Přemysl Jedlička with Agata Pilitowska, David Stanovský, Anna Zamojska-Dzienio

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture) in Prague

1st July 2015 Loops '15, Охрид

Structure of medial quandles Properties of quandles

Definition of quandles

Definition

A groupoid Q is called a quandle if it satisfies

- L_x is an endomorphism, for each $x \in Q$, (left distributivity)
- L_x is a permutation, for each $x \in Q$, (left quasigroup)
- x is a fixed point of L_x , for each $x \in Q$.

(idempotency)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Theorem (D. Joyce)

The knot quandle *is a classifying invariant of knots.*

Structure of medial quandles Properties of quandles

Definition of quandles

Definition

A groupoid Q is called a quandle if it satisfies

- L_x is an endomorphism, for each $x \in Q$, (left distributivity)
- L_x is a permutation, for each $x \in Q$, (left quasigroup)
- x is a fixed point of L_x , for each $x \in Q$.

(idempotency)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

Properties of quandles

Examples of quandles

Example (Right zero band)

The groupoid (Q, *) with the operation x * y = y.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b = a \cdot b \cdot a^{-1}$.

Example (Galkin's representation)

Let *G* be a group and $H \leq G$. Let *f* be an automorphism of *G* with $H \leq C_G(f)$. Let *Q* be the set of cosets {*aH*; *a* \in *G*}. We define

$$aH * bH = a \cdot f(a^{-1} \cdot b) \cdot H.$$

Then (Q, *) is a quandle denoted by Gal(G, H, f).

Properties of quandles

Examples of quandles

Example (Right zero band)

The groupoid (Q, *) with the operation x * y = y.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b = a \cdot b \cdot a^{-1}$.

Example (Galkin's representation)

Let *G* be a group and $H \leq G$. Let *f* be an automorphism of *G* with $H \leq C_G(f)$. Let *Q* be the set of cosets {*aH*; *a* \in *G*}. We define

$$aH * bH = a \cdot f(a^{-1} \cdot b) \cdot H.$$

Then (Q, *) is a quandle denoted by Gal(G, H, f).

Properties of quandles

Examples of quandles

Example (Right zero band)

The groupoid (Q, *) with the operation x * y = y.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b = a \cdot b \cdot a^{-1}$.

Example (Galkin's representation)

Let *G* be a group and $H \leq G$. Let *f* be an automorphism of *G* with $H \leq C_G(f)$. Let *Q* be the set of cosets {*aH*; $a \in G$ }. We define

$$aH * bH = a \cdot f(a^{-1} \cdot b) \cdot H.$$

Then (Q, *) is a quandle denoted by Gal(G, H, f).

Properties of quandles

Permutation groups

Definitions

- The *left multiplication group* of *Q* is the permutation group $LMlt(Q) = \langle L_x; x \in Q \rangle$.
- The *displacement group* of *Q* is the permutation group $Dis(Q) = \langle L_x L_y^{-1}; x, y \in Q \rangle$.

Proposition

- $\operatorname{Dis}(Q) \leq \operatorname{LMlt}(Q)$,
- *the group* LMlt(*Q*) / Dis(*Q*) *is cyclic,*
- *the natural actions of* LMlt(*Q*) *and* Dis(*Q*) *on Q have the same orbits.*

Properties of quandles

Permutation groups

Definitions

- The *left multiplication group* of *Q* is the permutation group $LMlt(Q) = \langle L_x; x \in Q \rangle$.
- The *displacement group* of *Q* is the permutation group $Dis(Q) = \langle L_x L_y^{-1}; x, y \in Q \rangle$.

Proposition

- $Dis(Q) \leq LMlt(Q)$,
- *the group* LMlt(*Q*) / Dis(*Q*) *is cyclic,*
- *the natural actions of* LMlt(*Q*) *and* Dis(*Q*) *on Q have the same orbits.*

Properties of quandles

Galkin's representation of orbits

Proposition (A. Hulpke, D. Stanovský, P. Vojtěchovský)

Let *Q* be a quandle, and let $e \in Q$. Then Gal(Dis(*Q*), Dis(*Q*)_{*e*}, $(\cdot)^{L_e}$) is well defined and isomorphic to the orbit e^Q .

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Medial quandles

Medial quandles

Definition

A groupoid is called *medial*, if it satisfies

$$(x * y) * (u * z) = (x * u) * (y * z)$$

Definition

Let (A, +) be an abelian group and $f \in Aut(A)$. The set A with the operation

x * y = (1 - f)(x) + f(y)

forms a quandle called *affine* and denoted by Aff(A, f).

Observation

A quandle *Q* is affine if and only if it admits a Galkin's representation of form Gal(*G*, *H*, *f*) where *G* is abelian.

Medial quandles

Medial quandles

Definition

A groupoid is called *medial*, if it satisfies

$$(x * y) * (u * z) = (x * u) * (y * z)$$

Definition

Let (A, +) be an abelian group and $f \in Aut(A)$. The set A with the operation

$$x * y = (1 - f)(x) + f(y)$$

forms a quandle called *affine* and denoted by Aff(A, f).

Observation

A quandle *Q* is affine if and only if it admits a Galkin's representation of form Gal(*G*, *H*, *f*) where *G* is abelian.

Medial quandles

Medial quandles

Definition

A groupoid is called *medial*, if it satisfies

$$(x * y) * (u * z) = (x * u) * (y * z)$$

Definition

Let (A, +) be an abelian group and $f \in Aut(A)$. The set A with the operation

$$x * y = (1 - f)(x) + f(y)$$

forms a quandle called *affine* and denoted by Aff(A, f).

Observation

A quandle *Q* is affine if and only if it admits a Galkin's representation of form Gal(*G*, *H*, *f*) where *G* is abelian.

Medial quandles

Orbits of medial quandles

Proposition

A quandle is medial if and only if Dis(Q) is abelian.

Corollary

Every orbit of a medial quandle is affine.

Medial quandles

Orbits of medial quandles

Proposition

A quandle is medial if and only if Dis(Q) is abelian.

Corollary

Every orbit of a medial quandle is affine.

▲□▶▲圖▶▲臣▶▲臣▶ = ● ● ●

Medial quandles

Sums of affine meshes

Definition

The *sum* of an indecomposable affine mesh $\mathcal{A} = (A_i, \phi_{i,j}, c_{i,j})$ over a set I is the groupoid $(\bigcup_{i \in I} A_i, *)$ with the operation *defined as

$$a*b=\phi_{i,j}(a)+(1-\phi_{j,j})(b)+c_{i,j}, \qquad ext{for } a\in A_i ext{ and } b\in A_j.$$

Proposition (P.J., A. P., D. S., A. Z.-D.)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to A_i , $i \in I$. On the other hand, every medial quandle is the sum of an indecomposable affine mesh. Medial quandles

Sums of affine meshes

Definition

The *sum* of an indecomposable affine mesh $\mathcal{A} = (A_i, \phi_{i,j}, c_{i,j})$ over a set I is the groupoid $(\bigcup_{i \in I} A_i, *)$ with the operation *defined as

$$a * b = \phi_{i,j}(a) + (1 - \phi_{j,j})(b) + c_{i,j}, \quad \text{ for } a \in A_i \text{ and } b \in A_j.$$

Proposition (P.J., A. P., D. S., A. Z.-D.)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to A_i , $i \in I$. On the other hand, every medial quandle is the sum of an indecomposable affine mesh.

Affine mesh

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\phi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying

(M1)
$$(1 - \phi_{i,i}) \in \operatorname{Aut}(A_i);$$

(M2) $c_{i,i} = 0;$
(M3) $\phi_{j,k} \circ \phi_{i,j} = \phi_{j',k} \circ \phi_{i,j'};$
(M4) $\phi_{j,k}(c_{i,j}) = \phi_{k,k}(c_{i,k} - c_{j,k});$
(M5) $A_j = \left\langle \bigcup_{i \in I} (c_{i,j} + \operatorname{Im}(\phi_{i,j})) \right\rangle$

Affine mesh

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\phi_{i,i}: A_i \to A_i$ and constants $c_{i,i} \in A_i$, for $i, j \in [1, \dots, n]$, satisfying (M1) $(1 - \phi_{ii}) \in Aut(A_i);$ (M2) $c_{ii} = 0;$ (M3) $\phi_{i,k} \circ \phi_{i,j} = \phi_{j',k} \circ \phi_{i,j'}$; (M4) $\phi_{i,k}(c_{i,j}) = \phi_{k,k}(c_{i,k} - c_{j,k});$ (M5) $A_j = \left\langle \bigcup_{i \in I} \left(c_{i,j} + \operatorname{Im}(\phi_{i,j}) \right) \right\rangle.$

Medial quandles

3-element medial quandles

Example

Medial quandles of size 3								
		a	b	С				
$(\mathbb{Z}_3; 2; 0)$	a	a c b	С	b				
	b	C	b	а				
	С	b	а	С				
			b					
$(\mathbb{Z}_2, \mathbb{Z}_1; \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix})$		а						
$(\underline{2},\underline{2},\underline{2}), (00), (10))$		а						
	С	b	а	С				
		a	b	С				
a $(\mathbf{Z}, \mathbf{Z}, \mathbf{Z}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$	а	а						
$(\mathbb{Z}_{1}, \mathbb{Z}_{1}, \mathbb{Z}_{1}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$	b	а	b	С				
	0		h	0				

Medial quandles

3-element medial quandles

Example

Medial quandles of size 3								
		а	b	С				
• $(\mathbb{Z}_3; 2; 0)$	а	a c b	С	b				
$\bullet (\underline{x}_3, \underline{z}, 0)$	b	С	b	а				
	С	b	а	С				
			b					
$(\pi_{0},\pi_{0},\pi_{0},(00),(00))$	a	a a b	b	С				
$ (\mathbb{Z}_2, \mathbb{Z}_1; \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}) $	b	a	b	С				
	С	b	а	С				
		a	b	С				
$(\mathbb{Z}_1, \mathbb{Z}_1, \mathbb{Z}_1; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$	а	а						
$(\underline{x}_1, \underline{x}_1, \underline{x}_1, \underline{x}_1, (000)), (000))$	b	а	b	С				

Medial quandles

3-element medial quandles

Example

Example				
Medial quandles of size 3				
		а	b	c b a c
1 $(\mathbb{Z}_3; 2; 0)$	a	а	С	b
$\bullet (\mathbf{z}_3, \mathbf{z}, 0)$	$b \mid$	С	b	a
	<i>C</i>	b	а	C
		a	b	с
2 $(\mathbb{Z}_2, \mathbb{Z}_1; \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix})$	а	a	b	c
$(\mathbb{Z}_2,\mathbb{Z}_1, (0,0), (1,0))$	b	a	b	<i>c</i>
	С	a a b	а	C
		a	b	с
3 $(\mathbb{Z}_1, \mathbb{Z}_1, \mathbb{Z}_1; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$	а	a	b	С
$\bullet (\underline{x}_1, \underline{x}_1, \underline{x}_1, \underline{x}_1, (0000), (0000))$	b	a a a	b	<i>c</i>
	С	a	b	С

Isomorphisms of medial quandles

Homology of meshes

Definition

Two affine meshes $((A_i)_{i \in I}, (\phi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})$ and $((A'_i)_{i \in I}, (\phi'_{i,j})_{i,j \in I}, (c'_{i,j})_{i,j \in I})$ are said to be *homologous* if

- there exists $\pi \in S_I$ such that $A_i \cong A'_{\pi i}$;
- for each $i \in I$, there exists ψ_i , an isomorphism between A_i and $A'_{\pi i}$, such that

$$\psi_j \circ \phi_{i,j} = \phi_{\pi i,\pi j}' \circ \psi_i;$$
 (H1)

• for each $j \in I$, there exists $d_j \in A'_{\pi j}$ such that

$$\psi_j(c_{i,j}) = c'_{\pi i,\pi j} + \phi'_{\pi i,\pi j}(d_i) - \phi'_{\pi j,\pi j}(d_j).$$
 (H2)

Proposition (P.J., A. P., D. S., A. Z.-D.)

The sums of two indecomposable affine meshes are isomorphic if and only if the meshes are homologous.

Homology group of affine meshes

Theorem (Burnside's orbit counting lemma)

Let a finite group G act on a set Ω . Let \sim be an equivalence on g satisfying $g \sim h \Rightarrow fix(g) = fix(h)$. Then the action of G on Ω has

$$\frac{1}{|G|} \cdot \sum_{g \in G} \operatorname{fix}(g) = \frac{1}{|G|} \cdot \sum_{g \in R} \left| [g]_{\sim} \right| \cdot \operatorname{fix}(g)$$

orbits, where R is a transversal of \sim .

The acting group is $G = \prod_{i=1}^{m} (A_i \rtimes \operatorname{Aut}(A_i)) \wr S_{n_i}$ acting on the set of all irreducible affine meshes.

Homology group of affine meshes

Theorem (Burnside's orbit counting lemma)

Let a finite group G act on a set Ω . Let \sim be an equivalence on g satisfying $g \sim h \Rightarrow fix(g) = fix(h)$. Then the action of G on Ω has

$$\frac{1}{|G|} \cdot \sum_{g \in G} \operatorname{fix}(g) = \frac{1}{|G|} \cdot \sum_{g \in R} \left| [g]_{\sim} \right| \cdot \operatorname{fix}(g)$$

orbits, where R is a transversal of \sim .

Homology group of affine meshes

Theorem (Burnside's orbit counting lemma)

Let a finite group G act on a set Ω . Let \sim be an equivalence on g satisfying $g \sim h \Rightarrow fix(g) = fix(h)$. Then the action of G on Ω has

$$\frac{1}{|G|} \cdot \sum_{g \in G} \operatorname{fix}(g) = \frac{1}{|G|} \cdot \sum_{g \in R} \left| [g]_{\sim} \right| \cdot \operatorname{fix}(g)$$

orbits, where R is a transversal of \sim .

The acting group is $G = \prod_{i=1}^{m} (A_i \rtimes \operatorname{Aut}(A_i)) \wr S_{n_i}$ acting on the set of all irreducible affine meshes.

Homology group of affine meshes

Theorem (Burnside's orbit counting lemma)

Let a finite group *G* act on a set Ω . Let \sim be an equivalence on *g* satisfying $g \sim h \Rightarrow fix(g) = fix(h)$. Then the action of *G* on Ω has

$$\frac{1}{|G|} \cdot \sum_{g \in G} \operatorname{fix}(g) = \frac{1}{|G|} \cdot \sum_{g \in R} \left| [g]_{\sim} \right| \cdot \operatorname{fix}(g)$$

orbits, where R is a transversal of \sim .

Fix abelian groups
$$\underbrace{A_1, \ldots, A_1}_{n_1 \times}, \underbrace{A_2, \ldots, A_2}_{n_2 \times}, \ldots, \underbrace{A_m, \ldots, A_m}_{n_m \times}$$
.
Permutations for homologies belong to $\prod_{i=1}^m S_{n_i}$.

The acting group is $G = \prod_{i=1}^{m} (A_i \rtimes \operatorname{Aut}(A_i)) \wr S_{n_i}$ acting on the set of all irreducible affine meshes.

Reductivity

Definition

A groupoid Q is called *m*-reductive if it satisfies

$$(\cdots ((x \underbrace{y)y}) \cdots)y = y$$

Fact

A quandle Aff(A, f) is m-reductive if and only if $(1 - f)^m = 0$.

Example

Aff(\mathbb{Z}_{p^m} , 1 – *p*) is *m*-reductive but not *m* – 1-reductive.

Theorem (P. J., A. P., D. S., A. Z.-D.)

A medial quandle is m-reductive and not m - 1-reductive if and only if LMlt(Q) is nilpotent of degree m - 1.

Reductivity

Definition

A groupoid Q is called *m*-reductive if it satisfies

$$(\cdots ((x \underbrace{y)y}) \cdots)y = y$$

Fact

A quandle Aff(A, f) is *m*-reductive if and only if $(1 - f)^m = 0$.

Example

Aff(\mathbb{Z}_{p^m} , 1 – *p*) is *m*-reductive but not *m* – 1-reductive.

Theorem (P. J., A. P., D. S., A. Z.-D.)

A medial quandle is m-reductive and not m - 1-reductive if and only if LMlt(Q) is nilpotent of degree m - 1.

Reductivity

Definition

A groupoid Q is called *m*-reductive if it satisfies

$$(\cdots ((x \underbrace{y)y}) \cdots)y = y$$

Fact

A quandle Aff(A, f) is *m*-reductive if and only if $(1 - f)^m = 0$.

Example

Aff(\mathbb{Z}_{p^m} , 1 – *p*) is *m*-reductive but not *m* – 1-reductive.

Theorem (P. J., A. P., D. S., A. Z.-D.)

A medial quandle is *m*-reductive and not m - 1-reductive if and only if LMlt(*Q*) is nilpotent of degree m - 1.

Theorem (K. Kearnes)

Let G be a finite subdirectly irreducible idempotent medial groupoid. Then G is strongly solvable or affine.

Conjecture

A medial quandle *Q* is strongly solvable if and only if *Q* is reductive.

Conjecture

Let Q be a finite medial quandle. Then $Q = L \times R$, where R is reductive and L is a quasigroup.

Theorem

Every finite medial quasigroup quandle is polynomially equivalent to a module over $\mathbb{Z}[x]/(x^n + x^{n-1} + \cdots + x + 1)$

Theorem (K. Kearnes)

Let G be a finite subdirectly irreducible idempotent medial groupoid. Then G is strongly solvable or affine.

Conjecture

A medial quandle *Q* is strongly solvable if and only if *Q* is reductive.

Conjecture

Let Q be a finite medial quandle. Then $Q = L \times R$, where R is reductive and L is a quasigroup.

Theorem

Every finite medial quasigroup quandle is polynomially equivalent to a module over $\mathbb{Z}[x]/(x^n + x^{n-1} + \cdots + x + 1)$

Theorem (K. Kearnes)

Let G be a finite subdirectly irreducible idempotent medial groupoid. Then G is strongly solvable or affine.

Conjecture

A medial quandle *Q* is strongly solvable if and only if *Q* is reductive.

Conjecture

Let Q be a finite medial quandle. Then $Q = L \times R$, where R is reductive and L is a quasigroup.

Theorem

Every finite medial quasigroup quandle is polynomially equivalent to a module over $\mathbb{Z}[x]/(x^n + x^{n-1} + \cdots + x + 1)$

Theorem (K. Kearnes)

Let G be a finite subdirectly irreducible idempotent medial groupoid. Then G is strongly solvable or affine.

Conjecture

A medial quandle *Q* is strongly solvable if and only if *Q* is reductive.

Conjecture

Let Q be a finite medial quandle. Then $Q = L \times R$, where R is reductive and L is a quasigroup.

Theorem

Every finite medial quasigroup quandle is polynomially equivalent to a module over $\mathbb{Z}[x]/(x^n + x^{n-1} + \cdots + x + 1)$ *.*

Structure of medial quandles Reductivity

2-reductive quandles

Theorem

Let Q be the sum of an irreducible affine mesh $(A_i, \phi_{i,j}, c_{i,j})$. Then TFAE

- Q is 2-reductive,
- every orbit of Q is a right-zero band,

$${f 9}~\phi_{i,j}=0$$
, for every $i,j\in I_j$

4 LMlt(Q) is commutative.

Fact

If one of the orbits of *Q* has one element then *Q* is 2-reductive.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Structure of medial quandles Reductivity

2-reductive quandles

Theorem

Let Q be the sum of an irreducible affine mesh $(A_i, \phi_{i,j}, c_{i,j})$. Then TFAE

- Q is 2-reductive,
- every orbit of Q is a right-zero band,

$${f 9}~~\phi_{i,j}=0$$
, for every $i,j\in I_{j,j}$

4 LMlt(Q) is commutative.

Fact

If one of the orbits of Q has one element then Q is 2-reductive.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Reductivity

2-reductive affine meshes

Lemma

 $(A_i, \phi_{i,j}, c_{i,j})$ is an irreducible affine mesh whose sum is a 2-reductive mesh if and only if

•
$$\phi_{i,j}=$$
 0, for each $i,j\in I$,

•
$$c_{i,i} = 0$$
, for each $i \in I$,

• for each
$$j \in I$$
 , $A_j = \langle c_{i,j}, \ i \in I
angle.$

Theorem (P. J., A. P., D. S., A. Z.-D.)

The number of 2-reductive medial quandles of size n is

 $2^{\frac{1}{4}n^2+\varepsilon(n)}$

for some function $\varepsilon(n)$ with $O(n\log n) < |\varepsilon(n)| < o(n^2)$.

2-reductive affine meshes

Lemma

 $(A_i, \phi_{i,j}, c_{i,j})$ is an irreducible affine mesh whose sum is a 2-reductive mesh if and only if

•
$$oldsymbol{\phi}_{i,j}=$$
 0, for each $i,j\in I$,

•
$$c_{i,i} = 0$$
, for each $i \in I$,

• for each
$$j \in I$$
 , $A_j = \langle c_{i,j}, \ i \in I
angle.$

Theorem (P. J., A. P., D. S., A. Z.-D.)

The number of 2-reductive medial quandles of size n is

$$2^{\frac{1}{4}n^2+\varepsilon(n)}$$

for some function $\varepsilon(n)$ with $O(n \log n) < |\varepsilon(n)| < o(n^2)$.

Numbers of medial quandles

size	2-red.	other	size	2-reductive	other
1	1	0	9	10,301	10
2	1	0	10	98,532	45
3	2	1	11	1,246,479	9
4	5	1	12	20,837,171	268
5	15	3	13	466,087,624	11
6	55	3	14	13,943,041,873	?
7	246	5	15	563,753,074,915	36
8	1,398	12	16	30,784,745,506,212	?

Conjecture

For each n, the number of 2-reductive medial quandles is bigger than the number of other medial quandles.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Numbers of medial quandles

size	2-red.	other	size	2-reductive	other
1	1	0	9	10,301	10
2	1	0	10	98,532	45
3	2	1	11	1,246,479	9
4	5	1	12	20,837,171	268
5	15	3	13	466,087,624	11
6	55	3	14	13,943,041,873	?
7	246	5	15	563,753,074,915	36
8	1,398	12	16	30,784,745,506,212	?

Conjecture

For each n, the number of 2-reductive medial quandles is bigger than the number of other medial quandles.