial quandle of the set
type. On the other hand, every (except of one) non-divisible
subdirectly irreducible medial quandle can be obtained this way.
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Subdirectly irreducible medial quandles of set type

Example of a SIMQ

A = Z4, x = 3, ϕ = 2, C = {0, 1}.

∗ 0 1 2 3 (0, 0) (2, 0) (0, 1) (2, 1)
0 0 3 2 1 (0, 0) (2, 0) (2, 1) (0, 1)
1 2 1 0 3 (0, 0) (2, 0) (2, 1) (0, 1)
2 0 3 2 1 (0, 0) (2, 0) (2, 1) (0, 1)
3 2 1 0 3 (0, 0) (2, 0) (2, 1) (0, 1)

(0, 0) 0 3 2 1 (0, 0) (2, 0) (2, 1) (0, 1)
(2, 0) 2 1 0 3 (0, 0) (2, 0) (2, 1) (0, 1)
(0, 1) 1 0 3 2 (2, 0) (0, 0) (0, 1) (2, 1)
(2, 1) 3 2 1 0 (2, 0) (0, 0) (0, 1) (2, 1)
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Subdirectly irreducible medial quandles of set type

Involutory medial quandles

Definition
A groupoid is called involutory if x ∗ (x ∗ y) = y.

Lemma
An affine quandle is involutory iff it is Aff(A,−1).

Proposition (P.J., A.P., A.Z.-D.)

All SI involutory medial quandles are obtained via

Aff(Zpk ,−1), where p is an odd prime, k ∈ {1, 2, 3, . . . ,∞};

construction with A = Z2k , k ∈ N+, x = −1, C = {1};

construction with A = Z2k , k ∈ N+, x = −1, C = {0, 1};

Aff(Z2,−1) and Aff(Z2∞ ,−1);

construction with A = Z2∞ , x = −1, C = {0}.
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