Medial quandles

Přemysl Jedlička
with Agata Pilitowska, David Stanovský, Anna Zamojska-Dzienio

Department of Mathematics
Faculty of Engineering (former Technical Faculty)
Czech University of Life Sciences (former Czech University of Agriculture) in Prague

13,14 February 2015 Debrecen

Faculty of
Engineering

Definition of quandles

Definition

A groupoid $(Q, *)$ is called a quandle, if it satisfies

- $x * x=x$,
- $x *(y * z)=(x * y) *(x * z)$,
- $\forall x, z \exists!y ; \quad x * y=z$.
(idempotency) (left distributivity) (left quasigroup)

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

Definition of quandles

Definition

A groupoid $(Q, *)$ is called a quandle, if it satisfies

- $x * x=x$,
- $x *(y * z)=(x * y) *(x * z)$,
- $\forall x, z \exists!y ; \quad x * y=z$.
(idempotency) (left distributivity) (left quasigroup)

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

Examples of quandles

Example (Right zero band)

The groupoid $(Q, *)$ with the operation $x * y=y$.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b=a \cdot b \cdot a^{-1}$

Example (Galkin's representation)

Let G be a group and $H \leqslant G$. Let f be an automorphism of G with $H \leqslant C_{G}(f)$. Let Q be the set of cosets $\{a H ; a \in G\}$. We define

$$
a H * b H=a \cdot f\left(a^{-1} \cdot b\right) \cdot H .
$$

Then $(Q, *)$ is a quandle denoted by $\operatorname{Gal}(G, H, f)$.

Examples of quandles

Example (Right zero band)

The groupoid $(Q, *)$ with the operation $x * y=y$.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b=a \cdot b \cdot a^{-1}$.

Example (Galkin's representation)
Let G be a group and $H \leqslant G$. Let f be an automorphism of G with $H \leqslant C_{G}(f)$. Let Q be the set of cosets $\{a H ; a \in G\}$. We define

$$
a H * b H=a \cdot f\left(a^{-1} \cdot b\right) \cdot H .
$$

Then $(Q, *)$ is a quandle denoted by $\operatorname{Gal}(G, H, f)$.

Examples of quandles

Example (Right zero band)

The groupoid $(Q, *)$ with the operation $x * y=y$.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b=a \cdot b \cdot a^{-1}$.

Example (Galkin's representation)

Let G be a group and $H \leqslant G$. Let f be an automorphism of G with $H \leqslant C_{G}(f)$. Let Q be the set of cosets $\{a H ; a \in G\}$. We define

$$
a H * b H=a \cdot f\left(a^{-1} \cdot b\right) \cdot H
$$

Then $(Q, *)$ is a quandle denoted by $\operatorname{Gal}(G, H, f)$.

Not every quandle has a Galkin's representation

Example

Consider

$$
\begin{array}{c|ccc}
Q & a & b & c \\
\hline a & a & b & c \\
b & a & b & c \\
c & b & a & c
\end{array}
$$

Then Q does not have a Galkin's representation.

Not every quandle has a Galkin's representation

Example

Consider

Q	a	b	c
a	a	b	c
b	a	b	c
c	b	a	c

Then Q does not have a Galkin's representation.

Proof.

Let there exist G and $H<G$ with $[G: H]=3$ and $f \in \operatorname{Aut}(G)$ with $H \leqslant C_{G}(f)$, a Galkin's representation of Q. Then $a * c=b * c=c * c=c$ and therefore

$$
a f\left(a^{-1}\right) H=b f\left(b^{-1}\right) H=c f\left(c^{-1}\right) H=H
$$

This implies $a * x=b * x=c * x$, for each $x \in Q$, a contradiction.

Left translations

Definition

Let $(Q, *)$ be a groupoid. The mapping $L_{x}: a \mapsto x * a$ is called the left translation by x.

Definition

A groupoid Q is called a quandle if it satisfies

- L_{x} is an endomorphism, for each $x \in Q$,
(left distributivity)
- L_{x} is a permutation, for each $x \in Q$, (left quasigroup) - x is a fixed point of L_{x}, for each $x \in Q$.

Left translations

Definition

Let $(Q, *)$ be a groupoid. The mapping $L_{x}: a \mapsto x * a$ is called the left translation by x.

Definition

A groupoid Q is called a quandle if it satisfies

- L_{x} is an endomorphism, for each $x \in Q$,
- L_{x} is a permutation, for each $x \in Q$,
- x is a fixed point of L_{x}, for each $x \in Q$.
(left distributivity) (left quasigroup) (idempotency)

Permutation groups

Definitions

- The left multiplication group of Q is the permutation group $\operatorname{LMlt}(Q)=\left\langle L_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle L_{x} L_{y}^{-1} ; x, y \in Q\right\rangle$.

Proposition
 Let Q be generated by x_{1}, \ldots, x_{n}. Then
 - $\operatorname{LMlt}(Q)$ is generated by $L_{x_{1}}, \ldots, L_{x}$
 - $\operatorname{Dis}(Q)$ is generated by $\left(L_{x_{i}} L_{x_{1}}^{-1}\right)^{L_{x_{j}}^{\prime}}$, for $1 \leqslant i, j \leqslant n$ and $j \in \mathbb{Z}$.

\square

Permutation groups

Definitions

- The left multiplication group of Q is the permutation group $\operatorname{LMlt}(Q)=\left\langle L_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle L_{x} L_{y}^{-1} ; x, y \in Q\right\rangle$.

Proposition

Let Q be generated by x_{1}, \ldots, x_{n}. Then

- $\operatorname{LMlt}(Q)$ is generated by $L_{x_{1}}, \ldots, L_{x_{n}}$,
- $\operatorname{Dis}(Q)$ is generated by $\left(L_{x_{i}} L_{x_{1}}^{-1}\right)^{L_{x_{j}}^{j}}$, for $1 \leqslant i, j \leqslant n$ and $j \in \mathbb{Z}$.

Permutation groups

Definitions

- The left multiplication group of Q is the permutation group $\operatorname{LMlt}(Q)=\left\langle L_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle L_{x} L_{y}^{-1} ; x, y \in Q\right\rangle$.

Proposition

Let Q be generated by x_{1}, \ldots, x_{n}. Then

- $\operatorname{LMlt}(Q)$ is generated by $L_{x_{1}}, \ldots, L_{x_{n}}$,
- $\operatorname{Dis}(Q)$ is generated by $\left(L_{x_{i}} L_{x_{1}}^{-1}\right)^{L_{x_{j}}^{j}}$, for $1 \leqslant i, j \leqslant n$ and $j \in \mathbb{Z}$.

Example

Let $R=\operatorname{Gal}\left(\mathbb{Z}\left[x, x^{-1}\right], 1, x\right)$ and let Q be the subquandle of R generated by 0 and 1 . Then $\operatorname{Dis}(Q) \cong \mathbb{Z}^{\omega}$.

Normality of the displacement group

Proposition

- $\operatorname{LMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{LMlt}(Q)$,
- the group LMlt $(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of $\operatorname{LMlt}(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Example

Consider

Then $|\operatorname{LMlt}(Q)|=|\operatorname{Dis}(Q)|=2$ and $\left|\operatorname{LMlt}(Q)^{\prime}\right|=1$

Normality of the displacement group

Proposition

- $\operatorname{LMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{LMlt}(Q)$,
- the group $\operatorname{LMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of $\operatorname{LMlt}(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Example

Consider

Then $|\operatorname{LMlt}(Q)|=|\operatorname{Dis}(Q)|=2$ and $\left|\operatorname{LMlt}(Q)^{\prime}\right|=1$

Normality of the displacement group

Proposition

- $\operatorname{LMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{LMlt}(Q)$,
- the group $\operatorname{LMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of $\operatorname{LMlt}(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Example

Consider

Then $|\operatorname{LMlt}(Q)|=|\operatorname{Dis}(Q)|=2$ and $\left|\operatorname{LMlt}(Q)^{\prime}\right|=1$

Normality of the displacement group

Proposition

- $\operatorname{LMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{LMlt}(Q)$,
- the group $\operatorname{LMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of $\operatorname{LMlt}(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Example

Consider

$$
\begin{array}{c|ccc}
Q & a & b & c \\
\hline a & a & b & c \\
b & a & b & c \\
c & b & a & c
\end{array}
$$

Then $|\operatorname{LMlt}(Q)|=|\operatorname{Dis}(Q)|=2$ and $\left|\operatorname{LMlt}(Q)^{\prime}\right|=1$

Galkin's representation of orbits

Proposition (A. Hulpke, D. Stanovský, P. Vojtěchovský)

Let Q be a quandle, and let $e \in Q$. Let $G \in\{\operatorname{LMlt}(Q), \operatorname{Dis}(Q)\}$ and let f be the restriction of the conjugation by L_{e} in $\operatorname{LMlt}(Q)$ in G. Then $\operatorname{Gal}\left(G, G_{e}, f\right)$ is well defined and isomorphic to the orbit e^{Q}.

Example

Consider

- one orbit is isomorphic to $\operatorname{Gal}\left(\left\{\operatorname{id}_{Q,}(a, b)\right\},\left\{\mathrm{id}_{Q}\right\}, \mathrm{id}\right)$
\square

Galkin's representation of orbits

Proposition (A. Hulpke, D. Stanovský, P. Vojtěchovský)

Let Q be a quandle, and let $e \in Q$. Let $G \in\{\operatorname{LMlt}(Q)$, $\operatorname{Dis}(Q)\}$ and let f be the restriction of the conjugation by L_{e} in $\operatorname{LMlt}(Q)$ in G. Then $\operatorname{Gal}\left(G, G_{e}, f\right)$ is well defined and isomorphic to the orbit e^{Q}.

Example

Consider

Q	a	b	c
a	a	b	c
b	a	b	c
c	b	a	c

- one orbit is isomorphic to $\operatorname{Gal}\left(\left\{\operatorname{id}_{Q},(a, b)\right\},\left\{\operatorname{id}_{Q}\right\}, \mathrm{id}\right)$,
- the other is isomorphic to $\operatorname{Gal}\left(\left\{\operatorname{id}_{Q},(a, b)\right\},\left\{\operatorname{id}_{Q},(a, b)\right\}, \mathrm{id}\right)$.

Connected quandles

Definition

A quandle Q is called (algebraically) connected if $\operatorname{Dis}(Q)$ acts transitively on Q.

Proposition

If Q is connected then $\operatorname{Dis}(Q)=\operatorname{LMlt}(Q)^{\prime}$.

Theorem (A. Hulpke, D. Stanovský, P. Vojtěchovský)
\square
(1) $Q \cong \operatorname{Gal}(G, H, f)$ where $G=\operatorname{LMlt}(Q)^{\prime}, e \in Q, H=G_{e}$ and f is the conjugation by L_{e}.
(2) If $Q \cong \operatorname{Gal}(G, H, f)$ then $\mathrm{IMlt}(Q)^{\prime}$ embeds into a quotient of G.

Connected quandles

Definition

A quandle Q is called (algebraically) connected if $\operatorname{Dis}(Q)$ acts transitively on Q.

Proposition

If Q is connected then $\operatorname{Dis}(Q)=\operatorname{LMlt}(Q)^{\prime}$.

Theorem (A. Hulpke, D. Stanovský, P. Vojtěchovský)
Let Q be a connected quandle. Then
(0) $Q \cong \operatorname{Gal}(G, H, f)$ where $G=\operatorname{LMlt}(Q)^{\prime}, e \in Q, H=G_{e}$ and f is
the conjugation by L_{e}.
(2) If $Q \cong \operatorname{Gal}(G, H, f)$ then $\operatorname{LMlt}(Q)^{\prime}$ embeds into a quotient of G.

Connected quandles

Definition

A quandle Q is called (algebraically) connected if $\operatorname{Dis}(Q)$ acts transitively on Q.

Proposition

If Q is connected then $\operatorname{Dis}(Q)=\operatorname{LMlt}(Q)^{\prime}$.

Theorem (A. Hulpke, D. Stanovský, P. Vojtěchovský)

Let Q be a connected quandle. Then
(1) $Q \cong \operatorname{Gal}(G, H, f)$ where $G=\operatorname{LMlt}(Q)^{\prime}, e \in Q, H=G_{e}$ and f is the conjugation by L_{e}.
(2) If $Q \cong \operatorname{Gal}(G, H, f)$ then $\operatorname{LMlt}(Q)^{\prime}$ embeds into a quotient of G.

Enumerating small connected quandles

Searching for a permutation group G acting on $1, \ldots, n$ such that (1) G^{\prime} is transitive on $1, \ldots, n$;
(3) there exists $\zeta \in Z\left(G_{1}\right)$ such that $\left\langle\zeta^{G}\right\rangle=G$.

Number of connected quandles of each size, up to isomorphism

n	1	2	3	4	5	6	7	8	9	10	11	12	13
$q(n)$	1	0	1	1	3	2	5	3	8	1	9	10	11
n	14	15	16	17	18	19	20	21	22	23	24		
$q(n)$	0	7	9	15	12	17	19	9	0	21	42		
n	25	26	27	28	29	30	31	32	33	34	35		
$q(n)$	34	0	65	13	27	24	29	17	11	0	15		

Enumerating small connected quandles

Searching for a permutation group G acting on $1, \ldots, n$ such that
(1) G^{\prime} is transitive on $1, \ldots, n$;
(2)
(3) there exists $\zeta \in Z\left(G_{1}\right)$ such that $\left\langle\zeta^{G}\right\rangle=G$.

Number of connected quandles of each size, up to isomorphism

n	1	2	3	4	5	6	7	8	9	10	11	12	13
$q(n)$	1	0	1	1	3	2	5	3	8	1	9	10	11
n	14	15	16	17	18	19	20	21	22	23	24		
$q(n)$	0	7	9	15	12	17	19	9	0	21	42		
n	25	26	27	28	29	30	31	32	33	34	35		
$q(n)$	34	0	65	13	27	24	29	17	11	0	15		

Enumerating small connected quandles

Searching for a permutation group G acting on $1, \ldots, n$ such that
(1) G^{\prime} is transitive on $1, \ldots, n$;
(2) $\left\langle Z\left(G_{1}\right)^{G}\right\rangle=G$;
(3) there exists $\zeta \in Z\left(G_{1}\right)$ such that $\left\langle\zeta^{G}\right\rangle=G$.

Number of connected quandles of each size, up to isomorphism

n	1	2	3	4	5	6	7	8	9	10	11	12	13
$q(n)$	1	0	1	1	3	2	5	3	8	1	9	10	11
n	14	15	16	17	18	19	20	21	22	23	24		
$q(n)$	0	7	9	15	12	17	19	9	0	21	42		
n	25	26	27	28	29	30	31	32	33	34	35		
$q(n)$	34	0	65	13	27	24	29	17	11	0	15		

Enumerating small connected quandles

Searching for a permutation group G acting on $1, \ldots, n$ such that
(1) G^{\prime} is transitive on $1, \ldots, n$;
(2) $\left\langle Z\left(G_{1}\right)^{G}\right\rangle=G$;
(3) there exists $\zeta \in Z\left(G_{1}\right)$ such that $\left\langle\zeta^{G}\right\rangle=G$.

Number of connected quandles of each size, up to isomorphism

n	1	2	3	4	5	6	7	8	9	10	11	12	13
$q(n)$	1	0	1	1	3	2	5	3	8	1	9	10	11

n	14	15	16	17	18	19	20	21	22	23	24
$q(n)$	0	7	9	15	12	17	19	9	0	21	42

n	25	26	27	28	29	30	31	32	33	34	35
$q(n)$	34	0	65	13	27	24	29	17	11	0	15

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

Definition

Let $(A,+)$ be an abelian group and $f \in \operatorname{Aut}(A)$. The set A with the operation

$$
x * y=(1-f)(x)+f(y)
$$

forms a quandle called affine and denoted by $\operatorname{Aff}(A, f)$.

Observation
A quandle Q is affine if and only if it admits a Galkin's
representation of form $\operatorname{Gal}(G, H, f)$ where G is abelian.

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

Definition

Let $(A,+)$ be an abelian group and $f \in \operatorname{Aut}(A)$. The set A with the operation

$$
x * y=(1-f)(x)+f(y)
$$

forms a quandle called affine and denoted by $\operatorname{Aff}(A, f)$.

Observation
A quandle Q is affine if and only if it admits a Galkin's representation of form $\operatorname{Gal}(G, H, f)$ where G is abelian.

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

Definition

Let $(A,+)$ be an abelian group and $f \in \operatorname{Aut}(A)$. The set A with the operation

$$
x * y=(1-f)(x)+f(y)
$$

forms a quandle called affine and denoted by $\operatorname{Aff}(A, f)$.

Observation

A quandle Q is affine if and only if it admits a Galkin's representation of form $\operatorname{Gal}(G, H, f)$ where G is abelian.

Orbits of medial quandles

Proposition

A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian.

Corollary
 A connected quandle is medial if and only if it is affine.

Corollary
Every orbit of a medial quandle is affine.

Orbits of medial quandles

Proposition

A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian.

Corollary

A connected quandle is medial if and only if it is affine.

Corollary
Fvery orbit of a medial quandle is affine.

Orbits of medial quandles

Proposition

A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian.

Corollary

A connected quandle is medial if and only if it is affine.

Corollary
Every orbit of a medial quandle is affine.

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\varphi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\varphi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\varphi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;
(M3) $\varphi_{j, k} \circ \varphi_{i, j}=\varphi_{j^{\prime}, k} \circ \varphi_{i, j^{\prime}}$;

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\varphi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;
(M3) $\varphi_{j, k} \circ \varphi_{i, j}=\varphi_{j^{\prime}, k} \circ \varphi_{i, j^{\prime}}$;
(M4) $\varphi_{j, k}\left(c_{i, j}\right)=\varphi_{k, k}\left(c_{i, k}-c_{j, k}\right)$;

Affine mesh

Definition

An indecomposable affine mesh is an n-tuplet of abelian groups A_{1}, \ldots, A_{n}, together with homomorphisms $\varphi_{i, j}: A_{i} \rightarrow A_{j}$ and constants $c_{i, j} \in A_{j}$, for $i, j \in[1, \cdots, n]$, satisfying
(M1) $\left(1-\varphi_{i, i}\right) \in \operatorname{Aut}\left(A_{i}\right)$;
(M2) $c_{i, i}=0$;
(M3) $\varphi_{j, k} \circ \varphi_{i, j}=\varphi_{j^{\prime}, k} \circ \varphi_{i, j^{\prime}} ;$
(M4) $\varphi_{j, k}\left(c_{i, j}\right)=\varphi_{k, k}\left(c_{i, k}-c_{j, k}\right)$;
(M5) $A_{j}=\left\langle\bigcup_{i \in I}\left(c_{i, j}+\operatorname{Im}\left(\varphi_{i, j}\right)\right)\right\rangle$.

Sums of affine meshes

Definition

The sum of an indecomposable affine mesh $\mathcal{A}=\left(A_{i}, \varphi_{i, j}, c_{i, j}\right)$ over a set I is the groupoid $\left(\bigcup_{i \in I} A_{i}, *\right)$ with the operation $*$ defined as

$$
a * b=\varphi_{i, j}(a)+\left(1-\varphi_{j, j}\right)(b)+c_{i, j,} \quad \text { for } a \in A_{i} \text { and } b \in A_{j} .
$$

Proposition (P. J., A. Pilitowska, D. Stanovský,
 A. Zamojska-Dzienio)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to $A_{i}, i \in I$.
On the other hand, every medial quandle is the sum of an indecomposable affine mesh.

Sums of affine meshes

Definition

The sum of an indecomposable affine mesh $\mathcal{A}=\left(A_{i}, \varphi_{i, j}, c_{i, j}\right)$ over a set I is the groupoid $\left(\bigcup_{i \in I} A_{i}, *\right)$ with the operation $*$ defined as

$$
a * b=\varphi_{i, j}(a)+\left(1-\varphi_{j, j}\right)(b)+c_{i, j}, \quad \text { for } a \in A_{i} \text { and } b \in A_{j} .
$$

Proposition (P. J., A. Pilitowska, D. Stanovský,
A. Zamojska-Dzienio)

The sum of an indecomposable affine mesh over a set I is a medial quandle with orbits equal to $A_{i}, i \in I$.
On the other hand, every medial quandle is the sum of an indecomposable affine mesh.

3-element medial quandles

Example

Medial quandles of size 3

- $\left(\mathbb{Z}_{3} ; 2 ; 0\right)$

	a	b	c
a	a	c	b
b	c	b	a
c	b	a	c

3-element medial quandles

Example

Medial quandles of size 3

- $\left(\mathbb{Z}_{3} ; 2 ; 0\right)$
(2) $\left(\mathbb{Z}_{2}, \mathbb{Z}_{1} ;\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) ;\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$

	a	b	c
a	a	c	b
b	c	b	a
c	b	a	c
	a	b	c
a	a	b	c
b	a	b	c
c	b	a	c

3-element medial quandles

Example

Medial quandles of size 3

- $\left(\mathbb{Z}_{3} ; 2 ; 0\right)$
(2) $\left(\mathbb{Z}_{2}, \mathbb{Z}_{1} ;\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) ;\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$

	a	b	c
a	a	c	b
b	c	b	a
c	b	a	c

	a	b	c
a	a	b	c
b	a	b	c
c	b	a	c

(3) $\left(\mathbb{Z}_{1}, \mathbb{Z}_{1}, \mathbb{Z}_{1} ;\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) ;\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)$

	a	b	c
a	a	b	c
b	a	b	c
c	a	b	c

Homology of meshes

Definition

Two affine meshes $\left(\left(A_{i}\right)_{i \in I},\left(\varphi_{i, j}\right)_{i, j \in I},\left(c_{i, j}\right)_{i, j \in I}\right)$ and $\left(\left(A_{i}^{\prime}\right)_{i \in I},\left(\varphi_{i, j}^{\prime}\right)_{i, j \in I},\left(c_{i, j}^{\prime}\right)_{i, j \in I}\right)$ are said to be homologous if

- there exists $\pi \in S_{I}$ such that $A_{i} \cong A_{\pi i}^{\prime}$;
- for each $i \in I$, there exists ψ_{i}, an isomorphism between A_{i} and $A_{\pi i}^{\prime}$, such that

$$
\psi_{j} \circ \varphi_{i, j}=\varphi_{\pi i, \pi j}^{\prime} \circ \psi_{i ;}
$$

- for each $j \in I$, there exists $d_{j} \in A_{\pi j}^{\prime}$ such that

$$
\psi_{i}\left(c_{i, j}\right)=c_{\pi i, \pi i}^{\prime}+\varphi_{\pi i, \pi i}^{\prime}\left(d_{i}\right)-\varphi_{\pi i, \pi i}^{\prime}\left(d_{j}\right)
$$

Proposition (P. J., A. P., D. S., A. Z.-D.)

The sums of two indecomposable affine meshes are isomorphic if and only if the meshes are homologous.

Homology of meshes

Definition

Two affine meshes $\left(\left(A_{i}\right)_{i \in I},\left(\varphi_{i, j}\right)_{i, j \in I},\left(c_{i, j}\right)_{i, j \in I}\right)$ and $\left(\left(A_{i}^{\prime}\right)_{i \in I},\left(\varphi_{i, j}^{\prime}\right)_{i, j \in I},\left(c_{i, j}^{\prime}\right)_{i, j \in I}\right)$ are said to be homologous if

- there exists $\pi \in S_{I}$ such that $A_{i} \cong A_{\pi i}^{\prime}$;
- for each $i \in I$, there exists ψ_{i}, an isomorphism between A_{i} and $A_{\pi i}^{\prime}$, such that

$$
\mathbf{u}_{j} \circ \varphi_{i, j}=\varphi_{\pi i, \pi j}^{\prime} \circ \psi_{i i}
$$

- for each $j \in I$, there exists $d_{j} \in A_{\pi j}^{\prime}$ such that

$$
()_{j}:\left(c_{i, j}\right)=c^{\prime} \cdot+n^{\prime} \cdot\left(d_{i}\right)-n^{\prime} \cdot,\left(d_{j}\right)
$$

[^0]The sums of two indecomposable affine meshes are isomorphic if and only if the meshes are homologous.

Homology of meshes

Definition

Two affine meshes $\left(\left(A_{i}\right)_{i \in I},\left(\varphi_{i, j}\right)_{i, j \in I},\left(c_{i, j}\right)_{i, j \in I}\right)$ and
$\left(\left(A_{i}^{\prime}\right)_{i \in I},\left(\varphi_{i, j}^{\prime}\right)_{i, j \in I},\left(c_{i, j}^{\prime}\right)_{i, j \in I}\right)$ are said to be homologous if

- there exists $\pi \in S_{I}$ such that $A_{i} \cong A_{\pi i}^{\prime}$;
- for each $i \in I$, there exists ψ_{i}, an isomorphism between A_{i} and $A_{\pi i}^{\prime}$, such that

$$
\begin{equation*}
\psi_{j} \circ \varphi_{i, j}=\varphi_{\pi i, \pi j}^{\prime} \circ \psi_{i} \tag{H1}
\end{equation*}
$$

- for each $j \in I$, there exists $d_{j} \in A_{\pi j}^{\prime}$ such that

[^1]The sums of two indecomposable affine meshes are isomorphic if and only if the meshes are homologous.

Homology of meshes

Definition

Two affine meshes $\left(\left(A_{i}\right)_{i \in I},\left(\varphi_{i, j}\right)_{i, j \in I},\left(c_{i, j}\right)_{i, j \in I}\right)$ and $\left(\left(A_{i}^{\prime}\right)_{i \in I},\left(\varphi_{i, j}^{\prime}\right)_{i, j \in I},\left(c_{i, j}^{\prime}\right)_{i, j \in I}\right)$ are said to be homologous if

- there exists $\pi \in S_{I}$ such that $A_{i} \cong A_{\pi i}^{\prime}$;
- for each $i \in I$, there exists ψ_{i}, an isomorphism between A_{i} and $A_{\pi i}^{\prime}$, such that

$$
\begin{equation*}
\psi_{j} \circ \varphi_{i, j}=\varphi_{\pi i, \pi j}^{\prime} \circ \psi_{i} ; \tag{H1}
\end{equation*}
$$

- for each $j \in I$, there exists $d_{j} \in A_{\pi j}^{\prime}$ such that

$$
\begin{equation*}
\psi_{j}\left(c_{i, j}\right)=c_{\pi i, \pi j}^{\prime}+\varphi_{\pi i, \pi j}^{\prime}\left(d_{i}\right)-\varphi_{\pi j, \pi j}^{\prime}\left(d_{j}\right) \tag{H2}
\end{equation*}
$$

[^2] and only if the meshes are homologous.

Homology of meshes

Definition

Two affine meshes $\left(\left(A_{i}\right)_{i \in I},\left(\varphi_{i, j}\right)_{i, j \in I},\left(c_{i, j}\right)_{i, j \in I}\right)$ and $\left(\left(A_{i}^{\prime}\right)_{i \in I},\left(\varphi_{i, j}^{\prime}\right)_{i, j \in I},\left(c_{i, j}^{\prime}\right)_{i, j \in I}\right)$ are said to be homologous if

- there exists $\pi \in S_{I}$ such that $A_{i} \cong A_{\pi i}^{\prime}$;
- for each $i \in I$, there exists ψ_{i}, an isomorphism between A_{i} and $A_{\pi i}^{\prime}$, such that

$$
\begin{equation*}
\psi_{j} \circ \varphi_{i, j}=\varphi_{\pi i, \pi j}^{\prime} \circ \psi_{i} \tag{H1}
\end{equation*}
$$

- for each $j \in I$, there exists $d_{j} \in A_{\pi j}^{\prime}$ such that

$$
\begin{equation*}
\psi_{j}\left(c_{i, j}\right)=c_{\pi i, \pi j}^{\prime}+\varphi_{\pi i, \pi j}^{\prime}\left(d_{i}\right)-\varphi_{\pi j, \pi j}^{\prime}\left(d_{j}\right) \tag{H2}
\end{equation*}
$$

Proposition (P. J., A. P., D. S., A. Z.-D.)

The sums of two indecomposable affine meshes are isomorphic if and only if the meshes are homologous.

Examples of homologous meshes

Example

The meshes

$$
\left(\mathbb{Z}_{3}, \mathbb{Z}_{3} ;\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) ;\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right)
$$

and

$$
\left(\mathbb{Z}_{3}, \mathbb{Z}_{3} ;\left(\begin{array}{cc}
2 & 2 \\
2 & 2
\end{array}\right) ;\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)\right)
$$

are homologous through $\pi=1, \psi_{1}=\psi_{2}=1, d_{1}=1$ and $d_{2}=2$.

Homology group of affine meshes

Fix abelian groups $\underbrace{A_{1}, \ldots, A_{1}}_{n_{1} \times}, \underbrace{A_{2}, \ldots, A_{2}}_{n_{2} \times}, \ldots, \underbrace{A_{m}, \ldots, A_{m}}_{n_{m} \times}$. Permutations for homologies belong to $\prod_{i=1}^{m} S_{n_{i}}$. The acting group is $G=\prod^{m}\left(A_{i} \rtimes \operatorname{Aut}\left(A_{i}\right)\right)$ $S_{n_{i}}$ acting on the set of all irreducible affine meshes.

Homology group of affine meshes

Fix abelian groups $\underbrace{A_{1}, \ldots, A_{1}}_{n_{1} \times}, \underbrace{A_{2}, \ldots, A_{2}}_{n_{2} \times}, \ldots, \underbrace{A_{m}, \ldots, A_{m}}_{n_{m} \times}$.
Permutations for homologies belong to $\prod_{i=1}^{m} S_{n_{i}}$.
The acting group is $G=\prod^{m}\left(A_{i} \rtimes \operatorname{Aut}\left(A_{i}\right)\right)$ ८ $S_{n_{i}}$ acting on the set of all irreducible affine meshes.

Homology group of affine meshes

Fix abelian groups $\underbrace{A_{1}, \ldots, A_{1}}_{n_{1} \times}, \underbrace{A_{2}, \ldots, A_{2}}_{n_{2} \times}, \ldots, \underbrace{A_{m}, \ldots, A_{m}}_{n_{m} \times}$.
Permutations for homologies belong to $\prod_{i=1}^{m} S_{n_{i}}$.
The acting group is $G=\prod_{i=1}^{m}\left(A_{i} \rtimes \operatorname{Aut}\left(A_{i}\right)\right)$ $S_{n_{i}}$ acting on the set of all irreducible affine meshes.

Reductivity

Definition

A groupoid Q is called m-reductive if it satisfies

$$
(\cdots((x \underbrace{x y) y) \cdots) y}_{m \times}=y
$$

Fact

\square
Example
$\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is m-reductive but not m - 1 -reductive.

Conjecture

A medial quandle is m-reductive and not m - 1 -reductive if and only if $\operatorname{LMlt}(Q)$ is nilpotent of degree $m-1$

Reductivity

Definition

A groupoid Q is called m-reductive if it satisfies

$$
(\cdots((x \underbrace{y) y) \cdots) y}_{m x}=y
$$

Fact

A quandle $\operatorname{Aff}(A, f)$ is m-reductive if and only if $(1-f)^{m}=0$.
Example
$\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is m-reductive but not $m-1$-reductive.

Conjecture
A medial quandle is m-reductive and not $m-1$-reductive if and only if $\operatorname{LMlt}(Q)$ is nilpotent of degree $m-1$

Reductivity

Definition

A groupoid Q is called m-reductive if it satisfies

$$
(\cdots((x \underbrace{y) y) \cdots) y}_{m x}=y
$$

Fact

A quandle $\operatorname{Aff}(A, f)$ is m-reductive if and only if $(1-f)^{m}=0$.
Example
$\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is m-reductive but not $m-1$-reductive.

[^3]
Reductivity

Definition

A groupoid Q is called m-reductive if it satisfies

$$
(\cdots((x \underbrace{x) y) \cdots) y}_{m x}=y
$$

Fact

A quandle $\operatorname{Aff}(A, f)$ is m-reductive if and only if $(1-f)^{m}=0$.

Example

$\operatorname{Aff}\left(\mathbb{Z}_{p^{m}}, 1-p\right)$ is m-reductive but not $m-1$-reductive.

Conjecture

A medial quandle is m-reductive and not $m-1$-reductive if and only if $\operatorname{LMlt}(Q)$ is nilpotent of degree $m-1$.

2-reductive quandles

Theorem

Let Q be the sum of an irreducible affine mesh $\left(A_{i}, \varphi_{i, j}, c_{i, j}\right)$. Then TFAE
(1) Q is 2-reductive,
(2) every orbit of Q is a right-zero band,
(3) $\varphi_{i, i}=0$, for every $i \in I$.
(9) for every $j \in I$, there exists $i \in I$ such that $\varphi_{i, j}=0$,
(5) $\varphi_{i, j}=0$, for every $i, j \in I$,
(0) $\operatorname{LMlt}(Q)$ is commutative.

Corollary

If one of the orbits of Q has one element then Q is 2-reductive

2-reductive quandles

Theorem

Let Q be the sum of an irreducible affine mesh $\left(A_{i}, \varphi_{i, j}, c_{i, j}\right)$. Then TFAE
(1) Q is 2-reductive,
(2) every orbit of Q is a right-zero band,
(3) $\varphi_{i, i}=0$, for every $i \in I$.
(9) for every $j \in I$, there exists $i \in I$ such that $\varphi_{i, j}=0$,
(5) $\varphi_{i, j}=0$, for every $i, j \in I$,
(6) $\operatorname{LMlt}(Q)$ is commutative.

Corollary

If one of the orbits of Q has one element then Q is 2-reductive.

2-reductive affine meshes

Lemma

$\left(A_{i}, \varphi_{i, j}, c_{i, j}\right)$ is an irreducible affine mesh whose sum is a 2-reductive mesh if and only if

- $\varphi_{i, j}=0$, for each $i, j \in I$,
- $c_{i, i}=0$, for each $i \in I$,
- for each $j \in I, A_{j}=\left\langle c_{i, j}, i \in I\right\rangle$.

[^4]
2-reductive affine meshes

Lemma

$\left(A_{i}, \varphi_{i, j}, c_{i, j}\right)$ is an irreducible affine mesh whose sum is a 2-reductive mesh if and only if

- $\varphi_{i, j}=0$, for each $i, j \in I$,
- $c_{i, i}=0$, for each $i \in I$,
- for each $j \in I, A_{j}=\left\langle c_{i, j}, i \in I\right\rangle$.

Example

The number of non-isomorphic medial quandles with m orbits equal to \mathbb{Z}_{p}, is at least $p^{m^{2}-2 m-\left(1+\log _{p} m\right) p m}$.

Reductivity

Numbers of medial quandles

size	2-red.	other
1	1	0
2	1	0
3	2	1
4	5	1
5	15	3
6	55	3
7	246	5
8	1,398	12

size	2-reductive	other
9	10,301	10
10	98,532	45
11	$1,246,479$	9
12	$20,837,171$	268
13	$466,087,624$	11
14	$13,943,041,873$	$?$
15	$563,753,074,915$	36
16	$30,784,745,506,212$	$?$

Conjecture

For each n, the number of 2 -reductive medial quandles is bigger than the number of other medial quandles.

Numbers of medial quandles

size	2-red.	other
1	1	0
2	1	0
3	2	1
4	5	1
5	15	3
6	55	3
7	246	5
8	1,398	12

size	2-reductive	other
9	10,301	10
10	98,532	45
11	$1,246,479$	9
12	$20,837,171$	268
13	$466,087,624$	11
14	$13,943,041,873$	$?$
15	$563,753,074,915$	36
16	$30,784,745,506,212$	$?$

Conjecture

For each n, the number of 2-reductive medial quandles is bigger than the number of other medial quandles.

[^0]: Proposition (P. J., A. P., D. S., A. Z.-D.)

[^1]: Proposition (P. J., A. P., D. S., A. Z.-D.)

[^2]: Proposition (P. J., A. P., D. S., A. Z.-D.
 The sums of two indecomposable affine meshes are isomorphic if

[^3]: Conjecture
 A medial quandle is m-reductive and not $m-1$-reductive if and only if $\operatorname{LMlt}(Q)$ is nilpotent of degree $m-1$.

[^4]: Example
 The number of non-isomorphic medial quandles with m orbits equal to \mathbb{Z}_{p}, is at least $p^{m^{2}-2 m-\left(1+\log _{p} m\right) p m}$

