Quandles médiaux

Přemysl Jedlička avec Agata Pilitowska, David Stanovský, Anna Zamojska-Dzienio

Département de mathématiques Faculté Technique Université Agricole Tchèque, Prague

à Caen le 15 Mars 2016

Definitions

- affine if there exist a ring *R*, a binary operation + on *A*, an operation · : *R* × *A* → *A* and constants 0, 1 ∈ *A* such that (*A*, +, ·, 0, 1) is a *R*-module and all operation from σ can be derived from the module operations;
- quasi-affine if A embeds into an affine algebra;
- *abelian* if there exist an algebra \mathcal{B} , a homomorphism $h : \mathcal{A}^2 \to \mathcal{B}$ and an element $c \in \mathcal{B}$ such that $\{(a, a); a \in \mathcal{A}\} = h^{-1}(c);$
- entropic if, for each $f, g \in \sigma$ and $x_{i,j} \in \mathcal{A}$ we have $f(g(x_{1,1}, \dots, x_{1,n}), \dots, g(x_{k,1}, \dots, x_{k,n})) =$ $= g(f(x_{1,1}, \dots, x_{k,1}), \dots, f(x_{1,n}, \dots, x_{k,n}))$

Definitions

- affine if there exist a ring *R*, a binary operation + on *A*, an operation · : *R* × *A* → *A* and constants 0, 1 ∈ *A* such that (*A*, +, ·, 0, 1) is a *R*-module and all operation from σ can be derived from the module operations;
- quasi-affine if A embeds into an affine algebra;
- *abelian* if there exist an algebra \mathcal{B} , a homomorphism $h : \mathcal{A}^2 \to \mathcal{B}$ and an element $c \in \mathcal{B}$ such that $\{(a, a); a \in \mathcal{A}\} = h^{-1}(c);$
- entropic if, for each $f, g \in \sigma$ and $x_{i,j} \in \mathcal{A}$ we have $f(g(x_{1,1}, \dots, x_{1,n}), \dots, g(x_{k,1}, \dots, x_{k,n})) =$ $= g(f(x_{1,1}, \dots, x_{k,1}), \dots, f(x_{1,n}, \dots, x_{k,n}))$

Definitions

- affine if there exist a ring *R*, a binary operation + on *A*, an operation · : *R* × *A* → *A* and constants 0, 1 ∈ *A* such that (*A*, +, ·, 0, 1) is a *R*-module and all operation from σ can be derived from the module operations;
- quasi-affine if A embeds into an affine algebra;
- *abelian* if there exist an algebra \mathcal{B} , a homomorphism $h : \mathcal{A}^2 \to \mathcal{B}$ and an element $c \in \mathcal{B}$ such that $\{(a, a); a \in \mathcal{A}\} = h^{-1}(c);$
- entropic if, for each $f, g \in \sigma$ and $x_{i,j} \in A$ we have $f(g(x_{1,1}, ..., x_{1,n}), ..., g(x_{k,1}, ..., x_{k,n})) =$ $= g(f(x_{1,1}, ..., x_{k,1}), ..., f(x_{1,n}, ..., x_{k,n})).$

Definitions

- affine if there exist a ring *R*, a binary operation + on *A*, an operation · : *R* × *A* → *A* and constants 0, 1 ∈ *A* such that (*A*, +, ·, 0, 1) is a *R*-module and all operation from σ can be derived from the module operations;
- quasi-affine if A embeds into an affine algebra;
- *abelian* if there exist an algebra \mathcal{B} , a homomorphism $h : \mathcal{A}^2 \to \mathcal{B}$ and an element $c \in \mathcal{B}$ such that $\{(a, a); a \in \mathcal{A}\} = h^{-1}(c);$
- entropic if, for each $f, g \in \sigma$ and $x_{i,j} \in A$ we have $f(g(x_{1,1}, \dots, x_{1,n}), \dots, g(x_{k,1}, \dots, x_{k,n})) =$ $= g(f(x_{1,1}, \dots, x_{k,1}), \dots, f(x_{1,n}, \dots, x_{k,n})).$

Definition of quandles

Definition

A groupoid (Q, *) is called a *quandle*, if it satisfies

• x * x = x,

•
$$(x * y) * z = (x * z) * (y * z),$$

•
$$\forall y, z \exists !x; x * y = z.$$

(idempotency) (right distributivity) (right quasigroup)

Fact

The right quasigroup property can be alternatively expressed as follows:

There exists a binary operation \setminus on Q such that

$$x \setminus (x * y) = y = x * (x \setminus y).$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Definition of quandles

Definition

A groupoid (Q, *) is called a *quandle*, if it satisfies

• x * x = x,

•
$$(x * y) * z = (x * z) * (y * z),$$

•
$$\forall y, z \exists !x; x * y = z.$$

(idempotency) (right distributivity) (right quasigroup)

Fact

The right quasigroup property can be alternatively expressed as follows:

There exists a binary operation \setminus on Q such that

$$x \setminus (x * y) = y = x * (x \setminus y).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Examples of quandles

Example (Left zero band)

The groupoid (Q, *) with the operation x * y = x.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b = b^{-1} \cdot a \cdot b$.

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

Examples of quandles

Example (Left zero band)

The groupoid (Q, *) with the operation x * y = x.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b = b^{-1} \cdot a \cdot b$.

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

(ロ) (型) (主) (主) (主) の(で)

Examples of quandles

Example (Left zero band)

The groupoid (Q, *) with the operation x * y = x.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b = b^{-1} \cdot a \cdot b$.

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Left translations

Definition

Let (Q, *) be a groupoid. The mapping $R_x : a \mapsto a * x$ is called the *right translation* by x.

Definition

A groupoid Q is called a quandle if it satisfies

- R_x is an endomorphism, for each $x \in Q$, (
- R_x is a permutation, for each $x \in Q$,
- *x* is a fixed point of R_x , for each $x \in Q$.

right distributivity) (right quasigroup) (idempotency)

Left translations

Definition

Let (Q, *) be a groupoid. The mapping $R_x : a \mapsto a * x$ is called the *right translation* by x.

Definition

A groupoid Q is called a quandle if it satisfies

- R_x is an endomorphism, for each $x \in Q$, (right distributivity
- R_x is a permutation, for each $x \in Q$,
- *x* is a fixed point of R_x , for each $x \in Q$.

(right distributivity) (right quasigroup) (idempotency)

Definitions

- The *right multiplication group* of *Q* is the permutation group $\text{RMlt}(Q) = \langle R_x; x \in Q \rangle.$
- The *displacement group* of *Q* is the permutation group $Dis(Q) = \langle R_x R_y^{-1}; x, y \in Q \rangle$.

- $\operatorname{RMlt}(Q)' \leq \operatorname{Dis}(Q) \leq \operatorname{RMlt}(Q)$,
- the group $\operatorname{RMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of RMlt(Q) and Dis(Q) on Q have the same orbits.

Definitions

- The *right multiplication group* of *Q* is the permutation group $\text{RMlt}(Q) = \langle R_x; x \in Q \rangle.$
- The *displacement group* of *Q* is the permutation group $Dis(Q) = \langle R_x R_y^{-1}; x, y \in Q \rangle$.

- $\operatorname{RMlt}(Q)' \trianglelefteq \operatorname{Dis}(Q) \trianglelefteq \operatorname{RMlt}(Q)$,
- the group $\operatorname{RMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of RMlt(Q) and Dis(Q) on Q have the same orbits.

Definitions

- The *right multiplication group* of *Q* is the permutation group $\text{RMlt}(Q) = \langle R_x; x \in Q \rangle.$
- The *displacement group* of *Q* is the permutation group $Dis(Q) = \langle R_x R_y^{-1}; x, y \in Q \rangle$.

- $\operatorname{RMlt}(Q)' \trianglelefteq \operatorname{Dis}(Q) \trianglelefteq \operatorname{RMlt}(Q)$,
- the group $\operatorname{RMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of RMlt(Q) and Dis(Q) on Q have the same orbits.

Definitions

- The *right multiplication group* of *Q* is the permutation group $\text{RMlt}(Q) = \langle R_x; x \in Q \rangle.$
- The *displacement group* of *Q* is the permutation group $Dis(Q) = \langle R_x R_y^{-1}; x, y \in Q \rangle$.

- $\operatorname{RMlt}(Q)' \trianglelefteq \operatorname{Dis}(Q) \trianglelefteq \operatorname{RMlt}(Q)$,
- the group $\operatorname{RMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of RMlt(Q) and Dis(Q) on Q have the same orbits.

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$(x * y) * (u * z) = (x * u) * (y * z)$$

Fact

A quandle is entropic if and only if it is medial. Such quandles are sometimes called abelian.

Proposition

A quandle is medial if and only if Dis(Q) is abelian.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$(x * y) * (u * z) = (x * u) * (y * z)$$

Fact

A quandle is entropic if and only if it is medial. Such quandles are sometimes called abelian.

Proposition

A quandle is medial if and only if Dis(Q) is abelian.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$(x * y) * (u * z) = (x * u) * (y * z)$$

Fact

A quandle is entropic if and only if it is medial. Such quandles are sometimes called abelian.

Proposition

A quandle is medial if and only if Dis(Q) is abelian.

・ロト・(理ト・モート・ヨー うへぐ

Affine quandles

Fact

A quandle (Q, *) is affine is and only if it is a reduct of a $\mathbb{Z}[x, x^{-1}]$ -module, i.e., there exists an abelian group A and an automorphism $f \in \operatorname{Aut}(A)$ such that

$$x * y = f(x - y) + y = f(x) + (1 - f)(y).$$

Such a quandle is often called an Alexander quandle.

Fact

Let
$$Q = \operatorname{Aff}(A, f)$$
 then $\operatorname{Dis} Q = \{x \mapsto x + a; \forall a \in \operatorname{Im}(1 - f)\}.$

Corollary

An affine quandle is medial.

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Affine quandles

Fact

A quandle (Q, *) is affine is and only if it is a reduct of a $\mathbb{Z}[x, x^{-1}]$ -module, i.e., there exists an abelian group A and an automorphism $f \in \operatorname{Aut}(A)$ such that

$$x * y = f(x - y) + y = f(x) + (1 - f)(y).$$

Such a quandle is often called an Alexander quandle.

Fact

Let
$$Q = \operatorname{Aff}(A, f)$$
 then $\operatorname{Dis} Q = \{x \mapsto x + a; \forall a \in \operatorname{Im}(1 - f)\}.$

Corollary

An affine quandle is medial.

・ロ と く 聞 と く 回 と く 回 と

ж

Affine quandles

Fact

A quandle (Q, *) is affine is and only if it is a reduct of a $\mathbb{Z}[x, x^{-1}]$ -module, i.e., there exists an abelian group A and an automorphism $f \in \operatorname{Aut}(A)$ such that

$$x * y = f(x - y) + y = f(x) + (1 - f)(y).$$

Such a quandle is often called an Alexander quandle.

Fact

Let
$$Q = \operatorname{Aff}(A, f)$$
 then $\operatorname{Dis} Q = \{x \mapsto x + a; \forall a \in \operatorname{Im}(1 - f)\}.$

Corollary

An affine quandle is medial.

Abelian quandles

Theorem (P.J., A.P., D.S., A.Z.)

Let Q be a quandle. Then the following conditions are equivalent:

- Q is abelian,
- Dis(Q) is abelian and semi-regular,
- there exist an abelian group A, an automorphism f ∈ Aut(A), an index set J and constants d_i, i ∈ J, such that

•
$$A = \langle \operatorname{Im}(1-f) \cup \{d_i - d_j; \text{ for } i, j \in \mathfrak{I}\} \rangle$$

• $Q \cong (A \times \mathfrak{I}, *)$ with the operation * defined as-

$$(a,i) * (b,j) = (f(a) + (1-f)(b) + d_i - d_j, j).$$

This construction is denoted by $Ab(A, f, (d_i)_{i \in J})$.

Corollaries of abelian characterisation

Corollary

A finite quandle is abelian if and only if Dis(Q) is abelian and |Dis(Q)| = |Qe|, for each $e \in Q$.

Corollary

Affine and quasi-affine quandles are abelian.

Example (P.J., A.P., A.Z.)

The free *n*-generated medial quandle is Ab $(\mathbb{Z}[x, x^{-1}]^{n-1}, x, (d_i)_{0 \le i < n})$, where $d_0 = 0$ and $\{d_i; 1 \le i < n\}$ is a free basis of $\mathbb{Z}[x, x^{-1}]$.

Corollaries of abelian characterisation

Corollary

A finite quandle is abelian if and only if Dis(Q) is abelian and |Dis(Q)| = |Qe|, for each $e \in Q$.

Corollary

Affine and quasi-affine quandles are abelian.

Example (P.J., A.P., A.Z.)

The free *n*-generated medial quandle is Ab $(\mathbb{Z}[x, x^{-1}]^{n-1}, x, (d_i)_{0 \le i < n})$, where $d_0 = 0$ and $\{d_i; 1 \le i < n\}$ is a free basis of $\mathbb{Z}[x, x^{-1}]$.

Corollaries of abelian characterisation

Corollary

A finite quandle is abelian if and only if Dis(Q) is abelian and |Dis(Q)| = |Qe|, for each $e \in Q$.

Corollary

Affine and quasi-affine quandles are abelian.

Example (P.J., A.P., A.Z.)

The free *n*-generated medial quandle is $Ab(\mathbb{Z}[x, x^{-1}]^{n-1}, x, (d_i)_{0 \le i < n})$, where $d_0 = 0$ and $\{d_i; 1 \le i < n\}$ is a free basis of $\mathbb{Z}[x, x^{-1}]$.

Isomorphism of affine quandles

Proposition (P.J., A.P., D.S., A.Z.)

Let A_1, A_2 be two abelian groups. Let, for $k \in \{1, 2\}$, be $f_k \in Aut A_k$, let \mathfrak{I}_k be index sets and $d_{i,k} \in A_k$, for all $i \in \mathfrak{I}_k$. Then $Ab(A_1, f_1, (d_{i,1})_{i \in \mathfrak{I}_1})$ is isomorphic to $Ab(A_2, f_2, (d_{i,2})_{i \in \mathfrak{I}_2})$ if and only if

- there exists ψ , an isomorphism $A_1 \rightarrow A_2$;
- there exists a bijection $\pi : \mathfrak{I}_1 \to \mathfrak{I}_2$ such that $\psi \circ f_1 = f_2 \circ \psi$;
- there exist a constant $a \in A_2$ and constants $b_j \in \text{Im}(1-f_2)$, for $j \in \mathfrak{I}_2$, such that $\psi(d_{i,1}) = d_{\pi(i),2} + a + b_{\pi(i)}$, for all $i \in \mathfrak{I}_1$.

Affine criterion

Definition

Let *G* be a group and *H* its subgroup. A multiset *T* is called a *left* multi-transversal of *H* in *G* if $|xH \cap T| = |H \cap T|$, for each $x \in G$.

Theorem (P.J.,A.P.,D.S.,A.Z.)

Let Q be an abelian quandle. Then TFCAE:

- Q is affine,
- $Q \cong Ab(A, f, (d_i)_{i \in \mathcal{I}})$ and $\{d_i; i \in \mathcal{I}\}$ is a multi-transversal of Im(1-f) in A,
- whenever $Q \cong Ab(A, f, (d_i)_{i \in J})$ then $\{d_i; i \in J\}$ is a multi-transversal of Im(1-f) in A.

Affine criterion

Definition

Let *G* be a group and *H* its subgroup. A multiset *T* is called a *left* multi-transversal of *H* in *G* if $|xH \cap T| = |H \cap T|$, for each $x \in G$.

Theorem (P.J., A.P., D.S., A.Z.)

Let Q be an abelian quandle. Then TFCAE:

- Q is affine,
- $Q \cong Ab(A, f, (d_i)_{i \in J})$ and $\{d_i; i \in J\}$ is a multi-transversal of Im(1-f) in A,
- whenever $Q \cong Ab(A, f, (d_i)_{i \in J})$ then $\{d_i; i \in J\}$ is a multi-transversal of Im(1-f) in A.

Affine and quasi-affine quandles

Consequences of the affine criterion

Proposition (P.J., A.P., D.S., A.Z.)

A finite quandle Q is affine if and only if

- Dis(Q) is abelian and semi-regular,
- choose *e* ∈ *Q* arbitrarily; then, for each *a* ∈ *Qe*, |{*x* ∈ *Q*; *x* ∗ *e* = *a*}| = |{*x* ∈ *Q*; *x* ∗ *e* = *e*}|.

Proposition (P.J.,A.P.,D.S.,A.Z.)

A quandle is quasi-affine if and only if it is abelian.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Affine and quasi-affine quandles

Consequences of the affine criterion

Proposition (P.J., A.P., D.S., A.Z.)

A finite quandle Q is affine if and only if

- Dis(Q) is abelian and semi-regular,
- choose *e* ∈ *Q* arbitrarily; then, for each *a* ∈ *Qe*, |{*x* ∈ *Q*; *x* ∗ *e* = *a*}| = |{*x* ∈ *Q*; *x* ∗ *e* = *e*}|.

Proposition (P.J., A.P., D.S., A.Z.)

A quandle is quasi-affine if and only if it is abelian.

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \operatorname{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \operatorname{Im}(\varphi_{i,j})) \rangle$.

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \text{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \text{Im}(\varphi_{i,j})) \rangle$.

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \operatorname{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \operatorname{Im}(\varphi_{i,j})) \rangle$.

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \text{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \text{Im}(\varphi_{i,j})) \rangle$.

(日) (日) (日) (日) (日) (日) (日)

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \operatorname{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \operatorname{Im}(\varphi_{i,j})) \rangle$.

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \operatorname{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \operatorname{Im}(\varphi_{i,j})) \rangle$.

Sums of affine meshes

Definition

The *sum* of an indecomposable affine mesh $\mathcal{A} = (A_i, \varphi_{i,j}, c_{i,j})$ over a set *I* is the groupoid $(\bigcup_{i \in I} A_i, *)$ with the operation * defined as

$$a * b = (1 - \varphi_{i,i}(a)) + \varphi_{i,j}(b) + c_{i,j}, \quad \text{for } a \in A_i \text{ and } b \in A_j.$$

Proposition (P.J., A.P., D.S., A.Z.)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to A_i , $i \in I$. On the other hand, every medial quandle is the sum of an indecomposable affine mesh.

Sums of affine meshes

Definition

The *sum* of an indecomposable affine mesh $\mathcal{A} = (A_i, \varphi_{i,j}, c_{i,j})$ over a set *I* is the groupoid $(\bigcup_{i \in I} A_i, *)$ with the operation * defined as

$$a * b = (1 - \varphi_{i,i}(a)) + \varphi_{i,j}(b) + c_{i,j}, \quad \text{for } a \in A_i \text{ and } b \in A_j.$$

Proposition (P.J., A.P., D.S., A.Z.)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to A_i , $i \in I$. On the other hand, every medial quandle is the sum of an indecomposable affine mesh. Construction of medial quandles

3-element medial quandles

Example								
Medial quandles of size 3								
		а	b	с				
$(\mathbb{Z}_{2}; 2; 0)$	а	а	С	b				
(23, 2, 3)	b	С	b	а				
	С	b	а	С				
		а	Ъ	С				
$(\pi_{2},\pi_{1},(00),(00))$	а	а	а	Ъ				
$\bullet ((10)) $	Ъ	Ь	Ь	а				
	С	С	С	С				
		а	b	С				
$(\mathbb{Z}_{+} \mathbb{Z}_{+} \mathbb{Z}_{+} : \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$	а	а	а	а				
$\begin{pmatrix} a_1, a_1, a_1, a_1, a_1, a_1, a_1, a_1,$	Ь	Ь	Ь	Ъ				
	С	С	С	С				

Construction of medial quandles

3-element medial quandles

Example

vedial quandles of size 3								
		a	b	С				
$(\mathbb{Z}_{2}; 2; 0)$	а	а	С	b				
$(\mathbb{Z}_3, \mathbb{Z}, \mathbb{O})$	b	С	b	а				
	С	b	а	С				
		a	b	с				
$(\pi, \pi, \pi, (00), (00))$	а	а	а	b				
$(\mathbb{Z}_2,\mathbb{Z}_1; \begin{pmatrix} 0 & 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \end{pmatrix})$	b	b	b	а				
	С	с	С	С				
		а	Ъ	С				
$\bigcirc (\mathbb{Z}_{+} \mathbb{Z}_{+} \mathbb{Z}_{+} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$	а	а	а	a				
$(\underline{\mu}_{1},\underline{\mu}_{1},\underline{\mu}_{1},\underline{\mu}_{1},(\underline{0},\underline{0},\underline{0},\underline{0},\underline{0},\underline{0},\underline{0},\underline{0},$	Ь	Ь	Ъ	Ъ				
		С	С	С				

Construction of medial quandles

3-element medial quandles

Example

Medial quandles of size 3									
		a	b	С					
$(\mathbb{Z}, \cdot, 2, 0)$	а	а	С	b					
\mathbf{V} ($\mathbb{Z}_3, 2, 0$)	b	с	b	а					
	С	b	а	С					
		a	b	с					
$(\pi, \pi, \pi, (00), (00))$	а	а	а	b					
$(\mathbb{Z}_2,\mathbb{Z}_1,(0,0),(1,0))$	b	b	b	а					
	С	с	С	С					
		а	b	С					
$(\mathbb{Z}_{+} \mathbb{Z}_{+} \mathbb{Z}_{+} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$	а	а	а	а					
$ = (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	b	b	b	b					
	С	с	С	С					

Definition

A groupoid *Q* is called *m*-reductive if it satisfies

$$\underbrace{x \cdot (x \cdots (x) \cdot y) \cdots}_{m \times} (y) \cdots = x$$

Fact

A quandle Aff(A, f) is m-reductive if and only if $(1-f)^m = 0$.

Example

Aff(\mathbb{Z}_{p^m} , 1-p) is *m*-reductive but not m-1-reductive.

Proposition (P.J., A.P., A.Z.)

Definition

A groupoid Q is called *m*-reductive if it satisfies

$$\underbrace{x \cdot (x \cdots (x) \cdot y) \cdots}_{m \times} \cdot y \cdots = x$$

Fact

A quandle Aff(A, f) is *m*-reductive if and only if $(1 - f)^m = 0$.

Example

Aff(\mathbb{Z}_{p^m} , 1-p) is *m*-reductive but not m-1-reductive.

Proposition (P.J., A.P., A.Z.)

Definition

A groupoid Q is called *m*-reductive if it satisfies

$$\underbrace{x \cdot (x \cdots (x) \cdot y) \cdots}_{m \times} \cdot y) \cdots = x$$

Fact

A quandle Aff(A, f) is *m*-reductive if and only if $(1 - f)^m = 0$.

Example

 $\operatorname{Aff}(\mathbb{Z}_{p^m}, 1-p)$ is *m*-reductive but not m-1-reductive.

Proposition (P.J., A.P., A.Z.)

Definition

A groupoid Q is called *m*-reductive if it satisfies

$$\underbrace{x \cdot (x \cdots (x) \cdot y) \cdots}_{m \times} \cdot y) \cdots = x$$

Fact

A quandle Aff(A, f) is *m*-reductive if and only if $(1 - f)^m = 0$.

Example

 $\operatorname{Aff}(\mathbb{Z}_{p^m}, 1-p)$ is *m*-reductive but not m-1-reductive.

Proposition (P.J., A.P., A.Z.)

2-reductive quandles

Proposition

Let Q be a medial quandle Then TFAE

- Q is 2-reductive,
- 2 every orbit of Q is a left-zero band,
- LMlt(Q) is commutative.

Fact

If one of the orbits of Q has one element then Q is 2-reductive.

Proposition (P.J., A.P., D.S., A.Z.)

The number of non-isomorphic 2-reductive medial quandles of size *n* is $2^{\frac{1}{4}n^2+o(n^2)}$.

2-reductive quandles

Proposition

Let Q be a medial quandle Then TFAE

- Q is 2-reductive,
- every orbit of Q is a left-zero band,
- **3** LMlt(Q) is commutative.

Fact

If one of the orbits of Q has one element then Q is 2-reductive.

Proposition (P.J., A.P., D.S., A.Z.)

The number of non-isomorphic 2-reductive medial quandles of size *n* is $2^{\frac{1}{4}n^2+o(n^2)}$.

2-reductive quandles

Proposition

Let Q be a medial quandle Then TFAE

- Q is 2-reductive,
- every orbit of Q is a left-zero band,
- LMlt(Q) is commutative.

Fact

If one of the orbits of Q has one element then Q is 2-reductive.

Proposition (P.J., A.P., D.S., A.Z.)

The number of non-isomorphic 2-reductive medial quandles of size *n* is $2^{\frac{1}{4}n^2+o(n^2)}$.

Numbers of medial quandles

size	2-red.	other	size	2-reductive	other
1	1	0	9	10,301	10
2	1	0	10	98,532	45
3	2	1	11	1,246,479	9
4	5	1	12	20,837,171	268
5	15	3	13	466,087,624	11
6	55	3	14	13,943,041,873	?
7	246	5	15	563,753,074,915	36
8	1,398	12	16	30,784,745,506,212	?

Conjecture

For each *n*, the number of 2-reductive medial quandles is bigger than the number of other medial quandles.

Numbers of medial quandles

size	2-red.	other	size	2-reductive	other
1	1	0	9	10,301	10
2	1	0	10	98,532	45
3	2	1	11	1,246,479	9
4	5	1	12	20,837,171	268
5	15	3	13	466,087,624	11
6	55	3	14	13,943,041,873	?
7	246	5	15	563,753,074,915	36
8	1,398	12	16	30,784,745,506,212	?

Conjecture

For each n, the number of 2-reductive medial quandles is bigger than the number of other medial quandles.

Subdirect irreducibility

Definition

An algebra A is called *subdirectly irreducible* if there exists on A a unique minimal non-trivial congruence, called *the monolith*.

Example

A module M is subdirectly irreducible if and only if there exists a unique minimal proper submodule of M.

Subdirect irreducibility

Definition

An algebra A is called *subdirectly irreducible* if there exists on A a unique minimal non-trivial congruence, called *the monolith*.

Example

A module *M* is subdirectly irreducible if and only if there exists a unique minimal proper submodule of *M*.

Finite subdirectly irreducible medial quandles

Proposition (P.J., A.P., A.Z.)

Let Q be a finite subdirectly irreducible medial quandle. Then Q is either a quasigroup or reductive.

Fact

A subdirectly irreducible medial idempotent quasigroup is polynomially equivalent to a subdirectly irreducible $\mathbb{Z}[x, x^{-1}, (1-x)^{-1}]$ -module.

Fact

The only finite simple reductive medial quandle is the two-element left zero band.

Finite subdirectly irreducible medial quandles

Proposition (P.J., A.P., A.Z.)

Let Q be a finite subdirectly irreducible medial quandle. Then Q is either a quasigroup or reductive.

Fact

A subdirectly irreducible medial idempotent quasigroup is polynomially equivalent to a subdirectly irreducible $\mathbb{Z}[x, x^{-1}, (1-x)^{-1}]$ -module.

Fact

The only finite simple reductive medial quandle is the two-element left zero band.

Finite subdirectly irreducible medial quandles

Proposition (P.J., A.P., A.Z.)

Let Q be a finite subdirectly irreducible medial quandle. Then Q is either a quasigroup or reductive.

Fact

A subdirectly irreducible medial idempotent quasigroup is polynomially equivalent to a subdirectly irreducible $\mathbb{Z}[x, x^{-1}, (1-x)^{-1}]$ -module.

Fact

The only finite simple reductive medial quandle is the two-element left zero band.

Subdirectly irreducible medial quandles

Subdirectly irreducible reductive quandles

Theorem (P.J.,A.P.,A.Z.)

Let Q be a non-connected m-reductive medial quandle. Then Q is subdirectly irreducible if and only if it is isomorphic to the sum of the affine mesh

$$((A, \underbrace{\phi(A), \phi(A), \ldots});$$

n-times

$$\begin{pmatrix} \varphi & \varphi^2 & \varphi^2 & \dots & \varphi^2 \\ 1 & \varphi & \varphi & \dots & \varphi \\ 1 & \varphi & \varphi & \dots & \varphi \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \varphi & \varphi & \dots & \varphi \end{pmatrix}; \begin{pmatrix} 0 & -\varphi(c_{2,1}) & \dots & -\varphi(c_{j,1}) & \dots & -\varphi(c_{j,1}) \\ c_{2,1} & 0 & \dots & \varphi(c_{2,1}-c_{j,1}) & \dots & \varphi(c_{2,1}-c_{j,1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i,1} & \varphi(c_{i,1}-c_{2,1}) & \dots & 0 & \dots & \varphi(c_{j,1}-c_{i,1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j,1} & \varphi(c_{j,1}-c_{2,1}) & \dots & \varphi(c_{j,1}-c_{i,1}) & \dots & 0 \end{pmatrix} \end{pmatrix}),$$

where

1 A is a subdirectly irreducible
$$\mathbb{Z}[x]/(1-x)^{m-1}$$
-module,