1/22

Medial quandles

Přemysl Jedlička with Agata Pilitowska, David Stanovský, Anna Zamojska-Dzienio

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture) in Prague

> 13,14 February 2015 Debrecen

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Definition of quandles

Definition

A groupoid (Q, *) is called a *quandle*, if it satisfies

- x * x = x,
 x * (y * z) = (x * y) * (x * z),
- $\forall x, z \exists ! y; \quad x * y = z.$

(idempotency) (left distributivity) (left quasigroup)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

Definition of quandles

Definition

A groupoid (Q, *) is called a *quandle*, if it satisfies

• x * x = x,

•
$$x * (y * z) = (x * y) * (x * z)$$

•
$$\forall x, z \exists ! y; \quad x * y = z.$$

(idempotency) (left distributivity) (left quasigroup)

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

Properties of guandles

Examples of quandles

Example (Right zero band)

The groupoid (Q, *) with the operation x * y = y.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b = a \cdot b \cdot a^{-1}$.

Example (Galkin's representation)

Let *G* be a group and $H \leq G$. Let *f* be an automorphism of *G* with $H \leq C_G(f)$. Let *Q* be the set of cosets {*aH*; $a \in G$ }. We define

$$aH * bH = a \cdot f(a^{-1} \cdot b) \cdot H.$$

Then (Q, *) is a quandle denoted by Gal(G, H, f).

Examples of quandles

Example (Right zero band)

The groupoid (Q, *) with the operation x * y = y.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b = a \cdot b \cdot a^{-1}$.

Example (Galkin's representation)

Let *G* be a group and $H \leq G$. Let *f* be an automorphism of *G* with $H \leq C_G(f)$. Let *Q* be the set of cosets {*aH*; *a* \in *G*}. We define

$$aH * bH = a \cdot f(a^{-1} \cdot b) \cdot H.$$

Then (Q, *) is a quandle denoted by Gal(G, H, f).

Examples of quandles

Example (Right zero band)

The groupoid (Q, *) with the operation x * y = y.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b = a \cdot b \cdot a^{-1}$.

Example (Galkin's representation)

Let *G* be a group and $H \leq G$. Let *f* be an automorphism of *G* with $H \leq C_G(f)$. Let *Q* be the set of cosets {*aH*; $a \in G$ }. We define

$$aH * bH = a \cdot f(a^{-1} \cdot b) \cdot H.$$

Then (Q, *) is a quandle denoted by Gal(G, H, f).

Properties of quandles

Not every quandle has a Galkin's representation

Example

Consider

$$\begin{array}{c|cccc} Q & a & b & c \\ \hline a & a & b & c \\ b & a & b & c \\ c & b & a & c \end{array}$$

Then Q does not have a Galkin's representation.

Proof.

Let there exist *G* and H < G with [G : H] = 3 and $f \in Aut(G)$ with $H \leq C_G(f)$, a Galkin's representation of *Q*. Then a * c = b * c = c * c = c and therefore $af(a^{-1})H = bf(b^{-1})H = cf(c^{-1})H = H$. This implies a * x = b * x = c * x, for each $x \in Q$, a contradiction. Properties of quandles

Not every quandle has a Galkin's representation

Example

Consider

$$\begin{array}{c|cccc} Q & a & b & c \\ \hline a & a & b & c \\ b & a & b & c \\ c & b & a & c \end{array}$$

Then Q does not have a Galkin's representation.

Proof.

Let there exist *G* and H < G with [G : H] = 3 and $f \in Aut(G)$ with $H \leq C_G(f)$, a Galkin's representation of *Q*. Then a * c = b * c = c * c = c and therefore $af(a^{-1})H = bf(b^{-1})H = cf(c^{-1})H = H$. This implies a * x = b * x = c * x, for each $x \in Q$, a contradiction.

Left translations

Definition

Let (Q, *) be a groupoid. The mapping $L_x : a \mapsto x * a$ is called the *left translation* by x.

Definition

A groupoid Q is called a quandle if it satisfies

- L_x is an endomorphism, for each $x \in Q$,
- L_x is a permutation, for each $x \in Q$,
- x is a fixed point of L_x , for each $x \in Q$.

(left distributivity) (left quasigroup) (idempotency)

Left translations

Definition

Let (Q, *) be a groupoid. The mapping $L_x : a \mapsto x * a$ is called the *left translation* by x.

Definition

A groupoid *Q* is called a quandle if it satisfies

- L_x is an endomorphism, for each $x \in Q$,
- L_x is a permutation, for each $x \in Q$,
- *x* is a fixed point of L_x , for each $x \in Q$.

(left distributivity) (left quasigroup) (idempotency)

Permutation groups

Definitions

- The *left multiplication group* of *Q* is the permutation group $LMlt(Q) = \langle L_x; x \in Q \rangle.$
- The *displacement group* of *Q* is the permutation group $\text{Dis}(Q) = \langle L_x L_y^{-1}; x, y \in Q \rangle.$

Proposition

Let Q be generated by x_1, \ldots, x_n . Then

- LMlt(Q) is generated by L_{x_1}, \ldots, L_{x_n} ,
- Dis(Q) is generated by $(L_{x_i}L_{x_1}^{-1})^{L'_{x_j}}$, for $1 \leq i, j \leq n$ and $j \in \mathbb{Z}$.

Example

Let $R = \text{Gal}(\mathbb{Z}[x, x^{-1}], 1, x)$ and let Q be the subquandle of R generated by 0 and 1. Then $\text{Dis}(Q) \cong \mathbb{Z}^{\omega}$.

Permutation groups

Definitions

- The *left multiplication group* of *Q* is the permutation group $LMlt(Q) = \langle L_x; x \in Q \rangle.$
- The *displacement group* of *Q* is the permutation group $Dis(Q) = \langle L_x L_y^{-1}; x, y \in Q \rangle.$

Proposition

Let Q be generated by x_1, \ldots, x_n . Then

- LMlt(Q) is generated by L_{x_1}, \ldots, L_{x_n} ,
- Dis(Q) is generated by $(L_{x_i}L_{x_1}^{-1})^{L_{x_j}^j}$, for $1 \leq i, j \leq n$ and $j \in \mathbb{Z}$.

Example

Let $R = \text{Gal}(\mathbb{Z}[x, x^{-1}], 1, x)$ and let Q be the subquandle of R generated by 0 and 1. Then $\text{Dis}(Q) \cong \mathbb{Z}^{\omega}$.

Permutation groups

Definitions

- The *left multiplication group* of *Q* is the permutation group $LMlt(Q) = \langle L_x; x \in Q \rangle.$
- The *displacement group* of *Q* is the permutation group $Dis(Q) = \langle L_x L_y^{-1}; x, y \in Q \rangle.$

Proposition

Let Q be generated by x_1, \ldots, x_n . Then

- LMlt(Q) is generated by L_{x_1}, \ldots, L_{x_n} ,
- Dis(Q) is generated by $(L_{x_i}L_{x_1}^{-1})^{L_{x_j}^j}$, for $1 \leq i, j \leq n$ and $j \in \mathbb{Z}$.

Example

Let $R = \text{Gal}(\mathbb{Z}[x, x^{-1}], 1, x)$ and let Q be the subquandle of R generated by 0 and 1. Then $\text{Dis}(Q) \cong \mathbb{Z}^{\omega}$.

Permutation groups of quandles

Normality of the displacement group

Proposition

- $\mathrm{LMlt}(Q)' \trianglelefteq \mathrm{Dis}(Q) \trianglelefteq \mathrm{LMlt}(Q)$,
- the group LMlt(Q) / Dis(Q) is cyclic,
- the natural actions of LMlt(Q) and Dis(Q) on Q have the same orbits.

Example

Consider

Then $|\operatorname{LMlt}(Q)| = |\operatorname{Dis}(Q)| = 2$ and $|\operatorname{LMlt}(Q)'| = 1$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

Permutation groups of quandles

Normality of the displacement group

Proposition

- $\mathrm{LMlt}(Q)' \trianglelefteq \mathrm{Dis}(Q) \trianglelefteq \mathrm{LMlt}(Q)$,
- the group $\operatorname{LMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of LMlt(Q) and Dis(Q) on Q have the same orbits.

Example

Consider

Then $|\operatorname{LMlt}(Q)| = |\operatorname{Dis}(Q)| = 2$ and $|\operatorname{LMlt}(Q)'| = 1$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

Permutation groups of quandles

Normality of the displacement group

Proposition

- $\mathrm{LMlt}(Q)' \trianglelefteq \mathrm{Dis}(Q) \trianglelefteq \mathrm{LMlt}(Q)$,
- the group $\operatorname{LMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of LMlt(Q) and Dis(Q) on Q have the same orbits.

Example Consider $\frac{Q \mid a \quad b \quad c}{a \mid a \quad b \quad c}$ $b \mid a \quad b \quad c$ $c \mid b \quad a \quad c$ Then |LMlt(Q)| = |Dis(Q)| = 2 and |LMlt(Q)'| = 1

(日) (日) (日) (日) (日) (日) (日)

Normality of the displacement group

Proposition

- $\mathrm{LMlt}(Q)' \trianglelefteq \mathrm{Dis}(Q) \trianglelefteq \mathrm{LMlt}(Q)$,
- the group $\operatorname{LMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of LMlt(Q) and Dis(Q) on Q have the same orbits.

Example

Consider

$$\begin{array}{c|ccc} Q & a & b & c \\ \hline a & a & b & c \\ b & a & b & c \\ c & b & a & c \end{array}$$

Then |LMlt(Q)| = |Dis(Q)| = 2 and |LMlt(Q)'| = 1

Galkin's representation of orbits

Proposition (A. Hulpke, D. Stanovský, P. Vojtěchovský)

Let Q be a quandle, and let $e \in Q$. Let $G \in {\text{LMlt}(Q), \text{Dis}(Q)}$ and let f be the restriction of the conjugation by L_e in LMlt(Q) in G. Then $\text{Gal}(G, G_e, f)$ is well defined and isomorphic to the orbit e^Q .

Example Consider

Q	а	Ъ	С
a	а		С
Ь	а	Ъ	С
С	Ь	а	С

- one orbit is isomorphic to Gal({id_Q, (a, b)}, {id_Q}, id),
- the other is isomorphic to $Gal(\{id_Q, (a, b)\}, \{id_Q, (a, b)\}, id\}$.

・ 日 マ ス 雪 マ ス 印 マ ト ー マ

Galkin's representation of orbits

Proposition (A. Hulpke, D. Stanovský, P. Vojtěchovský)

Let Q be a quandle, and let $e \in Q$. Let $G \in {\text{LMlt}(Q), \text{Dis}(Q)}$ and let f be the restriction of the conjugation by L_e in LMlt(Q) in G. Then $\text{Gal}(G, G_e, f)$ is well defined and isomorphic to the orbit e^Q .

Example

Consider

		b	С
а	а	b	С
b	a	b	С
С	b	а	С

- one orbit is isomorphic to $Gal(\{id_Q, (a, b)\}, \{id_Q\}, id),$
- the other is isomorphic to $Gal(\{id_Q, (a, b)\}, \{id_Q, (a, b)\}, id\}$.

Connected quandles

Definition

A quandle Q is called (*algebraically*) connected if Dis(Q) acts transitively on Q.

Proposition

If Q is connected then Dis(Q) = LMlt(Q)'.

Theorem (A. Hulpke, D. Stanovský, P. Vojtěchovský)

Let Q be a connected quandle. Then

- $Q \cong \text{Gal}(G, H, f)$ where G = LMlt(Q)', $e \in Q$, $H = G_e$ and f is the conjugation by L_e .
- If $Q \cong \text{Gal}(G, H, f)$ then LMlt(Q)' embeds into a quotient of G.

Connected quandles

Definition

A quandle Q is called (*algebraically*) connected if Dis(Q) acts transitively on Q.

Proposition

If Q is connected then Dis(Q) = LMlt(Q)'.

Theorem (A. Hulpke, D. Stanovský, P. Vojtěchovský)

Let Q be a connected quandle. Then

- $Q \cong \text{Gal}(G, H, f)$ where G = LMlt(Q)', $e \in Q$, $H = G_e$ and f is the conjugation by L_e .
- If $Q \cong \text{Gal}(G, H, f)$ then LMlt(Q)' embeds into a quotient of G.

Connected quandles

Definition

A quandle Q is called (*algebraically*) connected if Dis(Q) acts transitively on Q.

Proposition

If Q is connected then Dis(Q) = LMlt(Q)'.

Theorem (A. Hulpke, D. Stanovský, P. Vojtěchovský)

Let Q be a connected quandle. Then

- $Q \cong \text{Gal}(G, H, f)$ where G = LMlt(Q)', $e \in Q$, $H = G_e$ and f is the conjugation by L_e .
- If $Q \cong \text{Gal}(G, H, f)$ then LMlt(Q)' embeds into a quotient of G.

Enumerating small connected quandles

Searching for a permutation group *G* acting on 1, ..., n such that G' is transitive on 1, ..., n;

(i) there exists $\zeta \in Z(G_1)$ such that $\langle \zeta^G \rangle = G$.

Number of connected quandles of each size, up to isomorphism

	п	1	2	3	4	5	6	7	8	9	10	11	12	13
9	(<i>n</i>)	1	0	1	1	3	2	5	3	8	1	9	10	11

 n
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24

 q(n)
 0
 7
 9
 15
 12
 17
 19
 9
 0
 21
 42

 n
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

 q(n)
 34
 0
 65
 13
 27
 24
 29
 17
 11
 0
 15

Enumerating small connected quandles

Searching for a permutation group G acting on $1, \ldots, n$ such that

• G' is transitive on $1, \ldots, n$;

2

So there exists $\zeta \in Z(G_1)$ such that $\langle \zeta^G \rangle = G$.

Number of connected quandles of each size, up to isomorphism

 n
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24

 q(n)
 0
 7
 9
 15
 12
 17
 19
 9
 0
 21
 42

 n
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

 q(n)
 34
 0
 65
 13
 27
 24
 29
 17
 11
 0
 15

・ロト・「聞下・「思下・「思下・(日下

Enumerating small connected quandles

Searching for a permutation group G acting on $1, \ldots, n$ such that

- G' is transitive on $1, \ldots, n$;
- So there exists $\zeta \in Z(G_1)$ such that $\langle \zeta^G \rangle = G$.

Number of connected quandles of each size, up to isomorphism

 n
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24

 q(n)
 0
 7
 9
 15
 12
 17
 19
 9
 0
 21
 42

 n
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

 q(n)
 34
 0
 65
 13
 27
 24
 29
 17
 11
 0
 15

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ シタぐ

Enumerating small connected quandles

Searching for a permutation group G acting on $1, \ldots, n$ such that

- G' is transitive on $1, \ldots, n$;
- So there exists $\zeta \in Z(G_1)$ such that $\langle \zeta^G \rangle = G$.

Number of connected quandles of each size, up to isomorphism

$\frac{n}{q(n)}$	1	2	3 4	5	6	78	9	10	11	12	13
q(n)	1	0	1 1	3	2	53	8	1	9	10	11
				. –				~ (
п	14	15	16	17	18	19	20	21	22	23	24
q(n)	0	7	9	15	12	17	19	9	0	21	42
п	25	26	27	28	29	30	31	32	33	34	35
q(n)	34	0	65	13	27	24	29	17	11	0	15

(日) (日) (日) (日) (日) (日) (日)

Definition

A groupoid is called medial, if it satisfies

$$(x * y) * (u * z) = (x * u) * (y * z)$$

Definition

Let (A, +) be an abelian group and $f \in Aut(A)$. The set A with the operation

x * y = (1 - f)(x) + f(y)

forms a quandle called *affine* and denoted by Aff(A, f).

Observation

A quandle Q is affine if and only if it admits a Galkin's representation of form Gal(G,H,f) where G is abelian.

Definition

A groupoid is called medial, if it satisfies

$$(x * y) * (u * z) = (x * u) * (y * z)$$

Definition

Let (A, +) be an abelian group and $f \in Aut(A)$. The set A with the operation

$$x * y = (1 - f)(x) + f(y)$$

forms a quandle called *affine* and denoted by Aff(A, f).

Observation

A quandle Q is affine if and only if it admits a Galkin's representation of form Gal(G,H,f) where G is abelian.

Definition

A groupoid is called medial, if it satisfies

$$(x * y) * (u * z) = (x * u) * (y * z)$$

Definition

Let (A, +) be an abelian group and $f \in Aut(A)$. The set A with the operation

$$x * y = (1 - f)(x) + f(y)$$

forms a quandle called *affine* and denoted by Aff(A, f).

Observation

A quandle Q is affine if and only if it admits a Galkin's representation of form Gal(G, H, f) where G is abelian.

Orbits of medial quandles

Proposition

A quandle is medial if and only if Dis(Q) is abelian.

Corollary

A connected quandle is medial if and only if it is affine.

Corollary

Every orbit of a medial quandle is affine.

(日)

Orbits of medial quandles

Proposition

A quandle is medial if and only if Dis(Q) is abelian.

Corollary

A connected quandle is medial if and only if it is affine.

Corollary

Every orbit of a medial quandle is affine.

Orbits of medial quandles

Proposition

A quandle is medial if and only if Dis(Q) is abelian.

Corollary

A connected quandle is medial if and only if it is affine.

Corollary

Every orbit of a medial quandle is affine.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \operatorname{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \operatorname{Im}(\varphi_{i,j})) \rangle$.

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \text{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \text{Im}(\varphi_{i,j})) \rangle$.

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \operatorname{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \operatorname{Im}(\varphi_{i,j})) \rangle$.

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \text{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \text{Im}(\varphi_{i,j})) \rangle$.

Affine mesh

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \text{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \text{Im}(\varphi_{i,j})) \rangle$.

Affine mesh

Definition

An *indecomposable affine mesh* is an *n*-tuplet of abelian groups A_1, \ldots, A_n , together with homomorphisms $\varphi_{i,j} : A_i \to A_j$ and constants $c_{i,j} \in A_j$, for $i, j \in [1, \cdots, n]$, satisfying (M1) $(1 - \varphi_{i,i}) \in \text{Aut}(A_i)$; (M2) $c_{i,i} = 0$; (M3) $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{j',k} \circ \varphi_{i,j'}$; (M4) $\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$; (M5) $A_j = \langle \bigcup_{i \in I} (c_{i,j} + \text{Im}(\varphi_{i,j})) \rangle$.

Sums of affine meshes

Definition

The *sum* of an indecomposable affine mesh $\mathcal{A} = (A_i, \varphi_{i,j}, c_{i,j})$ over a set *I* is the groupoid $(\bigcup_{i \in I} A_i, *)$ with the operation * defined as

$$a * b = \varphi_{i,j}(a) + (1 - \varphi_{j,j})(b) + c_{i,j}, \quad \text{for } a \in A_i \text{ and } b \in A_j.$$

Proposition (P. J., A. Pilitowska, D. Stanovský, A. Zamojska-Dzienio)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to A_{i} , $i \in I$. On the other hand, every medial quandle is the sum of an indecomposable affine mesh.

Sums of affine meshes

Definition

The *sum* of an indecomposable affine mesh $\mathcal{A} = (A_i, \varphi_{i,j}, c_{i,j})$ over a set *I* is the groupoid $(\bigcup_{i \in I} A_i, *)$ with the operation * defined as

$$a * b = \varphi_{i,j}(a) + (1 - \varphi_{j,j})(b) + c_{i,j}, \quad \text{for } a \in A_i \text{ and } b \in A_j.$$

Proposition (P. J., A. Pilitowska, D. Stanovský, A. Zamojska-Dzienio)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to A_i , $i \in I$. On the other hand, every medial quandle is the sum of an indecomposable affine mesh.

3-element medial quandles

Example				
Medial quandles of size 3				
			b	
$(\mathbb{Z}_3; 2; 0)$		а		
	b c	c b	b	a
	С			
		а	b	<i>C</i>
$(\mathbb{Z}_2, \mathbb{Z}_1; \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix})$		а		
		a		
	С		а	С
		a	Ь	С
$(\mathbb{Z}_1, \mathbb{Z}_1, \mathbb{Z}_1; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$		а		
$(\underline{\mu}_1, \underline{\mu}_1, \underline{\mu}_1, \underline{\mu}_1, (\underline{0}, \underline{0}, 0, 0), (\underline{0}, 0, 0, 0))$	Ъ	а		
	С	а	Ь	С

3-element medial quandles

Example

LAumpie									
Medial quandles of size 3									
		а	b	с					
• $(\mathbb{Z}_3; 2; 0)$	а	а	c b a	b					
\bullet ($\square 3, \ 2, \ 0$)	b	С	b	а					
	С	b	а	С					
			b						
$ (\mathbb{Z}_2, \mathbb{Z}_1; \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}) $	а	а	b b a	С					
(22, 21, (00), (10))	b	а	b	С					
	С	b	а	С					
			Ь						
$ (\mathbb{Z}_{1}, \mathbb{Z}_{1}, \mathbb{Z}_{1}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}) $	а	а		С					
	Ь		b						
	С	а	Ь	С					

3-element medial quandles

Example Medial guandles of size 3 b С а a c b а • $(\mathbb{Z}_3; 2; 0)$ b c b a с b а С a b c a b c a **2** $(\mathbb{Z}_2, \mathbb{Z}_1; \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix})$ b a b c С b а С a b С a b c $(\mathbb{Z}_{1}, \mathbb{Z}_{1}, \mathbb{Z}_{1}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$ а b a b c a b С С

Homology of meshes

Definition

Two affine meshes $((A_i)_{i \in I}, (\varphi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})$ and $((A'_i)_{i \in I}, (\varphi'_{i,j})_{i,j \in I}, (c'_{i,j})_{i,j \in I})$ are said to be *homologous* if

- there exists $\pi \in S_I$ such that $A_i \cong A'_{\pi i'}$
- for each $i \in I$, there exists ψ_i , an isomorphism between A_i and $A'_{\pi i'}$ such that

$$\psi_j \circ \varphi_{i,j} = \varphi'_{\pi i,\pi j} \circ \psi_i; \tag{H1}$$

• for each
$$j \in I$$
, there exists $d_j \in A'_{\pi j}$ such that
 $\psi_j(c_{ij}) = c'_{\pi i,\pi j} + \varphi'_{\pi i,\pi j}(d_i) - \varphi'_{\pi j,\pi j}(d_j).$ (H2)

Proposition (P. J., A. P., D. S., A. Z.-D.)

Homology of meshes

Definition

Two affine meshes $((A_i)_{i \in I}, (\varphi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})$ and $((A'_i)_{i \in I}, (\varphi'_{i,j})_{i,j \in I}, (c'_{i,j})_{i,j \in I})$ are said to be *homologous* if

- there exists $\pi \in S_I$ such that $A_i \cong A'_{\pi i}$;
- for each $i \in I$, there exists ψ_i , an isomorphism between A_i and $A'_{\pi i'}$ such that

$$\psi_j \circ \varphi_{ij} = \varphi'_{\pi i,\pi j} \circ \psi_i; \tag{H1}$$

• for each $j \in I$, there exists $d_j \in A'_{\pi j}$ such that $\psi_j(c_{ij}) = c'_{\pi i,\pi j} + \varphi'_{\pi i,\pi j}(d_i) - \varphi'_{\pi j,\pi j}(d_j).$ (H2)

Proposition (P. J., A. P., D. S., A. Z.-D.)

Homology of meshes

Definition

Two affine meshes $((A_i)_{i \in I}, (\varphi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})$ and $((A'_i)_{i \in I}, (\varphi'_{i,j})_{i,j \in I}, (c'_{i,j})_{i,j \in I})$ are said to be *homologous* if

- there exists $\pi \in S_I$ such that $A_i \cong A'_{\pi i}$;
- for each $i \in I$, there exists ψ_i , an isomorphism between A_i and $A'_{\pi i'}$ such that

$$\psi_j \circ \varphi_{ij} = \varphi'_{\pi i,\pi j} \circ \psi_i; \tag{H1}$$

• for each $j \in I$, there exists $d_j \in A'_{\pi j}$ such that $\psi_j(c_{ij}) = c'_{\pi i,\pi j} + \varphi'_{\pi i,\pi j}(d_i) - \varphi'_{\pi j,\pi j}(d_j).$ (H2)

Proposition (P. J., A. P., D. S., A. Z.-D.)

Homology of meshes

Definition

Two affine meshes $((A_i)_{i \in I}, (\varphi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})$ and $((A'_i)_{i \in I}, (\varphi'_{i,j})_{i,j \in I}, (c'_{i,j})_{i,j \in I})$ are said to be *homologous* if

- there exists $\pi \in S_I$ such that $A_i \cong A'_{\pi i}$;
- for each $i \in I$, there exists ψ_i , an isomorphism between A_i and $A'_{\pi i'}$ such that

$$\psi_j \circ \varphi_{i,j} = \varphi'_{\pi i,\pi j} \circ \psi_i; \tag{H1}$$

• for each
$$j \in I$$
, there exists $d_j \in A'_{\pi j}$ such that
 $\psi_j(c_{ij}) = c'_{\pi i,\pi j} + \varphi'_{\pi i,\pi j}(d_i) - \varphi'_{\pi j,\pi j}(d_j).$ (H2)

Proposition (P. J., A. P., D. S., A. Z.-D.)

Homology of meshes

Definition

Two affine meshes $((A_i)_{i \in I}, (\varphi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})$ and $((A'_i)_{i \in I}, (\varphi'_{i,j})_{i,j \in I}, (c'_{i,j})_{i,j \in I})$ are said to be *homologous* if

- there exists $\pi \in S_I$ such that $A_i \cong A'_{\pi i}$;
- for each $i \in I$, there exists ψ_i , an isomorphism between A_i and $A'_{\pi i'}$ such that

$$\psi_j \circ \varphi_{ij} = \varphi'_{\pi i,\pi j} \circ \psi_i; \tag{H1}$$

• for each
$$j \in I$$
, there exists $d_j \in A'_{\pi j}$ such that
 $\psi_j(c_{ij}) = c'_{\pi i,\pi j} + \varphi'_{\pi i,\pi j}(d_i) - \varphi'_{\pi j,\pi j}(d_j).$ (H2)

Proposition (P. J., A. P., D. S., A. Z.-D.)

Medial quandles

Isomorphisms of medial quandles

Examples of homologous meshes

Example

The meshes

$$\left(\mathbb{Z}_3, \mathbb{Z}_3; \left(\begin{smallmatrix} 2 & 2\\ 2 & 2 \end{smallmatrix}\right); \left(\begin{smallmatrix} 0 & 0\\ 0 & 0 \end{smallmatrix}\right)\right)$$

and

$$\left(\mathbb{Z}_3,\mathbb{Z}_3;\ \left(\begin{smallmatrix}2&2\\2&2\end{smallmatrix}\right);\ \left(\begin{smallmatrix}0&2\\1&0\end{smallmatrix}\right)\right)$$

are homologous through $\pi = 1$, $\psi_1 = \psi_2 = 1$, $d_1 = 1$ and $d_2 = 2$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Homology group of affine meshes

Fix abelian groups
$$\underbrace{A_1, \ldots, A_1}_{n_1 \times}, \underbrace{A_2, \ldots, A_2}_{n_2 \times}, \ldots, \underbrace{A_m, \ldots, A_m}_{n_m \times}$$

Permutations for homologies belong to $\prod_{i=1}^m S_{n_i}$.
The acting group is $G = \prod_{i=1}^m (A_i \rtimes \operatorname{Aut}(A_i)) \wr S_n$ acting on the

The acting group is $G = \prod_{i=1} (A_i \rtimes \operatorname{Aut}(A_i)) \wr S_{n_i}$ acting on the set of all irreducible affine meshes.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Homology group of affine meshes

Fix abelian groups
$$\underbrace{A_1, \ldots, A_1}_{n_1 \times}, \underbrace{A_2, \ldots, A_2}_{n_2 \times}, \ldots, \underbrace{A_m, \ldots, A_m}_{n_m \times}$$
.
Permutations for homologies belong to $\prod_{i=1}^m S_{n_i}$.

The acting group is $G = \prod_{i=1}^{m} (A_i \rtimes \operatorname{Aut}(A_i)) \wr S_{n_i}$ acting on the set of all irreducible affine meshes.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Homology group of affine meshes

Fix abelian groups
$$\underbrace{A_1, \ldots, A_1}_{n_1 \times}, \underbrace{A_2, \ldots, A_2}_{n_2 \times}, \ldots, \underbrace{A_m, \ldots, A_m}_{n_m \times}$$
.
Permutations for homologies belong to $\prod_{i=1}^m S_{n_i}$.

The acting group is $G = \prod_{i=1}^{m} (A_i \rtimes \operatorname{Aut}(A_i)) \wr S_{n_i}$ acting on the set of all irreducible affine meshes.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition

A groupoid *Q* is called *m*-reductive if it satisfies

$$(\cdots ((x\underbrace{y)y})\cdots)y_{m\times} = y$$

Fact

A quandle Aff(A, f) is m-reductive if and only if $(1-f)^m = 0$.

Example

Aff $(\mathbb{Z}_{p^m}, 1-p)$ is *m*-reductive but not m-1-reductive.

Conjecture

Definition

A groupoid *Q* is called *m*-reductive if it satisfies

$$(\cdots ((x\underbrace{y)y})\cdots)y=y$$

Fact

A quandle Aff(A, f) is *m*-reductive if and only if $(1 - f)^m = 0$.

Example

Aff $(\mathbb{Z}_{p^m}, 1-p)$ is *m*-reductive but not m-1-reductive.

Conjecture

Definition

A groupoid *Q* is called *m*-reductive if it satisfies

$$(\cdots ((x\underbrace{y)y})\cdots)y=y$$

Fact

A quandle Aff(A, f) is *m*-reductive if and only if $(1 - f)^m = 0$.

Example

Aff(\mathbb{Z}_{p^m} , 1-p) is *m*-reductive but not m-1-reductive.

Conjecture

Definition

A groupoid *Q* is called *m*-reductive if it satisfies

$$(\cdots ((x\underbrace{y)y})\cdots)y=y$$

Fact

A quandle Aff(A, f) is *m*-reductive if and only if $(1 - f)^m = 0$.

Example

 $\operatorname{Aff}(\mathbb{Z}_{p^m}, 1-p)$ is *m*-reductive but not m-1-reductive.

Conjecture

2-reductive quandles

Theorem

Let Q be the sum of an irreducible affine mesh $(A_i, \varphi_{i,j}, c_{i,j})$. Then TFAE

- Q is 2-reductive,
- every orbit of Q is a right-zero band,

3
$$\varphi_{i,i} = 0$$
, for every $i \in I$.

- for every $j \in I$, there exists $i \in I$ such that $\varphi_{i,j} = 0$,
- $\varphi_{i,j} = 0$, for every $i, j \in I$,
- LMlt(Q) is commutative.

Corollary

If one of the orbits of Q has one element then Q is 2-reductive

・ロット (雪) (日) (日) (日)

2-reductive quandles

Theorem

Let Q be the sum of an irreducible affine mesh $(A_i, \varphi_{i,j}, c_{i,j})$. Then TFAE

- Q is 2-reductive,
- every orbit of Q is a right-zero band,

3
$$\varphi_{i,i} = 0$$
, for every $i \in I$.

- for every $j \in I$, there exists $i \in I$ such that $\varphi_{i,j} = 0$,
- $\varphi_{i,j} = 0$, for every $i, j \in I$,
- LMlt(Q) is commutative.

Corollary

If one of the orbits of Q has one element then Q is 2-reductive.

2-reductive affine meshes

Lemma

 $(A_i, \phi_{i,j}, c_{i,j})$ is an irreducible affine mesh whose sum is a 2-reductive mesh if and only if

- $\varphi_{i,j} = 0$, for each $i, j \in I$,
- $c_{i,i} = 0$, for each $i \in I$,
- for each $j \in I$, $A_j = \langle c_{i,j}, i \in I \rangle$.

Example

The number of non-isomorphic medial quandles with m orbits equal to \mathbb{Z}_p , is at least $p^{m^2-2m-(1+\log_p m)pm}$.

2-reductive affine meshes

Lemma

 $(A_i, \phi_{i,j}, c_{i,j})$ is an irreducible affine mesh whose sum is a 2-reductive mesh if and only if

- $\varphi_{i,j} = 0$, for each $i, j \in I$,
- $c_{i,i} = 0$, for each $i \in I$,
- for each $j \in I$, $A_j = \langle c_{i,j}, i \in I \rangle$.

Example

The number of non-isomorphic medial quandles with *m* orbits equal to \mathbb{Z}_p , is at least $p^{m^2-2m-(1+\log_p m)pm}$.

Numbers of medial quandles

size	2-red.	other	size	2-reductive	other
1	1	0	9	10,301	10
2	1	0	10	98,532	45
3	2	1	11	1,246,479	9
4	5	1	12	20,837,171	268
5	15	3	13	466,087,624	11
6	55	3	14	13,943,041,873	?
7	246	5	15	563,753,074,915	36
8	1,398	12	16	30,784,745,506,212	?

Conjecture

For each *n*, the number of 2-reductive medial quandles is bigger than the number of other medial quandles.

Numbers of medial quandles

size	2-red.	other	size	2-reductive	other
1	1	0	9	10,301	10
2	1	0	10	98,532	45
3	2	1	11	1,246,479	9
4	5	1	12	20,837,171	268
5	15	3	13	466,087,624	11
6	55	3	14	13,943,041,873	?
7	246	5	15	563,753,074,915	36
8	1,398	12	16	30,784,745,506,212	?

Conjecture

For each n, the number of 2-reductive medial quandles is bigger than the number of other medial quandles.