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Preliminaries

Quasigroups

Definition

Let (G, ·) be a groupoid. The mapping Lx : a 7→ xa is called the
left translation and the mapping Rx : a 7→ ax the right translation.

Definition (Combinatorial)

A groupoid (Q, ·) is called a quasigroup if the mappings Lx and Rx
are bijections, for each x ∈ Q.

Definition (Universal algebraic)

The algebra (Q, ·, /, \) is called a quasigroup if it satisfies the
following identities:

x\(x · y) = y (x · y)/y = x
x · (x\y) = y (x/y) · y = x
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Preliminaries

Loops

Definition

A quasigroup Q is called a loop if it contains the identity element.

Example (A minimal nonassociative loop)

1 2 3 4 5
1 1 2 3 4 5
2 2 1 5 3 4
3 3 4 1 5 2
4 4 5 2 1 3
5 5 3 4 2 1
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Automorphic loops

Multiplication Groups

Definitions

Let Q be a loop.

The group generated by Lx and Rx, for all x ∈ Q, is called the
multiplication group of Q and it is denoted by Mlt(Q).

The subgroup of Mlt(Q) stabilizing the neutral element of Q
is called the inner mapping group of Q and it is denoted
by Inn(Q).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

A loop Q is called an automorphic loop (or an A-loop) if
Inn(Q) 6 Aut(Q).
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Automorphic loops

Basic properties of A-loops

Fact

Any characteristic subloop of an A-loop is normal.

Theorem (R. H. Bruck, J. L. Paige)

Every monogenerated subloop of an A-loop is a group.

Notation

We write x3 instead of x · (x · x) or (x · x) · x.
We write x−1 instead of 1/x or x\1.
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CAL of odd order

p-loops

Definition

Let Q be a loop where each element generates a cyclic subgroup
and let p be a prime. The loop is called a p-loop if, for
each x ∈ Q, there exists k, such that xpk

= 1.

Theorem (P. J., M. K., P. V.)

Let Q be a finite commutative automorphic loop and let p be a
prime. Then Q is a p-loop if and only if |Q| = pk for some k.
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CAL of odd order

Commutatives A-loops of odd orders

Proposition (P. J., M. K., P. V.)

Let (Q, ·) be a commutative A-loop of an odd order. We associate
to Q an operation ◦ defined as:

x ◦ y =
√
(x · y2)/x−1

Then Q is a Bruck loop. Moreover, the powers in (Q, ·) coincide
with the powers in (Q, ◦)

Corollary

Lagrange theorem,

If p | |Q|, for p prime, then there exists x ∈ Q of order p,

Existence of Sylow p-subloops,

Solvability.
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Nilpotency of CApL

Nilpotency of loops

Fact

Every p-group is nilpotent.

Definition

Let Q be a loop. The center of Q is the set

Z(Q) = {a ∈ Q; ϕ(a) = a ∀ϕ ∈ Inn(Q)}

Definition

Let Q be a loop. The upper central series of Q is

Z0(Q) 6 Z1(Q) 6 Z2(Q) 6 · · · 6 Zn(Q) 6 · · · 6 Q,

where Z0(Q) = {1} and Zi(Q) is the preimage of Z
(
Q/Zi−1(Q)

)
.

If there exists some n such that Zn(Q) = Q then Q is said to be
(centrally) nilpotent of class n.
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Nilpotency of CApL

Nilpotency of commutative automorphic p-loops

Theorem (P. J., M. K., P. V.)

Let Q(·) be a commutative automorphic loop of an odd order
with associated Bruck loop Q(◦). Then, for each non-negative
integer n,

Zn(Q, ◦) = Zn(Q, ·)

Corollary

Commutative automorphic p-loops are nilpotent, for each odd
prime p.
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Examples of non-nilpotent automorphic loops

Drápal’s Construction

Theorem (A. Drápal, refined by P. Jedlička & D. Simon)

Let K be the q-element finite field, char(K) 6= 2. Let k be an odd
divisor either of q − 1 or of q + 1. Take ξ, a k-th primitive root of
unity. We define an operation ∗ on the set Q = K × Zk as follows:

(a, i) ∗ (b, j) =
(

(a + b) · (ξ
i + 1) · (ξj + 1)
2 · (ξi+j + 1)

, i + j
)

.

Then (Q, ∗) is a commutative automorphic loop, |Q| is odd and
Z(Q) = 1.
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Examples of non-nilpotent automorphic loops

Commutative automorphic 2-loops with trivial center

Proposition (P. J., M. K., P. V.)

Let G be a vector space over F2 and let f be an automorphism
of V. We construct an operation ∗ on Q = V × F2 as follows:

(~v, i) ∗ (~w, j) = (f i·j(~v + ~w), i + j).

Then Q is a commutative automorphic loop of exponent 2.
If f is identical then Q is a group, otherwise
Z(Q) = {~u ∈ V; f(~u) = ~u}× 0.

Corollary

There exist commutative automorphic 2-loops with trivial center.
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Examples of non-nilpotent automorphic loops

Anisotropic planes

Definition

Let K be a field and let M(2, K) be the vector space of 2× 2
matrices over K. A subspace W of M(2, K) is called anisotropic, if
det A 6= 0, for every A ∈ W.

Lemma

Let A ∈ M(2, K). The subspace 〈A, I〉 is an anisotropic plane if and
only if A has no eigenvalues in K.
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Examples of non-nilpotent automorphic loops

Automorphic p-loops with trivial center

Theorem (P. J., M. K., P. V.)

Let A ∈ GL(2, p) has no eigenvalue in Zp. We define a binary
operation ∗ on Zp × Z2

p as follows:

(a,~v) ∗ (b, ~w) = (a + b, ~v · (I + bA) + ~w · (I − aA)).

The algebra (Zp × Z2
p, ∗) is an automorphic loop with trivial

center.
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