## Structure of medial quandles

PřemysI Jedlička<br>with Agata Pilitowska, David Stanovský, Anna Zamojska-Dzienio

Department of Mathematics
Faculty of Engineering (former Technical Faculty)
Czech University of Life Sciences (former Czech University of Agriculture) in
Prague
$1^{\text {st July }} 2015$
Loops '15, Охрид


Faculty of Engineering


## Definition of quandles

## Definition

A groupoid $Q$ is called a quandle if it satisfies

- $L_{X}$ is an endomorphism, for each $x \in Q$, (left distributivity)
- $L_{x}$ is a permutation, for each $x \in Q$,
- $x$ is a fixed point of $L_{X}$, for each $x \in Q$.
(left quasigroup) (idempotency)

Theorem (D. Joyce)
The knot quandle is a classifying invariant of knots.

## Definition of quandles

## Definition

A groupoid $Q$ is called a quandle if it satisfies

- $L_{x}$ is an endomorphism, for each $x \in Q$, (left distributivity)
- $L_{x}$ is a permutation, for each $x \in Q$,
- $x$ is a fixed point of $L_{x}$, for each $x \in Q$. (left quasigroup) (idempotency)

Theorem (D. Joyce)
The knot quandle is a classifying invariant of knots.

Properties of quandles

## Examples of quandles

## Example (Right zero band)

The groupoid $(Q, *)$ with the operation $x * y=y$.

## Example (Group conjugation)

Let ( $G, \cdot$ ) be a group and let $a * b=a \cdot b \cdot a^{-1}$

## Example (Galkin's representation)

Let $G$ be a group and $H \leqslant G$. Let $f$ be an automorphism of $G$ with $H \leqslant C_{G}(f)$. Let $Q$ be the set of cosets $\{a H ; a \in G\}$. We define

$$
a H * b H=a \cdot f\left(a^{-1} \cdot b\right) \cdot H .
$$

Then $(Q, *)$ is a quandle denoted by $\operatorname{Gal}(G, H, f)$.

## Examples of quandles

## Example (Right zero band)

The groupoid $(Q, *)$ with the operation $x * y=y$.

## Example (Group conjugation)

Let $(G, \cdot)$ be a group and let $a * b=a \cdot b \cdot a^{-1}$.

Example (Galkin's representation)
Let $G$ be a group and $H \leqslant G$. Let $f$ be an automorphism of $G$ with $H \leqslant C_{G}(f)$. Let $Q$ be the set of cosets $\{a H ; a \in G\}$. We define

$$
a H * b H=a \cdot f\left(a^{-1} \cdot b\right) \cdot H .
$$

Then $(Q, *)$ is a quandle denoted by $\operatorname{Gal}(G, H, f)$.

## Examples of quandles

## Example (Right zero band)

The groupoid $(Q, *)$ with the operation $x * y=y$.

## Example (Group conjugation)

Let ( $G, \cdot$ ) be a group and let $a * b=a \cdot b \cdot a^{-1}$.

## Example (Galkin's representation)

Let $G$ be a group and $H \leqslant G$. Let $f$ be an automorphism of $G$ with $H \leqslant C_{G}(f)$. Let $Q$ be the set of cosets $\{a H ; a \in G\}$. We define

$$
a H * b H=a \cdot f\left(a^{-1} \cdot b\right) \cdot H .
$$

Then $(Q, *)$ is a quandle denoted by $\operatorname{Gal}(G, H, f)$.

## Permutation groups

## Definitions

- The left multiplication group of $Q$ is the permutation group LMlt $(Q)=\left\langle L_{x} ; x \in Q\right\rangle$.
- The displacement group of $Q$ is the permutation group $\operatorname{Dis}(Q)=\left\langle L_{x} L_{y}^{-1} ; x, y \in Q\right\rangle$.


## Proposition

- $\operatorname{Dis}(Q) \unlhd \operatorname{LMlt}(Q)$,
- the group LMlt(Q) / Dis(Q) is cyclic,
- the natural actions of $\operatorname{LMlt}(Q)$ and $\operatorname{Dis}(Q)$ on $Q$ have the same orbits.


## Permutation groups

## Definitions

- The left multiplication group of $Q$ is the permutation group LMlt $(Q)=\left\langle L_{x} ; x \in Q\right\rangle$.
- The displacement group of $Q$ is the permutation group $\operatorname{Dis}(Q)=\left\langle L_{x} L_{y}^{-1} ; x, y \in Q\right\rangle$.


## Proposition

- $\operatorname{Dis}(Q) \unlhd \operatorname{LMlt}(Q)$,
- the group LMlt $(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of $\operatorname{LMlt}(Q)$ and $\operatorname{Dis}(Q)$ on $Q$ have the same orbits.


## Galkin's representation of orbits

## Proposition (A. Hulpke, D. Stanovský, P. Vojtěchovský)

Let $Q$ be a quandle, and let $e \in Q$. Then
$\operatorname{Gal}\left(\operatorname{Dis}(Q), \operatorname{Dis}(Q)_{e},(\cdot)^{L_{e}}\right)$ is well defined and isomorphic to the orbit $e^{Q}$.

## Medial quandles

## Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

## Definition

Let $(A,+)$ be an abelian group and $f \in \operatorname{Aut}(A)$. The set $A$ with the operation

$$
x * y=(1-f)(x)+f(y)
$$

forms a quandle called affine and denoted by $\operatorname{Aff}(A, f)$.

## Observation

A quandle $Q$ is affine if and only if it admits a Galkin's
representation of form $\operatorname{Gal}(G, H, f)$ where $G$ is abelian.

## Medial quandles

## Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

## Definition

Let $(A,+)$ be an abelian group and $f \in \operatorname{Aut}(A)$. The set $A$ with the operation

$$
x * y=(1-f)(x)+f(y)
$$

forms a quandle called affine and denoted by $\operatorname{Aff}(A, f)$.

Observation
A quandle $Q$ is affine if and only if it admits a Galkin's representation of form $\operatorname{Gal}(G, H, f)$ where $G$ is abelian.

## Medial quandles

## Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

## Definition

Let $(A,+)$ be an abelian group and $f \in \operatorname{Aut}(A)$. The set $A$ with the operation

$$
x * y=(1-f)(x)+f(y)
$$

forms a quandle called affine and denoted by $\operatorname{Aff}(A, f)$.

## Observation

A quandle $Q$ is affine if and only if it admits a Galkin's representation of form $\operatorname{Gal}(G, H, f)$ where $G$ is abelian.

## Orbits of medial quandles

## Proposition

A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian.
Corollary
Every orbit of a medial quandle is affine.

## Orbits of medial quandles

## Proposition

A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian.

## Corollary

Every orbit of a medial quandle is affine.

## Sums of affine meshes

## Definition

The sum of an indecomposable affine mesh $\mathcal{A}=\left(A_{i}, \phi_{i, j}, c_{i, j}\right)$ over a set $I$ is the groupoid $\left(\bigcup_{i \in I} A_{i}, *\right)$ with the operation * defined as

$$
a * b=\phi_{i, j}(a)+\left(1-\phi_{j, j}\right)(b)+c_{i, j}, \quad \text { for } a \in A_{i} \text { and } b \in A_{j}
$$



## Sums of affine meshes

## Definition

The sum of an indecomposable affine mesh $\mathcal{A}=\left(A_{i}, \phi_{i, j}, c_{i, j}\right)$ over a set $I$ is the groupoid $\left(\bigcup_{i \in I} A_{i}, *\right)$ with the operation * defined as

$$
a * b=\phi_{i, j}(a)+\left(1-\phi_{j, j}\right)(b)+c_{i, j}, \quad \text { for } a \in A_{i} \text { and } b \in A_{j}
$$

## Proposition (P.J., A. P., D. S., A. Z.-D.)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to $A_{i}, i \in I$.
On the other hand, every medial quandle is the sum of an indecomposable affine mesh.

## Affine mesh

## Definition

An indecomposable affine mesh is an $n$-tuplet of abelian groups $A_{1}, \ldots, A_{n}$, together with homomorphisms $\phi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying


## Affine mesh

## Definition

An indecomposable affine mesh is an $n$-tuplet of abelian groups $A_{1}, \ldots, A_{n}$, together with homomorphisms $\phi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\phi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;
(M3) $\phi_{j, k} \circ \phi_{i, j}=\phi_{j^{\prime}, k} \circ \phi_{i, j^{\prime}}$;
(M4) $\phi_{j, k}\left(c_{i, j}\right)=\phi_{k, k}\left(c_{i, k}-c_{j, k}\right)$;
(M5) $A_{j}=\left\langle\bigcup_{i \in I}\left(c_{i, j}+\operatorname{Im}\left(\phi_{i, j}\right)\right)\right\rangle$.

## 3-element medial quandles

## Example

Medial quandles of size 3
(1) $\left(\mathbb{Z}_{3} ; 2 ; 0\right)$

|  | $a$ | $b$ | $c$ |
| :---: | :--- | :--- | :--- |
| $a$ | $a$ | $c$ | $b$ |
| $b$ | $c$ | $b$ | $a$ |
| $c$ | $b$ | $a$ | $c$ |

## 3-element medial quandles

## Example

Medial quandles of size 3

- $\left(\mathbb{Z}_{3} ; 2 ; 0\right)$
(2) $\left(\mathbb{Z}_{2}, \mathbb{Z}_{1} ;\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) ;\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$

|  | $a$ | $b$ | $c$ |
| :---: | :--- | :--- | :--- |
| $a$ | $a$ | $c$ | $b$ |
| $b$ | $c$ | $b$ | $a$ |
| $c$ | $b$ | $a$ | $c$ |
|  | $a$ | $b$ | $c$ |
| $a$ | $a$ | $b$ | $c$ |
| $b$ | $a$ | $b$ | $c$ |
| $c$ | $b$ | $a$ | $c$ |

## 3-element medial quandles

## Example

Medial quandles of size 3
(1) $\left(\mathbb{Z}_{3} ; 2 ; 0\right)$
(2) $\left(\mathbb{Z}_{2}, \mathbb{Z}_{1} ;\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) ;\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$
(3) $\left(\mathbb{Z}_{1}, \mathbb{Z}_{1}, \mathbb{Z}_{1} ;\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) ;\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)$

|  | $a$ | $b$ | $c$ |
| :---: | :--- | :--- | :--- |
| $a$ | $a$ | $c$ | $b$ |
| $b$ | $c$ | $b$ | $a$ |
| $c$ | $b$ | $a$ | $c$ |
|  | $a$ | $b$ | $c$ |
| $a$ | $a$ | $b$ | $c$ |
| $b$ | $a$ | $b$ | $c$ |
| $c$ | $b$ | $a$ | $c$ |
|  | $a$ | $b$ | $c$ |
| $a$ | $a$ | $b$ | $c$ |
| $b$ | $a$ | $b$ | $c$ |
| $c$ | $a$ | $b$ | $c$ |

## Homology of meshes

## Definition

Two affine meshes $\left(\left(A_{i}\right)_{i \in I},\left(\phi_{i, j}\right)_{i, j \in I},\left(c_{i, j}\right)_{i, j \in I}\right)$ and $\left(\left(A_{i}^{\prime}\right)_{i \in I},\left(\phi_{i, j}^{\prime}\right)_{i, j \in},\left(c_{i, j}^{\prime}\right)_{i, j \in I}\right)$ are said to be homologous if

- there exists $\pi \in S_{I}$ such that $A_{i} \cong A_{\pi i}^{\prime}$
- for each $i \in I$, there exists $\psi_{i}$, an isomorphism between $A_{i}$ and $A_{\pi i}^{\prime}$, such that

$$
\begin{equation*}
\psi_{j} \circ \phi_{i, j}=\phi_{\pi i, \pi j}^{\prime} \circ \psi_{i} \tag{H1}
\end{equation*}
$$

- for each $j \in I$, there exists $d_{j} \in A_{\pi j}^{\prime}$ such that

$$
\begin{equation*}
\psi_{j}\left(c_{i, j}\right)=c_{\pi i, \pi j}^{\prime}+\phi_{\pi i, \pi j}^{\prime}\left(d_{i}\right)-\phi_{\pi j, \pi j}^{\prime}\left(d_{j}\right) . \tag{H2}
\end{equation*}
$$

## Proposition (P. J., A. P., D. S., A. Z.-D.)

The sums of two indecomposable affine meshes are isomorphic if and only if the meshes are homologous.

## Homology group of affine meshes

## Theorem (Burnside's orbit counting lemma)

Let a finite group $G$ act on a set $\Omega$. Let $\sim$ be an equivalence on $g$ satisfying $g \sim h \Rightarrow \operatorname{fix}(g)=\mathrm{fix}(h)$. Then the action of $G$ on $\Omega$ has

$$
\frac{1}{|G|} \cdot \sum_{g \in G} \operatorname{fix}(g)=\frac{1}{|G|} \cdot \sum_{g \in R}\left|[g]_{\sim}\right| \cdot \operatorname{fix}(g)
$$

orbits, where $R$ is a transversal of $\sim$.


Permutations for homologies belong to $\prod_{i=1}^{m} S_{n_{i}}$.

The acting group is $G=\prod\left(A_{i} \rtimes \operatorname{Aut}\left(A_{i}\right)\right)$ 々 $S_{n_{i}}$ acting on the set of all irreducible affine meshes.

## Homology group of affine meshes

## Theorem (Burnside's orbit counting lemma)

Let a finite group $G$ act on a set $\Omega$. Let $\sim$ be an equivalence on $g$ satisfying $g \sim h \Rightarrow \operatorname{fix}(g)=\mathrm{fix}(h)$. Then the action of $G$ on $\Omega$ has

$$
\frac{1}{|G|} \cdot \sum_{g \in G} \operatorname{fix}(g)=\frac{1}{|G|} \cdot \sum_{g \in R}\left|[g]_{\sim}\right| \cdot \operatorname{fix}(g)
$$

orbits, where $R$ is a transversal of $\sim$.
Fix abelian groups $\underbrace{A_{1}, \ldots, A_{1}}_{n_{1} \times}, \underbrace{A_{2}, \ldots, A_{2}}_{n_{2} \times}, \ldots, \underbrace{A_{m}, \ldots, A_{m}}_{n_{m} \times}$.
Permutations for homologies belong to $\prod_{i=1}^{m} S_{n_{i}}$.

The acting group is $G=\prod\left(A_{i} \rtimes \operatorname{Aut}\left(A_{i}\right)\right)$ \} $S_{n_{i}}$ acting on the set of all irreducible affine meshes.

## Homology group of affine meshes

## Theorem (Burnside's orbit counting lemma)

Let a finite group $G$ act on a set $\Omega$. Let $\sim$ be an equivalence on $g$ satisfying $g \sim h \Rightarrow \operatorname{fix}(g)=\mathrm{fix}(h)$. Then the action of $G$ on $\Omega$ has

$$
\frac{1}{|G|} \cdot \sum_{g \in G} \operatorname{fix}(g)=\frac{1}{|G|} \cdot \sum_{g \in R}\left|[g]_{\sim}\right| \cdot \operatorname{fix}(g)
$$

orbits, where $R$ is a transversal of $\sim$.
Fix abelian groups $\underbrace{A_{1}, \ldots, A_{1}}_{n_{1} \times}, \underbrace{A_{2}, \ldots, A_{2}}_{n_{2} \times}, \ldots, \underbrace{A_{m}, \ldots, A_{m}}_{n_{m} \times}$. Permutations for homologies belong to $\prod_{i=1}^{m} S_{n_{i}}$.

The acting group is $G=\prod\left(A_{i} \rtimes \operatorname{Aut}\left(A_{i}\right)\right)\left\langle S_{n_{i}}\right.$ acting on the set of all irreducible affine meshes.

## Homology group of affine meshes

## Theorem (Burnside's orbit counting lemma)

Let a finite group $G$ act on a set $\Omega$. Let $\sim$ be an equivalence on $g$ satisfying $g \sim h \Rightarrow \operatorname{fix}(g)=\mathrm{fix}(h)$. Then the action of $G$ on $\Omega$ has

$$
\frac{1}{|G|} \cdot \sum_{g \in G} \operatorname{fix}(g)=\frac{1}{|G|} \cdot \sum_{g \in R}\left|[g]_{\sim}\right| \cdot \operatorname{fix}(g)
$$

orbits, where $R$ is a transversal of $\sim$.
Fix abelian groups $\underbrace{A_{1}, \ldots, A_{1}}_{n_{1} \times}, \underbrace{A_{2}, \ldots, A_{2}}_{n_{2} \times}, \ldots, \underbrace{A_{m}, \ldots, A_{m}}_{n_{m} \times}$. Permutations for homologies belong to $\prod_{i=1}^{m} S_{n_{i}}$.

The acting group is $G=\prod_{i=1}^{m}\left(A_{i} \rtimes \operatorname{Aut}\left(A_{i}\right)\right)\left\langle S_{n_{i}}\right.$ acting on the set of all irreducible affine meshes.

## Reductivity

## Definition

A groupoid $Q$ is called $m$-reductive if it satisfies

$$
(\cdots((x \underbrace{}_{m x}) y) \cdots) y=y
$$

Fact
A quandle $\operatorname{Aff}(A, f)$ is m-reductive if and only if $(1-f)^{m}=0$.

## Example <br> $\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is $m$-reductive but not $m-1$-reductive.

Theorem (P.J., A. P., D. S., A. Z.-D.)
A medial quandle is m-reductive and not $m$ - 1 -reductive if and only if LMlt(Q) is nilpotent of degree $m-1$

## Reductivity

## Definition

A groupoid $Q$ is called $m$-reductive if it satisfies

$$
(\cdots((x \underbrace{}_{m x}) y) \cdots) y=y
$$

## Fact

A quandle $\operatorname{Aff}(A, f)$ is m-reductive if and only if $(1-f)^{m}=0$.

## Example

$\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is $m$-reductive but not $m-1$-reductive.


A medial quandle is $m$-reductive and not $m$ - 1-reductive if and only if LMlt( $Q$ ) is nilpotent of degree $m-1$

## Reductivity

## Definition

A groupoid $Q$ is called $m$-reductive if it satisfies

$$
(\cdots((x \underbrace{y}_{m x}) y) \cdots) y=y
$$

## Fact

A quandle $\operatorname{Aff}(A, f)$ is m-reductive if and only if $(1-f)^{m}=0$.

## Example

$\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is $m$-reductive but not $m-1$-reductive.
Theorem (P. J., A. P., D. S., A. Z.-D.)
A medial quandle is m-reductive and not $m$ - 1-reductive if and only if LMlt $(Q)$ is nilpotent of degree $m-1$.

## Decomposition of finite medial quandles

## Theorem (K. Kearnes)

Let $G$ be a finite subdirectly irreducible idempotent medial groupoid. Then $G$ is strongly solvable or affine.

## Conjecture <br> A medial quandle $Q$ is strongly solvable if and only if $Q$ is reductive.

> Conjecture
> Let $Q$ be a finite medial quandle. Then $Q=L \times R$, where $R$ is reductive and $L$ is a quasigroup.

Theorem
Every finite medial quasigroup quandle is polynomially
equivalent to a module over $\mathbb{Z}[x] /\left(x^{n}+x^{n-1}+\cdots+x+1\right)$.

## Decomposition of finite medial quandles

## Theorem (K. Kearnes)

Let $G$ be a finite subdirectly irreducible idempotent medial groupoid. Then $G$ is strongly solvable or affine.

## Conjecture

A medial quandle $Q$ is strongly solvable if and only if $Q$ is reductive.

> Conjecture
> Let $Q$ be a finite medial quandle. Then $Q=L \times R$, where $R$ is reductive and $L$ is a quasigroup.

Theorem
Every finite medial quasigroup quandle is polynomially equivalent to a module over $\mathbb{Z}[x] /\left(x^{n}+x^{n-1}+\cdots+x+1\right)$.

## Decomposition of finite medial quandles

## Theorem (K. Kearnes)

Let $G$ be a finite subdirectly irreducible idempotent medial groupoid. Then $G$ is strongly solvable or affine.

## Conjecture

A medial quandle $Q$ is strongly solvable if and only if $Q$ is reductive.

## Conjecture

Let $Q$ be a finite medial quandle. Then $Q=L \times R$, where $R$ is reductive and $L$ is a quasigroup.

## Theorem

Every finite medial quasigroup quandle is polynomially equivalent to a module over $\mathbb{Z}[x] /\left(x^{n}+x^{n-1}+\cdots+x+1\right)$.

## Decomposition of finite medial quandles

## Theorem (K. Kearnes)

Let $G$ be a finite subdirectly irreducible idempotent medial groupoid. Then $G$ is strongly solvable or affine.

## Conjecture

A medial quandle $Q$ is strongly solvable if and only if $Q$ is reductive.

## Conjecture

Let $Q$ be a finite medial quandle. Then $Q=L \times R$, where $R$ is reductive and $L$ is a quasigroup.

## Theorem

Every finite medial quasigroup quandle is polynomially equivalent to a module over $\mathbb{Z}[x] /\left(x^{n}+x^{n-1}+\cdots+x+1\right)$.

## 2-reductive quandles

Theorem
Let $Q$ be the sum of an irreducible affine mesh $\left(A_{i}, \phi_{i, j}, c_{i, j}\right)$. Then TFAE
(1) $Q$ is 2-reductive,
(2) every orbit of $Q$ is a right-zero band,
(3) $\phi_{i, j}=0$, for every $i, j \in I$,
(0) LMlt $(Q)$ is commutative.

## Fact

If one of the orbits of $Q$ has one element then $Q$ is 2-reductive.

## 2-reductive quandles

## Theorem

Let $Q$ be the sum of an irreducible affine mesh $\left(A_{i}, \phi_{i, j}, c_{i, j}\right)$. Then TFAE
(1) $Q$ is 2-reductive,
(2) every orbit of $Q$ is a right-zero band,
(3) $\phi_{i, j}=0$, for every $i, j \in I$,
(4) $\operatorname{LMlt}(Q)$ is commutative.

## Fact

If one of the orbits of $Q$ has one element then $Q$ is 2-reductive.

## 2-reductive affine meshes

## Lemma

$\left(A_{i}, \phi_{i, j}, c_{i, j}\right)$ is an irreducible affine mesh whose sum is a 2 -reductive mesh if and only if

- $\phi_{i, j}=0$, for each $i, j \in I$,
- $c_{i, i}=0$, for each $i \in I$,
- for each $j \in I, A_{j}=\left\langle c_{i, j}, i \in I\right\rangle$.

Theorem (P. J., A. P., D. S., A. Z. D.)
The number of 2-reductive medial quandles of size $n$ is
for some function $\varepsilon(n)$ with $O(n \log n)<|\varepsilon(n)|<o\left(n^{2}\right)$.

## 2-reductive affine meshes

## Lemma

$\left(A_{i}, \phi_{i, j}, c_{i, j}\right)$ is an irreducible affine mesh whose sum is a 2-reductive mesh if and only if

- $\phi_{i, j}=0$, for each $i, j \in I$,
- $c_{i, i}=0$, for each $i \in I$,
- for each $j \in I, A_{j}=\left\langle c_{i, j}, i \in I\right\rangle$.


## Theorem (P.J., A. P., D. S., A. Z.-D.)

The number of 2-reductive medial quandles of size $n$ is

$$
2^{\frac{1}{4} n^{2}+\varepsilon(n)}
$$

for some function $\varepsilon(n)$ with $O(n \log n)<|\varepsilon(n)|<o\left(n^{2}\right)$.

## Numbers of medial quandles

| size | 2-red. | other |
| :---: | :---: | :---: |
| 1 | 1 | 0 |
| 2 | 1 | 0 |
| 3 | 2 | 1 |
| 4 | 5 | 1 |
| 5 | 15 | 3 |
| 6 | 55 | 3 |
| 7 | 246 | 5 |
| 8 | 1,398 | 12 |


| size | 2-reductive | other |
| :---: | :---: | :---: |
| 9 | 10,301 | 10 |
| 10 | 98,532 | 45 |
| 11 | $1,246,479$ | 9 |
| 12 | $20,837,171$ | 268 |
| 13 | $466,087,624$ | 11 |
| 14 | $13,943,041,873$ | $?$ |
| 15 | $563,753,074,915$ | 36 |
| 16 | $30,784,745,506,212$ | $?$ |

[^0] bigger than the number of other medial quandles.

## Numbers of medial quandles

| size | 2-red. | other |
| :---: | :---: | :---: |
| 1 | 1 | 0 |
| 2 | 1 | 0 |
| 3 | 2 | 1 |
| 4 | 5 | 1 |
| 5 | 15 | 3 |
| 6 | 55 | 3 |
| 7 | 246 | 5 |
| 8 | 1,398 | 12 |


| size | 2-reductive | other |
| :---: | :---: | :---: |
| 9 | 10,301 | 10 |
| 10 | 98,532 | 45 |
| 11 | $1,246,479$ | 9 |
| 12 | $20,837,171$ | 268 |
| 13 | $466,087,624$ | 11 |
| 14 | $13,943,041,873$ | $?$ |
| 15 | $563,753,074,915$ | 36 |
| 16 | $30,784,745,506,212$ | $?$ |

## Conjecture

For each $n$, the number of 2-reductive medial quandles is bigger than the number of other medial quandles.


[^0]:    Conjecture
    For each $n$, the number of 2 -reductive medial quandles is

