Quandles médiaux

Přemysl Jedlička
avec Agata Pilitowska, David Stanovský, Anna Zamojska-Dzienio

Département de mathématiques
Faculté Technique
Université Agricole Tchèque, Prague
à Caen le 15 Mars 2016
Faculty of
Engineering

Generalizations of abelian groups

Definitions

Let $\mathcal{A}=(A, \sigma)$ be an algebra. We say that \mathcal{A} is

- affine if there exist a ring R, a binary operation + on A, an operation $\cdot R \times A \rightarrow A$ and constants $0,1 \in A$ such that $(A,+, \cdot, 0,1)$ is a R-module and all operation from σ can be derived from the module operations;
- quasi-affine if \mathcal{A} embeds into an affine algebra;
- abelian if there exist an algebra \mathcal{B}, a homomorphism
$h: \mathcal{A}^{2} \rightarrow \mathcal{B}$ and an element $c \in \mathcal{B}$ such that
$\{(a, a) ; a \in \mathcal{A}\}=h^{-1}(c)$;
- entropic if, for each $f, g \in \sigma$ and $x_{i, j} \in \mathcal{A}$ we have
\square

Generalizations of abelian groups

Definitions

Let $\mathcal{A}=(A, \sigma)$ be an algebra. We say that \mathcal{A} is

- affine if there exist a ring R, a binary operation + on A, an operation $\cdot: R \times A \rightarrow A$ and constants $0,1 \in A$ such that $(A,+, \cdot, 0,1)$ is a R-module and all operation from σ can be derived from the module operations;
- quasi-affine if \mathcal{A} embeds into an affine algebra;
- abelian if there exist an algebra \mathcal{B}, a homomorphism
$h: \mathcal{A}^{2} \rightarrow \mathcal{B}$ and an element $c \in \mathcal{B}$ such that
- entropic if, for each $f, g \in \sigma$ and $x_{i, j} \in \mathcal{A}$ we have

Generalizations of abelian groups

Definitions

Let $\mathcal{A}=(A, \sigma)$ be an algebra. We say that \mathcal{A} is

- affine if there exist a ring R, a binary operation + on A, an operation $\cdot: R \times A \rightarrow A$ and constants $0,1 \in A$ such that $(A,+, \cdot, 0,1)$ is a R-module and all operation from σ can be derived from the module operations;
- quasi-affine if \mathcal{A} embeds into an affine algebra;
- abelian if there exist an algebra \mathcal{B}, a homomorphism $h: \mathcal{A}^{2} \rightarrow \mathcal{B}$ and an element $c \in \mathcal{B}$ such that $\{(a, a) ; a \in \mathcal{A}\}=h^{-1}(c) ;$
- entropic if, for each $f, g \in \sigma$ and $x_{i, j} \in \mathcal{A}$ we have

Generalizations of abelian groups

Definitions

Let $\mathcal{A}=(A, \sigma)$ be an algebra. We say that \mathcal{A} is

- affine if there exist a ring R, a binary operation + on A, an operation $\cdot: R \times A \rightarrow A$ and constants $0,1 \in A$ such that $(A,+, \cdot, 0,1)$ is a R-module and all operation from σ can be derived from the module operations;
- quasi-affine if \mathcal{A} embeds into an affine algebra;
- abelian if there exist an algebra \mathcal{B}, a homomorphism $h: \mathcal{A}^{2} \rightarrow \mathcal{B}$ and an element $c \in \mathcal{B}$ such that

$$
\{(a, a) ; a \in \mathcal{A}\}=h^{-1}(c)
$$

- entropic if, for each $f, g \in \sigma$ and $x_{i, j} \in \mathcal{A}$ we have

$$
\begin{aligned}
& f\left(g\left(x_{1,1}, \ldots, x_{1, n}\right), \ldots, g\left(x_{k, 1}, \ldots, x_{k, n}\right)\right)= \\
& \quad=g\left(f\left(x_{1,1}, \ldots, x_{k, 1}\right), \ldots, f\left(x_{1, n}, \ldots, x_{k, n}\right)\right)
\end{aligned}
$$

Definition of quandles

Definition

A groupoid $(Q, *)$ is called a quandle, if it satisfies

- $x * x=x$,
(idempotency)
- $(x * y) * z=(x * z) *(y * z)$, (right distributivity)
- $\forall y, z \exists!x ; \quad x * y=z$. (right quasigroup)

[^0]$x \backslash(x * y)=y=x *(x \backslash y)$.

Definition of quandles

Definition

A groupoid $(Q, *)$ is called a quandle, if it satisfies

- $x * x=x$,
- $(x * y) * z=(x * z) *(y * z)$,
(right distributivity)
- $\forall y, z \exists!x ; \quad x * y=z$.
(right quasigroup)

Fact

The right quasigroup property can be alternatively expressed as follows:
There exists a binary operation \backslash on Q such that

$$
x \backslash(x * y)=y=x *(x \backslash y)
$$

Examples of quandles

Example (Left zero band)

The groupoid $(Q, *)$ with the operation $x * y=x$.

Example (Group conjugation)
 Let (G, \cdot) be a group and let $a * b=b^{-1} \cdot a \cdot b$.

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

Examples of quandles

Example (Left zero band)

The groupoid $(Q, *)$ with the operation $x * y=x$.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b=b^{-1} \cdot a \cdot b$.

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

Examples of quandles

Example (Left zero band)

The groupoid $(Q, *)$ with the operation $x * y=x$.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b=b^{-1} \cdot a \cdot b$.

Theorem (D. Joyce)
The knot quandle is a classifying invariant of knots.

Left translations

Definition

Let $(Q, *)$ be a groupoid. The mapping $R_{x}: a \mapsto a * x$ is called the right translation by x.

Definition

A groupoid Q is called a quandle if it satisfies

- R_{x} is an endomorphism, for each $x \in Q$, (right distributivity)
- R_{x} is a permutation, for each $x \in Q, \quad$ (right quasigroup)
- x is a fixed point of R_{x}, for each $x \in Q$.

Left translations

Definition

Let $(Q, *)$ be a groupoid. The mapping $R_{x}: a \mapsto a * x$ is called the right translation by x.

Definition

A groupoid Q is called a quandle if it satisfies

- R_{x} is an endomorphism, for each $x \in Q$, (right distributivity)
- R_{x} is a permutation, for each $x \in Q$,
- x is a fixed point of R_{x}, for each $x \in Q$.
(right quasigroup) (idempotency)

Permutation groups

Definitions

- The right multiplication group of Q is the permutation group $\operatorname{RMlt}(Q)=\left\langle R_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle R_{x} R_{y}^{-1} ; x, y \in Q\right\rangle$.

Proposition

- $\operatorname{RMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{RMlt}(Q)$,
- the group $\operatorname{RMlt}(Q)$ / $\operatorname{Dis}(Q)$ is cyclic,
- the natural actions of $\operatorname{RMlt}(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Permutation groups

Definitions

- The right multiplication group of Q is the permutation group $\operatorname{RMlt}(Q)=\left\langle R_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle R_{x} R_{y}^{-1} ; x, y \in Q\right\rangle$.

Proposition

- $\operatorname{RMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{RMlt}(Q)$,
- the group RMlt(Q)/ Dis (Q) is cyclic,
- the natural actions of $\operatorname{RMlt}(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Permutation groups

Definitions

- The right multiplication group of Q is the permutation group $\operatorname{RMlt}(Q)=\left\langle R_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle R_{x} R_{y}^{-1} ; x, y \in Q\right\rangle$.

Proposition

- $\operatorname{RMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{RMlt}(Q)$,
- the group $\operatorname{RMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of $R M 1 t(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Permutation groups

Definitions

- The right multiplication group of Q is the permutation group $\operatorname{RMlt}(Q)=\left\langle R_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle R_{x} R_{y}^{-1} ; x, y \in Q\right\rangle$.

Proposition

- $\operatorname{RMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{RMlt}(Q)$,
- the group $\operatorname{RMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of $\operatorname{RMlt}(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

Fact
 A quandle is entropic if and only if it is medial. Such quandles are sometimes called abelian.

Proposition

A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian.

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

Fact

A quandle is entropic if and only if it is medial. Such quandles are sometimes called abelian.

Proposition

A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian.

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

Fact

A quandle is entropic if and only if it is medial. Such quandles are sometimes called abelian.

Proposition

A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian.

Affine quandles

Fact

A quandle $(Q, *)$ is affine is and only if it is a reduct of a $\mathbb{Z}\left[x, x^{-1}\right]$-module, i.e., there exists an abelian group A and an automorphism $f \in \operatorname{Aut}(A)$ such that

$$
x * y=f(x-y)+y=f(x)+(1-f)(y)
$$

Such a quandle is often called an Alexander quandle.
\square
Fact
Let $Q=\operatorname{Aff}(A, f)$ then $\operatorname{Dis} Q=\{x \mapsto x+a ; \forall a \in \operatorname{Im}(1-f)\}$.

Corollary
An affine quandle is medial.

Affine quandles

Fact

A quandle $(Q, *)$ is affine is and only if it is a reduct of a $\mathbb{Z}\left[x, x^{-1}\right]$-module, i.e., there exists an abelian group A and an automorphism $f \in \operatorname{Aut}(A)$ such that

$$
x * y=f(x-y)+y=f(x)+(1-f)(y)
$$

Such a quandle is often called an Alexander quandle.

Fact

Let $Q=\operatorname{Aff}(A, f)$ then $\operatorname{Dis} Q=\{x \mapsto x+a ; \forall a \in \operatorname{Im}(1-f)\}$.

Corollary
An affine quandle is medial.

Affine quandles

Fact

A quandle $(Q, *)$ is affine is and only if it is a reduct of a $\mathbb{Z}\left[x, x^{-1}\right]$-module, i.e., there exists an abelian group A and an automorphism $f \in \operatorname{Aut}(A)$ such that

$$
x * y=f(x-y)+y=f(x)+(1-f)(y)
$$

Such a quandle is often called an Alexander quandle.

Fact

Let $Q=\operatorname{Aff}(A, f)$ then $\operatorname{Dis} Q=\{x \mapsto x+a ; \forall a \in \operatorname{Im}(1-f)\}$.

Corollary

An affine quandle is medial.

Abelian quandles

Theorem (P.J.,A.P.,D.S.,A.Z.)

Let Q be a quandle. Then the following conditions are equivalent:

- Q is abelian,
- $\operatorname{Dis}(Q)$ is abelian and semi-regular,
- there exist an abelian group A, an automorphism $f \in \operatorname{Aut}(A)$, an index set \mathcal{J} and constants $d_{i}, i \in \mathcal{J}$, such that
- $A=\left\langle\operatorname{Im}(1-f) \cup\left\{d_{i}-d_{j} ;\right.\right.$ for $\left.\left.i, j \in \mathcal{J}\right\}\right\rangle$,
- $Q \cong(A \times \mathcal{J}, *)$ with the operation $*$ defined as-

$$
(a, i) *(b, j)=\left(f(a)+(1-f)(b)+d_{i}-d_{j}, j\right)
$$

This construction is denoted by $\operatorname{Ab}\left(A, f,\left(d_{i}\right)_{i \in \mathcal{J}}\right)$.

Corollaries of abelian characterisation

Corollary

A finite quandle is abelian if and only if $\operatorname{Dis}(Q)$ is abelian and $|\operatorname{Dis}(Q)|=|Q e|$, for each $e \in Q$.

Corollary

Affine and quasi-affine quandles are abelian.
\square
Example (P.J.,A.P.,A.Z.)
The free n-generated medial quandle is
$\operatorname{Ab}\left(\mathbb{Z}\left[x, x^{-1}\right]^{n-1}, x,\left(d_{i}\right)_{0 \leqslant i<n}\right)$, where $d_{0}=0$ and $\left\{d_{i} ; 1 \leqslant i<n\right\}$ is
a free basis of $\mathbb{Z}\left[x, x^{-1}\right]$

Corollaries of abelian characterisation

Corollary

A finite quandle is abelian if and only if $\operatorname{Dis}(Q)$ is abelian and $|\operatorname{Dis}(Q)|=|Q e|$, for each $e \in Q$.

Corollary
Affine and quasi-affine quandles are abelian.

Corollaries of abelian characterisation

Corollary

A finite quandle is abelian if and only if $\operatorname{Dis}(Q)$ is abelian and $|\operatorname{Dis}(Q)|=|Q e|$, for each $e \in Q$.

Corollary

Affine and quasi-affine quandles are abelian.

Example (P.J,A.P.,A.Z.)

The free n-generated medial quandle is
$\operatorname{Ab}\left(\mathbb{Z}\left[x, x^{-1}\right]^{n-1}, x,\left(d_{i}\right)_{0 \leqslant i<n}\right)$, where $d_{0}=0$ and $\left\{d_{i} ; 1 \leqslant i<n\right\}$ is a free basis of $\mathbb{Z}\left[x, x^{-1}\right]$.

Isomorphism of affine quandles

Proposition (P.J.,A.P.,D.S.,A.Z.)

Let A_{1}, A_{2} be two abelian groups. Let, for $k \in\{1,2\}$, be $f_{k} \in$ Aut A_{k}, let J_{k} be index sets and $d_{i, k} \in A_{k}$, for all $i \in \mathcal{J}_{k}$. Then $\operatorname{Ab}\left(A_{1}, f_{1},\left(d_{i, 1}\right)_{i \in \mathcal{J}_{1}}\right)$ is isomorphic to $\operatorname{Ab}\left(A_{2}, f_{2},\left(d_{i, 2}\right)_{i \in \mathcal{J}_{2}}\right)$ if and only if

- there exists ψ, an isomorphism $A_{1} \rightarrow A_{2}$;
- there exists a bijection $\pi: \mathcal{J}_{1} \rightarrow \mathcal{J}_{2}$ such that $\psi \circ f_{1}=f_{2} \circ \psi$;
- there exist a constant $a \in A_{2}$ and constants $b_{j} \in \operatorname{Im}\left(1-f_{2}\right)$, for $j \in \mathcal{J}_{2}$, such that $\psi\left(d_{i, 1}\right)=d_{\pi(i), 2}+a+b_{\pi(i)}$, for all $i \in \mathcal{J}_{1}$.

Affine criterion

Definition

Let G be a group and H its subgroup. A multiset T is called a left multi-transversal of H in G if $|x H \cap T|=|H \cap T|$, for each $x \in G$.

Theorem (P.J.,A.P., D.S.,A.Z.)

Let Q be an abelian quandle. Then TFCAE:

- Q is affine,
- $Q \cong \operatorname{Ab}\left(A, f,\left(d_{i}\right)_{i \in \mathcal{J}}\right)$ and $\left\{d_{i} ; i \in \mathcal{J}\right\}$ is a multi-transversal of $\operatorname{Im}(1-f)$ in A,
- whenever $Q \cong \operatorname{Ab}\left(A, f,\left(d_{i}\right)_{i \in J}\right)$ then $\left\{d_{i} ; i \in J\right\}$ is a multi-transversal of $\operatorname{Im}(1-f)$ in A.

Affine criterion

Definition

Let G be a group and H its subgroup. A multiset T is called a left multi-transversal of H in G if $|x H \cap T|=|H \cap T|$, for each $x \in G$.

Theorem (P.J.,A.P.,D.S.,A.Z.)

Let Q be an abelian quandle. Then TFCAE:

- Q is affine,
- $Q \cong \operatorname{Ab}\left(A, f,\left(d_{i}\right)_{i \in \mathcal{J}}\right)$ and $\left\{d_{i} ; i \in \mathcal{J}\right\}$ is a multi-transversal of $\operatorname{Im}(1-f)$ in A,
- whenever $Q \cong \operatorname{Ab}\left(A, f,\left(d_{i}\right)_{i \in \mathcal{J}}\right)$ then $\left\{d_{i} ; i \in \mathcal{J}\right\}$ is a multi-transversal of $\operatorname{Im}(1-f)$ in A.

Consequences of the affine criterion

Proposition (P.J.,A.P.,D.S.,A.Z.)

A finite quandle Q is affine if and only if

- $\operatorname{Dis}(Q)$ is abelian and semi-regular,
- choose $e \in Q$ arbitrarily; then, for each $a \in Q e$, $|\{x \in Q ; x * e=a\}|=|\{x \in Q ; x * e=e\}|$.

Proposition (P.J.,A.P.,D.S.,A.Z.)
A quandle is quasi-affine if and only if it is abelian.

Consequences of the affine criterion

Proposition (P.J.,A.P.,D.S.,A.Z.)

A finite quandle Q is affine if and only if

- $\operatorname{Dis}(Q)$ is abelian and semi-regular,
- choose $e \in Q$ arbitrarily; then, for each $a \in Q e$,

$$
|\{x \in Q ; x * e=a\}|=|\{x \in Q ; x * e=e\}| .
$$

Proposition (P.J.,A.P.,D.S.,A.Z.)

A quandle is quasi-affine if and only if it is abelian.

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\varphi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\varphi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\varphi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;
(M3) $\varphi_{j, k} \circ \varphi_{i, j}=\varphi_{j^{\prime}, k} \circ \varphi_{i, j^{\prime}} ;$

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\varphi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;
(M3) $\varphi_{j, k} \circ \varphi_{i, j}=\varphi_{j^{\prime}, k} \circ \varphi_{i, j^{\prime}} ;$
(M4) $\varphi_{j, k}\left(c_{i, j}\right)=\varphi_{k, k}\left(c_{i, k}-c_{j, k}\right)$;

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\varphi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;
(M3) $\varphi_{j, k} \circ \varphi_{i, j}=\varphi_{j^{\prime}, k} \circ \varphi_{i, j^{\prime}} ;$
(M4) $\varphi_{j, k}\left(c_{i, j}\right)=\varphi_{k, k}\left(c_{i, k}-c_{j, k}\right)$;
(M5) $A_{j}=\left\langle\bigcup_{i \in I}\left(c_{i, j}+\operatorname{Im}\left(\varphi_{i, j}\right)\right)\right\rangle$.

Sums of affine meshes

Definition

The sum of an indecomposable affine mesh $\mathcal{A}=\left(A_{i}, \varphi_{i, j}, c_{i, j}\right)$ over a set I is the groupoid $\left(\bigcup_{i \in I} A_{i}, *\right)$ with the operation $*$ defined as

$$
a * b=\left(1-\varphi_{i, i}(a)\right)+\varphi_{i, j}(b)+c_{i, j,} \quad \text { for } a \in A_{i} \text { and } b \in A_{j} .
$$

Proposition (P.J., A.P., D.S., A.Z.)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to $A_{i}, i \in I$.
On the other hand, every medial quandle is the sum of an indecomposable affine mesh.

Sums of affine meshes

Definition

The sum of an indecomposable affine mesh $\mathcal{A}=\left(A_{i}, \varphi_{i, j}, c_{i, j}\right)$ over a set I is the groupoid $\left(\bigcup_{i \in I} A_{i}, *\right)$ with the operation $*$ defined as

$$
a * b=\left(1-\varphi_{i, i}(a)\right)+\varphi_{i, j}(b)+c_{i, j}, \quad \text { for } a \in A_{i} \text { and } b \in A_{j} .
$$

Proposition (P.J., A.P., D.S., A.Z.)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to $A_{i}, i \in I$.
On the other hand, every medial quandle is the sum of an indecomposable affine mesh.

3-element medial quandles

Example

Medial quandles of size 3
(0) $\left(\mathbb{Z}_{3} ; 2 ; 0\right)$

	a	b	c
a	a	c	b
b	c	b	a
c	b	a	c

3-element medial quandles

Example

Medial quandles of size 3

- $\left(\mathbb{Z}_{3} ; 2 ; 0\right)$
(2) $\left(\mathbb{Z}_{2}, \mathbb{Z}_{1} ;\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) ;\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$

	a	b	c
a	a	c	b
b	c	b	a
c	b	a	c
	a	b	c
a	a	a	b
b	b	b	a
c	c	c	c

3-element medial quandles

Example

Medial quandles of size 3

- $\left(\mathbb{Z}_{3} ; 2 ; 0\right)$
(2) $\left(\mathbb{Z}_{2}, \mathbb{Z}_{1} ;\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) ;\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$
(3) $\left(\mathbb{Z}_{1}, \mathbb{Z}_{1}, \mathbb{Z}_{1} ;\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) ;\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)$

	a	b	c
a	a	c	b
b	c	b	a
c	b	a	c
	a	b	c
a	a	a	b
b	b	b	a
c	c	c	c
	a	b	c
a	a	a	a
b	b	b	b
c	c	c	c

Reductivity

Definition

A groupoid Q is called m-reductive if it satisfies

$$
\underbrace{x \cdot(x \cdots(x}_{m \times} \cdot y) \cdots)=x
$$

Fact

\square
Example
$\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is m-reductive but not m - 1 -reductive.
Proposition (P.J.,A.P.,A.Z.)
A medial quandle is m-reductive and not m - 1 -reductive if and only if $\operatorname{RMIt}(Q)$ is nilpotent of degree $m-1$

Reductivity

Definition

A groupoid Q is called m-reductive if it satisfies

$$
\underbrace{x \cdot(x \cdots(x}_{m \times} \cdot y) \cdots)=x
$$

Fact

A quandle $\operatorname{Aff}(A, f)$ is m-reductive if and only if $(1-f)^{m}=0$.
Example
$\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is m-reductive but not $m-1$-reductive.
Proposition (P.J., A.P., A.Z.)
A medial quandle is m-reductive and not $m-1$-reductive if and only if $\operatorname{RMlt}(Q)$ is nilpotent of degree $m-1$.

Reductivity

Definition

A groupoid Q is called m-reductive if it satisfies

$$
\underbrace{x \cdot(x \cdots(x}_{m \times} \cdot y) \cdots)=x
$$

Fact

A quandle $\operatorname{Aff}(A, f)$ is m-reductive if and only if $(1-f)^{m}=0$.
Example
$\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is m-reductive but not $m-1$-reductive.

Reductivity

Definition

A groupoid Q is called m-reductive if it satisfies

$$
\underbrace{x \cdot(x \cdots(x}_{m \times} \cdot y) \cdots)=x
$$

Fact

A quandle $\operatorname{Aff}(A, f)$ is m-reductive if and only if $(1-f)^{m}=0$.

Example

$\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is m-reductive but not $m-1$-reductive.
Proposition (P.J.,A.P.,A.Z.)
A medial quandle is m-reductive and not $m-1$-reductive if and only if $\operatorname{RMlt}(Q)$ is nilpotent of degree $m-1$.

2-reductive quandles

Proposition
Let Q be a medial quandle Then TFAE
(1) Q is 2-reductive,
(2) every orbit of Q is a left-zero band,
(3) $\operatorname{LMlt}(Q)$ is commutative.

Fact
 If one of the orbits of Q has one element then Q is 2-reductive.

Proposition (P.J., A.P., D.S., A.Z.)

The number of non-isomorphic 2-reductive medial quandles of size n is $2^{\frac{1}{4} n^{2}+o\left(n^{2}\right)}$

2-reductive quandles

Proposition

Let Q be a medial quandle Then TFAE
(1) Q is 2-reductive,
(2) every orbit of Q is a left-zero band,
(3) $\operatorname{LMlt}(Q)$ is commutative.

Fact

If one of the orbits of Q has one element then Q is 2-reductive.

Proposition (P.J., A.P., D.S., A.Z.)

The number of non-isomorphic 2 -reductive medial quandles of size n is $2^{\frac{1}{4} n^{2}+o\left(n^{2}\right)}$.

2-reductive quandles

Proposition

Let Q be a medial quandle Then TFAE
(1) Q is 2-reductive,
(2) every orbit of Q is a left-zero band,
(3) $\operatorname{LMlt}(Q)$ is commutative.

Fact

If one of the orbits of Q has one element then Q is 2-reductive.

Proposition (P.J., A.P., D.S., A.Z.)

The number of non-isomorphic 2-reductive medial quandles of size n is $2^{\frac{1}{4} n^{2}+o\left(n^{2}\right)}$.

Reductivity

Numbers of medial quandles

size	2-red.	other
1	1	0
2	1	0
3	2	1
4	5	1
5	15	3
6	55	3
7	246	5
8	1,398	12

size	2-reductive	other
9	10,301	10
10	98,532	45
11	$1,246,479$	9
12	$20,837,171$	268
13	$466,087,624$	11
14	$13,943,041,873$	$?$
15	$563,753,074,915$	36
16	$30,784,745,506,212$	$?$

Conjecture

For each n, the number of 2 -reductive medial quandles is bigger than the number of other medial quandles.

Numbers of medial quandles

size	2-red.	other
1	1	0
2	1	0
3	2	1
4	5	1
5	15	3
6	55	3
7	246	5
8	1,398	12

size	2-reductive	other
9	10,301	10
10	98,532	45
11	$1,246,479$	9
12	$20,837,171$	268
13	$466,087,624$	11
14	$13,943,041,873$	$?$
15	$563,753,074,915$	36
16	$30,784,745,506,212$	$?$

Conjecture

For each n, the number of 2-reductive medial quandles is bigger than the number of other medial quandles.

Subdirect irreducibility

Definition

An algebra \mathcal{A} is called subdirectly irreducible if there exists on \mathcal{A} a unique minimal non-trivial congruence, called the monolith.

Example

A module M is subdirectly irreducible if and only if there exists
a unique minimal proper submodule of M.

Subdirect irreducibility

Definition

An algebra \mathcal{A} is called subdirectly irreducible if there exists on \mathcal{A} a unique minimal non-trivial congruence, called the monolith.

Example

A module M is subdirectly irreducible if and only if there exists a unique minimal proper submodule of M.

Finite subdirectly irreducible medial quandles

Proposition (P.J., A.P., A.Z.)
Let Q be a finite subdirectly irreducible medial quandle. Then Q is either a quasigroup or reductive.

```
Fact
A subdirectly irreducible medial idempotent quasigroup is
polynomially equivalent to a subdirectly irreducible
Z}[x,\mp@subsup{x}{}{-1},(1-x\mp@subsup{)}{}{-1}]\mathrm{ -module
```


Fact

The only finite simple reductive medial quandle is the
two-element left zero band.

Finite subdirectly irreducible medial quandles

Proposition (P.J., A.P., A.Z.)

Let Q be a finite subdirectly irreducible medial quandle. Then Q is either a quasigroup or reductive.

Fact

A subdirectly irreducible medial idempotent quasigroup is polynomially equivalent to a subdirectly irreducible $\mathbb{Z}\left[x, x^{-1},(1-x)^{-1}\right]$-module.

[^1]
Finite subdirectly irreducible medial quandles

Proposition (P.J., A.P., A.Z.)

Let Q be a finite subdirectly irreducible medial quandle. Then Q is either a quasigroup or reductive.

Fact

A subdirectly irreducible medial idempotent quasigroup is polynomially equivalent to a subdirectly irreducible $\mathbb{Z}\left[x, x^{-1},(1-x)^{-1}\right]$-module.

Fact

The only finite simple reductive medial quandle is the two-element left zero band.

Subdirectly irreducible reductive quandles

Theorem (P.J.,A.P.,A.Z.)

Let Q be a non-connected m-reductive medial quandle. Then Q is subdirectly irreducible if and only if it is isomorphic to the sum of the affine mesh

$$
((A, \underbrace{\varphi(A), \varphi(A), \ldots}_{n \text {-times }}) ;
$$

where

$$
\left.\left(\begin{array}{ccccc}
\varphi & \varphi^{2} & \varphi^{2} & \ldots & \varphi^{2} \\
1 & \varphi & \varphi & \ldots & \varphi \\
1 & \varphi & \varphi & \ldots & \varphi \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \varphi & \varphi & \ldots & \varphi
\end{array}\right) ;\left(\begin{array}{cccccc}
0 & -\varphi\left(c_{2,1}\right) & \ldots & -\varphi\left(c_{i, 1}\right) & \ldots & -\varphi\left(c_{j, 1}\right) \\
c_{2,1} & 0 & \ldots & \varphi\left(c_{2,1}-c_{i, 1}\right) & \ldots & \varphi\left(c_{2,1}-c_{j, 1}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
c_{i, 1} & \varphi\left(c_{i, 1}-c_{2,1}\right) & \ldots & 0 & \ldots & \varphi\left(c_{j, 1}-c_{i, 1}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
c_{j, 1} & \varphi\left(c_{j, 1}-c_{2,1}\right) & \ldots & \varphi\left(c_{j, 1}-c_{i, 1}\right) & \ldots & 0
\end{array}\right)\right) \text {, }
$$

(1) A is a subdirectly irreducible $\mathbb{Z}[x] /(1-x)^{m-1}$-module,
(2) $\varphi=1-x$,
(3) $0<n \leqslant k$, where $k=|A / \varphi(A)|$,
(4) $c_{i, 1}-c_{j, 1} \notin \varphi(A)$, for each $1<i \neq j \in I$,
(5) A is generated by the set $\varphi(A) \cup\left\{c_{i, 1} \mid i \in I\right\}$.

[^0]: Fact
 The right quasigroup property can be alternatively expressed as follows:
 There exists a binary operation \backslash on Q such that

[^1]: Fact
 The only finite simple reductive medial quandle is the two-element left zero band.

