Equational theory of left divisible left distributive groupoids

Přemysl Jedlička

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

> AAA 83, Novi Sad 17th March 2012

イロト イ得ト イヨト イヨト

Equational theory of left divisible left distributive groupoids Variety of the group conjugacy

Definitions

Definitions

Left distributivity:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot (x \cdot z)$$

Idempotency:

$$x \cdot x = x$$

Example

Let (G, *) be a group and define

$$x \cdot y = x * y * x^{-1}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Equational theory of left divisible left distributive groupoids Variety of the group conjugacy

Definitions

Definitions

Left distributivity:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot (x \cdot z)$$

Idempotency:

$$x \cdot x = x$$

Example

Let (G, *) be a group and define

$$x \cdot y = x * y * x^{-1}$$

Variety of the group conjugacy

Smallest non-GC example

Example (D. Larue; A. Drápal, T. Kepka, M. Musílek)

The following identity holds in GC:

$$(xy \cdot y) \cdot xx = xy \cdot (yx \cdot x)$$

while not in every LDI groupoid; the smallest counterexamples are

•	1	2	3	4	·	1	2	3	4	
1	1	2	4	3	1	1	2	3	4	
2	1	2	4	3	2	2	2	4	4	
3	4	4	3	1	3	1	1	3	3	
4	3	3	1	4	4	1	2	3	4	

Variety of the group conjugacy

Equivalence of idempotent varieties

Theorem (D. Joyce; T. Kepka; D. Larue)

The following varieties coincide

- the variety generated by the groupoids of group conjugacy;
- the variety generated by the left distributive idempotent left quasigroups;
- the variety generated by the left cancellative left distributive idempotent groupoids;
- the variety generated by the left divisible left distributive idempotent groupoids.

Equational theory of left divisible left distributive groupoids Left distributive left idempotent groupoids

Left idempotency

Fact

Every LDLD groupoid satisfies the identity

 $x \cdot y = xx \cdot y$

called the left (pseudo)-idempotency.

Proof.

For all x, y in G there exist $z \in G$ such that $x \cdot z = y$. Now $x \cdot y = x \cdot xz = xx \cdot xz = xx \cdot y$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Examples of non-idempotent LDLQ

Example

Define an operation \uparrow on \mathbb{Z} as follows:

$$i \uparrow j = j + 1$$

Then $\mathbb{Z}(^{\wedge})$ is a left distributive left quasigroup.

Example

Let (G, *) be a group and let $d \in G$. Define an operation \uparrow on G as follows:

$$a \bullet b = d \ast b$$

Then $G(^)$ is a left distributive left quasigroup.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Examples of non-idempotent LDLQ

Example

Define an operation \uparrow on \mathbb{Z} as follows:

$$i \uparrow j = j + 1$$

Then $\mathbb{Z}(^{\wedge})$ is a left distributive left quasigroup.

Example

Let (G, *) be a group and let $d \in G$. Define an operation \uparrow on G as follows:

$$a \bullet b = d \ast b$$

Then $G(^)$ is a left distributive left quasigroup.

Equivalence of left idempotent varieties

Definition

Let (G, *) be a group and X a subset of G. We define the *half-conjugacy* as the following binary operation on $G \times X$:

$$(a,x) \cdot (b,y) = (a * x * a^{-1} * b, y)$$

Theorem (T. Kepka; P. Dehornoy)

The following varieties coincide:

- the variety generated by the groups with half-conjugacy;
- the variety generated by the left distributive left quasigroups;
- the variety generated by the left cancellative left distributive left idempotent groupoids.

Equivalence of left idempotent varieties

Definition

Let (G, *) be a group and X a subset of G. We define the *half-conjugacy* as the following binary operation on $G \times X$:

$$(a,x) \cdot (b,y) = (a * x * a^{-1} * b, y)$$

Theorem (T. Kepka; P. Dehornoy)

The following varieties coincide:

- the variety generated by the groups with half-conjugacy;
- the variety generated by the left distributive left quasigroups;
- the variety generated by the left cancellative left distributive left idempotent groupoids.

Equational theory of left divisible left distributive groupoids Left distributive left idempotent groupoids

Larue's identity in the non-idempotent case

Lemma

The identity

$$(xy \cdot y) \cdot xx = xy \cdot (yx \cdot x)$$

holds in

- every LCLDLI groupoid;
- every LDLD groupoid.

(D. Larue)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Equational theory of left divisible left distributive groupoids Left distributive left idempotent groupoids

Larue's identity in the non-idempotent case

Lemma

The identity

$$(xy \cdot y) \cdot xx = xy \cdot (yx \cdot x)$$

holds in

- every LCLDLI groupoid;
- every LDLD groupoid.

(D. Larue) (D. Stanovský)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

LDLD with surjective squaring

Proposition (P.J.)

Let G be an LDLD groupoid with the mapping $a \mapsto a^2$ surjective. Then G lies in the variety generated by LCLDLI.

.emma

Let G be a LDLI groupoid. Then

- if G is left cancellative then $a \mapsto a^2$ is injective;
- if G is a left quasigroup then $a \mapsto a^2$ is bijective.

- If $a^2 = b^2$ then $a^2 = a^2 \cdot a = b^2 \cdot a = ba$. If bb = ba then b = a.
- Choose $a \in G$. There exists $x \in G$ such that ax = a. Now $a^2 = (ax)^2 = ax^2$ giving $a = x^2$.

LDLD with surjective squaring

Proposition (P.J.)

Let G be an LDLD groupoid with the mapping $a \mapsto a^2$ surjective. Then G lies in the variety generated by LCLDLI.

Lemma

Let G be a LDLI groupoid. Then

- if G is left cancellative then $a \mapsto a^2$ is injective;
- if G is a left quasigroup then $a \mapsto a^2$ is bijective.

- If $a^2 = b^2$ then $a^2 = a^2 \cdot a = b^2 \cdot a = ba$. If bb = ba then b = a.
- Choose $a \in G$. There exists $x \in G$ such that ax = a. Now $a^2 = (ax)^2 = ax^2$ giving $a = x^2$.

LDLD with surjective squaring

Proposition (P.J.)

Let G be an LDLD groupoid with the mapping $a \mapsto a^2$ surjective. Then G lies in the variety generated by LCLDLI.

Lemma

Let G be a LDLI groupoid. Then

- if G is left cancellative then $a \mapsto a^2$ is injective;
- if G is a left quasigroup then $a \mapsto a^2$ is bijective.

- If $a^2 = b^2$ then $a^2 = a^2 \cdot a = b^2 \cdot a = ba$. If bb = ba then b = a.
- Choose $a \in G$. There exists $x \in G$ such that ax = a. Now $a^2 = (ax)^2 = ax^2$ giving $a = x^2$.

LDLD with surjective squaring

Proposition (P.J.)

Let G be an LDLD groupoid with the mapping $a \mapsto a^2$ surjective. Then G lies in the variety generated by LCLDLI.

Lemma

Let G be a LDLI groupoid. Then

- if G is left cancellative then $a \mapsto a^2$ is injective;
- if G is a left quasigroup then $a \mapsto a^2$ is bijective.

- If $a^2 = b^2$ then $a^2 = a^2 \cdot a = b^2 \cdot a = ba$. If bb = ba then b = a.
- Choose $a \in G$. There exists $x \in G$ such that ax = a. Now $a^2 = (ax)^2 = ax^2$ giving $a = x^2$.

LDLD with surjective squaring

Proposition (P.J.)

Let G be an LDLD groupoid with the mapping $a \mapsto a^2$ surjective. Then G lies in the variety generated by LCLDLI.

Lemma

Let G be a LDLI groupoid. Then

- if G is left cancellative then $a \mapsto a^2$ is injective;
- if G is a left quasigroup then $a \mapsto a^2$ is bijective.

- If $a^2 = b^2$ then $a^2 = a^2 \cdot a = b^2 \cdot a = ba$. If bb = ba then b = a.
- Choose $a \in G$. There exists $x \in G$ such that ax = a. Now $a^2 = (ax)^2 = ax^2$ giving $a = x^2$.

LDLD with surjective squaring

Proposition (P.J.)

Let G be an LDLD groupoid with the mapping $a \mapsto a^2$ surjective. Then G lies in the variety generated by LCLDLI.

Lemma

Let G be a LDLI groupoid. Then

- if G is left cancellative then $a \mapsto a^2$ is injective;
- if G is a left quasigroup then $a \mapsto a^2$ is bijective.

- If $a^2 = b^2$ then $a^2 = a^2 \cdot a = b^2 \cdot a = ba$. If bb = ba then b = a.
- Choose $a \in G$. There exists $x \in G$ such that ax = a. Now $a^2 = (ax)^2 = ax^2$ giving $a = x^2$.

LDLD with surjective squaring

Proposition (P.J.)

Let G be an LDLD groupoid with the mapping $a \mapsto a^2$ surjective. Then G lies in the variety generated by LCLDLI.

Lemma

Let G be a LDLI groupoid. Then

- if G is left cancellative then $a \mapsto a^2$ is injective;
- if G is a left quasigroup then $a \mapsto a^2$ is bijective.

- If $a^2 = b^2$ then $a^2 = a^2 \cdot a = b^2 \cdot a = ba$. If bb = ba then b = a.
- Choose $a \in G$. There exists $x \in G$ such that ax = a. Now $a^2 = (ax)^2 = ax^2$ giving $a = x^2$.

Proposition (P.J.)

Let G be an LDLI groupoid and let ip_G be the smallest equivalence containing pairs (a, a^2) , for all $a \in G$. Then

- for all a, b, c in G, if $(a, b) \in ip_G$ then ac = bc;
- ip_G is a congruence of G;
- every class of ip_G is a subgroupoid of G.

Proposition (P.J.)

- the homomorfism $a \mapsto a^2$ is onto;
- $\forall a \in G \exists x \in G: ax = a \text{ and } (a, x) \in ip_G;$
- each class of ip_G is left divisible.

Proposition (P.J.)

Let G be an LDLI groupoid and let ip_G be the smallest equivalence containing pairs (a, a^2) , for all $a \in G$. Then

• for all a, b, c in G, if $(a, b) \in ip_G$ then ac = bc;

• ip_G is a congruence of G;

• every class of ip_G is a subgroupoid of G.

Proposition (P.J.)

- the homomorfism $a \mapsto a^2$ is onto;
- $\forall a \in G \exists x \in G: ax = a \text{ and } (a, x) \in ip_G;$
- each class of ip_G is left divisible.

Proposition (P.J.)

Let G be an LDLI groupoid and let ip_G be the smallest equivalence containing pairs (a, a^2) , for all $a \in G$. Then

- for all a, b, c in G, if $(a, b) \in ip_G$ then ac = bc;
- ip_G is a congruence of G;
- every class of ip_G is a subgroupoid of G.

Proposition (P.J.)

- the homomorfism $a \mapsto a^2$ is onto;
- $\forall a \in G \exists x \in G: ax = a \text{ and } (a, x) \in ip_G;$
- each class of ip_G is left divisible.

Proposition (P.J.)

Let G be an LDLI groupoid and let ip_G be the smallest equivalence containing pairs (a, a^2) , for all $a \in G$. Then

- for all a, b, c in G, if $(a, b) \in ip_G$ then ac = bc;
- ip_G is a congruence of G;
- every class of ip_G is a subgroupoid of G.

Proposition (P.J.)

- the homomorfism $a \mapsto a^2$ is onto;
- $\forall a \in G \exists x \in G: ax = a \text{ and } (a, x) \in ip_G;$
- each class of ip_G is left divisible.

Proposition (P.J.)

Let G be an LDLI groupoid and let ip_G be the smallest equivalence containing pairs (a, a^2) , for all $a \in G$. Then

- for all a, b, c in G, if $(a, b) \in ip_G$ then ac = bc;
- ip_G is a congruence of G;
- every class of ip_G is a subgroupoid of G.

Proposition (P.J.)

- the homomorfism $a \mapsto a^2$ is onto;
- $\forall a \in G \exists x \in G: ax = a \text{ and } (a, x) \in ip_G;$
- each class of ip_G is left divisible.

Proposition (P.J.)

Let G be an LDLI groupoid and let ip_G be the smallest equivalence containing pairs (a, a^2) , for all $a \in G$. Then

- for all a, b, c in G, if $(a, b) \in ip_G$ then ac = bc;
- ip_G is a congruence of G;
- every class of ip_G is a subgroupoid of G.

Proposition (P.J.)

- the homomorfism $a \mapsto a^2$ is onto;
- $\forall a \in G \exists x \in G: ax = a \text{ and } (a, x) \in ip_G;$
- each class of ip_G is left divisible.

Proposition (P.J.)

Let G be an LDLI groupoid and let ip_G be the smallest equivalence containing pairs (a, a^2) , for all $a \in G$. Then

- for all a, b, c in G, if $(a, b) \in ip_G$ then ac = bc;
- ip_G is a congruence of G;
- every class of ip_G is a subgroupoid of G.

Proposition (P.J.)

Let G be a LDLD groupoid. Then the following conditions are equivalent:

- the homomorfism $a \mapsto a^2$ is onto;
- $\forall a \in G \exists x \in G: ax = a \text{ and } (a, x) \in ip_G;$

• each class of ip_G is left divisible.

Proposition (P.J.)

Let G be an LDLI groupoid and let ip_G be the smallest equivalence containing pairs (a, a^2) , for all $a \in G$. Then

- for all a, b, c in G, if $(a, b) \in ip_G$ then ac = bc;
- ip_G is a congruence of G;
- every class of ip_G is a subgroupoid of G.

Proposition (P.J.)

- the homomorfism $a \mapsto a^2$ is onto;
- $\forall a \in G \ \exists x \in G: ax = a \ and \ (a, x) \in ip_G;$
- each class of ip_G is left divisible.

Open questions

Question:

Does there exist an LDLD groupoid where $a \mapsto a^2$ is not surjective? If yes, does it lie in the variety generated by LCLDLI?

Question:

Find an equational basis of the group conjugacy. Could it be finite?

Question:

Find an equational basis of the group half-conjugacy. Could it be finite?

Open questions

Question:

Does there exist an LDLD groupoid where $a \mapsto a^2$ is not surjective? If yes, does it lie in the variety generated by LCLDLI?

Question:

Find an equational basis of the group conjugacy. Could it be finite?

Question:

Find an equational basis of the group half-conjugacy. Could it be finite?

Open questions

Question:

Does there exist an LDLD groupoid where $a \mapsto a^2$ is not surjective? If yes, does it lie in the variety generated by LCLDLI?

Question:

Find an equational basis of the group conjugacy. Could it be finite?

Question:

Find an equational basis of the group half-conjugacy. Could it be finite?