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Variety of the group conjugacy

Definitions

Definitions

Left distributivity:

x · (y · z) = (x · y) · (x · z)

Idempotency:
x · x = x

Example

Let (G, ∗) be a group and define

x · y = x ∗ y ∗ x−1
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Variety of the group conjugacy

Smallest non-GC example

Example (D. Larue; A. Drápal, T. Kepka, M. Musílek)

The following identity holds in GC:

(xy · y) · xx = xy · (yx · x)

while not in every LDI groupoid; the smallest counterexamples
are

· 1 2 3 4
1 1 2 4 3
2 1 2 4 3
3 4 4 3 1
4 3 3 1 4

· 1 2 3 4
1 1 2 3 4
2 2 2 4 4
3 1 1 3 3
4 1 2 3 4
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Variety of the group conjugacy

Equivalence of idempotent varieties

Theorem (D. Joyce; T. Kepka; D. Larue)

The following varieties coincide

the variety generated by the groupoids of group conjugacy;

the variety generated by the left distributive idempotent left
quasigroups;

the variety generated by the left cancellative left distributive
idempotent groupoids;

the variety generated by the left divisible left distributive
idempotent groupoids.
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Left distributive left idempotent groupoids

Left idempotency

Fact

Every LDLD groupoid satisfies the identity

x · y = xx · y

called the left (pseudo)-idempotency.

Proof.

For all x, y in G there exist z ∈ G such that x · z = y. Now
x · y = x · xz = xx · xz = xx · y.
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Left distributive left idempotent groupoids

Examples of non-idempotent LDLQ

Example

Define an operation ^ on Z as follows:

i ^ j = j + 1

Then Z(^) is a left distributive left quasigroup.

Example

Let (G, ∗) be a group and let d ∈ G. Define an operation ^ on G as
follows:

a ^ b = d ∗ b

Then G(^) is a left distributive left quasigroup.
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Left distributive left idempotent groupoids

Examples of non-idempotent LDLQ

Example

Define an operation ^ on Z as follows:

i ^ j = j + 1

Then Z(^) is a left distributive left quasigroup.

Example
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Left distributive left idempotent groupoids

Equivalence of left idempotent varieties

Definition

Let (G, ∗) be a group and X a subset of G. We define the
half-conjugacy as the following binary operation on G× X:

(a, x) · (b, y) = (a ∗ x ∗ a−1 ∗ b, y)

Theorem (T. Kepka; P. Dehornoy)

The following varieties coincide:

the variety generated by the groups with half-conjugacy;

the variety generated by the left distributive left quasigroups;

the variety generated by the left cancellative left distributive
left idempotent groupoids.
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Left distributive left idempotent groupoids

Larue’s identity in the non-idempotent case

Lemma

The identity
(xy · y) · xx = xy · (yx · x)

holds in

every LCLDLI groupoid; (D. Larue)

every LDLD groupoid. (D. Stanovský)
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Squaring in LDLD groupoids

LDLD with surjective squaring

Proposition (P.J.)

Let G be an LDLD groupoid with the mapping a 7→ a2 surjective.
Then G lies in the variety generated by LCLDLI.

Lemma

Let G be a LDLI groupoid. Then

if G is left cancellative then a 7→ a2 is injective;

if G is a left quasigroup then a 7→ a2 is bijective.

Proof.

If a2 = b2 then a2 = a2 · a = b2 · a = ba. If bb = ba then
b = a.

Choose a ∈ G. There exists x ∈ G such that ax = a. Now
a2 = (ax)2 = ax2 giving a = x2.
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Squaring in LDLD groupoids

Idempotent congruence

Proposition (P.J.)

Let G be an LDLI groupoid and let ipG be the smallest equivalence
containing pairs (a, a2), for all a ∈ G. Then

for all a, b, c in G, if (a, b) ∈ ipG then ac = bc;
ipG is a congruence of G;

every class of ipG is a subgroupoid of G.

Proposition (P.J.)

Let G be a LDLD groupoid. Then the following conditions are
equivalent:

the homomorfism a 7→ a2 is onto;

∀a ∈ G ∃x ∈ G: ax = a and (a, x) ∈ ipG;

each class of ipG is left divisible.
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Squaring in LDLD groupoids

Open questions

Question:

Does there exist an LDLD groupoid where a 7→ a2 is not
surjective?
If yes, does it lie in the variety generated by LCLDLI?

Question:

Find an equational basis of the group conjugacy.
Could it be finite?

Question:

Find an equational basis of the group half-conjugacy.
Could it be finite?
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