Structure of commutative automorphic loops

Přemysl Jedlička¹, Michael K. Kinyon², Petr Vojtěchovský²

¹Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

> ²Department of Mathematics University of Denver

AAA 79, Olomouc February 12, 2010

Preliminaries

Definition

Let (G, \cdot) be a groupoid. The mapping $L_x : a \mapsto xa$ is called the *left translation* and the mapping $R_x : a \mapsto ax$ the right translation.

Definition (Combinatorial)

A groupoid (Q, \cdot) is called a *quasigroup* if the mappings L_x and R_x are bijections, for each $x \in Q$.

Definition (Universal algebraic)

The algebra $(Q, \cdot, /, \setminus)$ is called a *quasigroup* if it satisfies the following identities:

 $x \setminus (x \cdot y) = y$ $x \cdot (x \setminus y) = y$ $(x \cdot y)/y = x$ $(x/y) \cdot y = x$

ヘロト ヘロト ヘビト ヘビト

2/13

Preliminaries

Definition

Let (G, \cdot) be a groupoid. The mapping $L_x : a \mapsto xa$ is called the *left translation* and the mapping $R_x : a \mapsto ax$ the right translation.

Definition (Combinatorial)

A groupoid (Q, \cdot) is called a *quasigroup* if the mappings L_x and R_x are bijections, for each $x \in Q$.

Definition (Universal algebraic)

The algebra $(Q, \cdot, /, \setminus)$ is called a *quasigroup* if it satisfies the following identities:

$$\begin{aligned} x \setminus (x \cdot y) &= y & (x \cdot y)/y &= x \\ x \cdot (x \setminus y) &= y & (x/y) \cdot y &= x \end{aligned}$$

Definition

A quasigroup *Q* is called a *loop* if it contains the identity element.

Example (A minimal nonassociative loop)						
	1	2	3	4	5	
1	1	2	3	4	5	
2	2	1	5	3	4	
3	3	4	1	5	2	
4	4	5	2	1	3	
5	5	3	4	2	1	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the *multiplication group* of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the *multiplication group* of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the *multiplication group* of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the *multiplication group* of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the *multiplication group* of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Basic properties of A-loops

Fact

Any characteristic subloop of an A-loop is normal.

Theorem (R. H. Bruck, J. L. Paige)

Every monogenerated subloop of an A-loop is a group.

Notation

We write x^3 instead of $x \cdot (x \cdot x)$ or $(x \cdot x) \cdot x$. We write x^{-1} instead of 1/x or $x \setminus 1$.

・ロト・西ト・ヨト ・日・ うへぐ

Basic properties of A-loops

Fact

Any characteristic subloop of an A-loop is normal.

Theorem (R. H. Bruck, J. L. Paige)

Every monogenerated subloop of an A-loop is a group.

Notation

We write x^3 instead of $x \cdot (x \cdot x)$ or $(x \cdot x) \cdot x$. We write x^{-1} instead of 1/x or $x \setminus 1$.

・ロト・西ト・ヨト ・日・ うへぐ

Basic properties of A-loops

Fact

Any characteristic subloop of an A-loop is normal.

Theorem (R. H. Bruck, J. L. Paige)

Every monogenerated subloop of an A-loop is a group.

Notation

We write x^3 instead of $x \cdot (x \cdot x)$ or $(x \cdot x) \cdot x$. We write x^{-1} instead of 1/x or $x \setminus 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Variety of A-loops

Fact

Let Q be a loop. The inner mapping group of Q is generated by the mappings

$$L_{xy}^{-1}L_{x}L_{y}, \quad R_{xy}^{-1}R_{x}R_{y} \quad and \quad L_{x}^{-1}R_{x},$$

where $x, y \in Q$.

Corollary

A loop is an A-loop iff it satisfies the following three identities:

$$\begin{aligned} (xy)\backslash(x(y \cdot uv)) &= ((xy)\backslash(x \cdot yu)) \cdot ((xy)\backslash(x \cdot yv)),\\ ((uv \cdot x)y)/(xy) &= ((ux \cdot y)/(xy)) \cdot ((vx \cdot y)/(xy)),\\ x\backslash(uv \cdot x) &= (x\backslash(ux)) \cdot (x\backslash(vx)). \end{aligned}$$

Variety of A-loops

Fact

Let Q be a loop. The inner mapping group of Q is generated by the mappings

$$L_{xy}^{-1}L_xL_y$$
, $R_{xy}^{-1}R_xR_y$ and $L_x^{-1}R_x$,

where $x, y \in Q$.

Corollary

A loop is an A-loop iff it satisfies the following three identities:

$$\begin{aligned} (xy)\backslash(x(y \cdot uv)) &= ((xy)\backslash(x \cdot yu)) \cdot ((xy)\backslash(x \cdot yv)),\\ ((uv \cdot x)y)/(xy) &= ((ux \cdot y)/(xy)) \cdot ((vx \cdot y)/(xy)),\\ x\backslash(uv \cdot x) &= (x\backslash(ux)) \cdot (x\backslash(vx)). \end{aligned}$$

Squares in Commutative A-loops

Question:

Do squares form a subloop of a commutative A-loop?

_emma (P. J., M. K., P. V.)

$$x^2 \cdot y^2 = \left(\left(x(x^2 \cdot y) \setminus (x^2 \cdot y) \right) / (x^2 \cdot y) \right)^{-2}$$

Corollary (P. J., M. K., P. V.)

The set of all the squares forms a characteristic subloop of a commutative A-loop.

Squares in Commutative A-loops

Question:

Do squares form a subloop of a commutative A-loop?

Lemma (P. J., M. K., P. V.)

$$x^2 \cdot y^2 = \left(\left(x(x^2 \cdot y) \setminus (x^2 \cdot y) \right) / (x^2 \cdot y) \right)^{-2}$$

Corollary (P. J., M. K., P. V.)

The set of all the squares forms a characteristic subloop of a commutative A-loop.

Squares in Commutative A-loops

Question:

Do squares form a subloop of a commutative A-loop?

Lemma (P. J., M. K., P. V.)

$$\underbrace{x^2 \cdot y^2 = \left(\left(x(x^2 \cdot y) \setminus (x^2 \cdot y) \right) / (x^2 \cdot y) \right)^{-2}}_{x^2 \cdot y^2 = \left((xy \setminus x) \cdot (yx \setminus y) \right)^{-2}}$$

Corollary (P. J., M. K., P. V.)

The set of all the squares forms a characteristic subloop of a commutative A-loop.

7/13

Squares in Commutative A-loops

Question:

Do squares form a subloop of a commutative A-loop?

Lemma (P. J., M. K., P. V.)

$$x^{2} \cdot y^{2} = \left(\frac{\left(x(x^{2} \cdot y) + (x^{2} \cdot y)\right)}{x^{2} \cdot y^{2}} = \left((xy \setminus x) \cdot (yx \setminus y)\right)^{-2}$$

Corollary (P. J., M. K., P. V.)

The set of all the squares forms a characteristic subloop of a commutative A-loop.

Associated Loop

Definition

$$x \diamond y = \left(\left(x(x^2 \cdot y) \setminus (x^2 \cdot y)
ight) / (x^2 \cdot y)
ight)^{-1}$$

Proposition (P. J., M. K., P. V.)

Let Q be a commutative A-loop. Then (Q, \diamond) is a commutative loop and powers in (Q, \diamond) correspond to powers in (Q, \cdot) . Moreover, if |Q| is odd then $(Q, \diamond) = (Q, \cdot)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Associated Loop

Definition

$$x \diamond y = \left(\left(x(x^2 \cdot y) \setminus (x^2 \cdot y) \right) / (x^2 \cdot y) \right)^{-1}$$
$$x \diamond y = (xy \setminus x \cdot yx \setminus y)^{-1}$$

Proposition (P. J., M. K., P. V.)

Let Q be a commutative A-loop. Then (Q, \diamond) is a commutative loop and powers in (Q, \diamond) correspond to powers in (Q, \cdot) . Moreover, if |Q| is odd then $(Q, \diamond) = (Q, \cdot)$.

Associated Loop

Definition

$$\underbrace{x \diamond y = \left(\left(x(x^2 \cdot y) \setminus (x^2 \cdot y) \right) / (x^2 \cdot y) \right)^{-1}}_{x \diamond y = (xy \setminus x \cdot yx \setminus y)^{-1}}$$

Proposition (P. J., M. K., P. V.)

Let Q be a commutative A-loop. Then (Q, \diamond) is a commutative loop and powers in (Q, \diamond) correspond to powers in (Q, \cdot) . Moreover, if |Q| is odd then $(Q, \diamond) = (Q, \cdot)$.

Decomposition of Finite A-loops

Theorem (P. J., M. K., P. V.)

If Q is a finite commutative A-loop then $Q = K \times H$ where

$$K = \{x \in Q; |x| \text{ is odd }\},\ H = \{x \in Q; x^{2^n} = 1, \text{ for an } n \in \mathbb{N}\}.$$

Moreover, |K| is odd.

Idea of the proof.

We put

$$K = \bigcap_{n \ge 0} \{ x^{2^n}; x \in Q \}$$
 and $H = \bigcup_{n \ge 0} \{ x \in Q; x^{2^n} = 1 \}.$

Decomposition of Finite A-loops

Theorem (P. J., M. K., P. V.)

If Q is a finite commutative A-loop then $Q = K \times H$ where

$$K = \{x \in Q; |x| \text{ is odd }\},\ H = \{x \in Q; x^{2^n} = 1, \text{ for an } n \in \mathbb{N}\}.$$

Moreover, |K| is odd.

Idea of the proof.

We put

$$K = \bigcap_{n \ge 0} \{ x^{2^n}; x \in Q \}$$
 and $H = \bigcup_{n \ge 0} \{ x \in Q; x^{2^n} = 1 \}.$

Proposition (P.J., M.K., P.V.)

Let (Q, \cdot) be an commutative A-loop of an odd order. We associate to Q an operation \circ defined as:

$$x \circ y = \sqrt{(x \cdot y^2)/x^{-1}}$$

Then Q is a Bruck loop. Moreover, the powers in (Q, \cdot) coincide with the powers in (Q, \circ)

- Lagrange theorem,
- If $p \mid |Q|$, for p prime, then there exists $x \in Q$ of order p,
- Existence of Sylow p-subloops,
- Solvability.

Proposition (P.J., M.K., P.V.)

Let (Q, \cdot) be an commutative A-loop of an odd order. We associate to Q an operation \circ defined as:

$$x \circ y = \sqrt{(x \cdot y^2)/x^{-1}}$$

Then Q is a Bruck loop. Moreover, the powers in (Q, \cdot) coincide with the powers in (Q, \circ)

- Lagrange theorem,
- If $p \mid |Q|$, for p prime, then there exists $x \in Q$ of order p,
- Existence of Sylow p-subloops,
- Solvability.

Proposition (P. J., M. K., P. V.)

Let (Q, \cdot) be an commutative A-loop of an odd order. We associate to Q an operation \circ defined as:

$$x \circ y = \sqrt{(x \cdot y^2)/x^{-1}}$$

Then Q is a Bruck loop. Moreover, the powers in (Q, \cdot) coincide with the powers in (Q, \circ)

- Lagrange theorem,
- If $p \mid |Q|$, for p prime, then there exists $x \in Q$ of order p,
- Existence of Sylow p-subloops,
- Solvability.

Proposition (P. J., M. K., P. V.)

Let (Q, \cdot) be an commutative A-loop of an odd order. We associate to Q an operation \circ defined as:

$$x \circ y = \sqrt{(x \cdot y^2)/x^{-1}}$$

Then Q is a Bruck loop. Moreover, the powers in (Q, \cdot) coincide with the powers in (Q, \circ)

- Lagrange theorem,
- If $p \mid |Q|$, for p prime, then there exists $x \in Q$ of order p,
- Existence of Sylow p-subloops,
- Solvability.

Proposition (P. J., M. K., P. V.)

Let (Q, \cdot) be an commutative A-loop of an odd order. We associate to Q an operation \circ defined as:

$$x \circ y = \sqrt{(x \cdot y^2)/x^{-1}}$$

Then Q is a Bruck loop. Moreover, the powers in (Q, \cdot) coincide with the powers in (Q, \circ)

- Lagrange theorem,
- If $p \mid |Q|$, for p prime, then there exists $x \in Q$ of order p,
- Existence of Sylow p-subloops,
- Solvability.

Proposition (P. J., M. K., P. V.)

Let (Q, \cdot) be an commutative A-loop of an odd order. We associate to Q an operation \circ defined as:

$$x \circ y = \sqrt{(x \cdot y^2)/x^{-1}}$$

Then Q is a Bruck loop. Moreover, the powers in (Q, \cdot) coincide with the powers in (Q, \circ)

- Lagrange theorem,
- If $p \mid |Q|$, for p prime, then there exists $x \in Q$ of order p,
- Existence of Sylow p-subloops,
- Solvability.

Proposition (P. J., M. K., P. V.)

Let *Q* be a commutative A-loop of exponent 2. Then (Q, \diamond) is an elementary abelian group of exponent 2.

Corollary

Let Q be a finite commutative A-loop of exponent 2^k . Then $|Q| = 2^n$, for some n.

Theorem (P. J., M. K., P. V.)

Let Q be a finite commutative A-loop. Then

- Q has the Lagrange property.
- Q has Sylow p-subloops, for each prime p dividing |Q|.

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

ъ

• Q has an element of order p, for such a p.

Proposition (P.J., M.K., P.V.)

Let *Q* be a commutative *A*-loop of exponent 2. Then (Q, \diamond) is an elementary abelian group of exponent 2.

Corollary

Let *Q* be a finite commutative *A*-loop of exponent 2^k . Then $|Q| = 2^n$, for some *n*.

Theorem (P. J., M. K., P. V.)

Let Q be a finite commutative A-loop. Then

- Q has the Lagrange property.
- Q has Sylow p-subloops, for each prime p dividing |Q|.

・ロット (雪) ・ (目) ・ (日)

ъ

• Q has an element of order p, for such a p.

Proposition (P.J., M.K., P.V.)

Let *Q* be a commutative A-loop of exponent 2. Then (Q, \diamond) is an elementary abelian group of exponent 2.

Corollary

Let *Q* be a finite commutative *A*-loop of exponent 2^k . Then $|Q| = 2^n$, for some *n*.

Theorem (P. J., M. K., P. V.)

- *Q* has the Lagrange property.
- Q has Sylow p-subloops, for each prime p dividing |Q|.
- Q has an element of order p, for such a p.

Proposition (P.J., M.K., P.V.)

Let *Q* be a commutative *A*-loop of exponent 2. Then (Q, \diamond) is an elementary abelian group of exponent 2.

Corollary

Let *Q* be a finite commutative *A*-loop of exponent 2^k . Then $|Q| = 2^n$, for some *n*.

Theorem (P. J., M. K., P. V.)

- *Q* has the Lagrange property.
- Q has Sylow p-subloops, for each prime p dividing |Q|.
- Q has an element of order p, for such a p.

Proposition (P.J., M.K., P.V.)

Let *Q* be a commutative *A*-loop of exponent 2. Then (Q, \diamond) is an elementary abelian group of exponent 2.

Corollary

Let *Q* be a finite commutative *A*-loop of exponent 2^k . Then $|Q| = 2^n$, for some *n*.

Theorem (P. J., M. K., P. V.)

- *Q* has the Lagrange property.
- Q has Sylow p-subloops, for each prime p dividing |Q|.
- Q has an element of order p, for such a p.

Proposition (P.J., M.K., P.V.)

Let *Q* be a commutative *A*-loop of exponent 2. Then (Q, \diamond) is an elementary abelian group of exponent 2.

Corollary

Let *Q* be a finite commutative *A*-loop of exponent 2^k . Then $|Q| = 2^n$, for some *n*.

Theorem (P. J., M. K., P. V.)

- *Q* has the Lagrange property.
- Q has Sylow p-subloops, for each prime p dividing |Q|.
- Q has an element of order p, for such a p.

Question:

Does there exist a (finite) non-solvable commutative A-loop?

Question:

Does there exist a (finite) simple non-cyclic commutative A-loop?

Question:

Does there exist a variety between abelian groups and commutative A-loops where

- each finite loop splits onto *p*-components,
- there exists a non-associative *p*-loop for each *p*.

Question:

Does there exist a (finite) non-solvable commutative A-loop?

Question:

Does there exist a (finite) simple non-cyclic commutative A-loop?

Question:

Does there exist a variety between abelian groups and commutative A-loops where

- each finite loop splits onto *p*-components,
- there exists a non-associative *p*-loop for each *p*.

Question:

Does there exist a (finite) non-solvable commutative A-loop?

Question:

Does there exist a (finite) simple non-cyclic commutative A-loop?

Question:

Does there exist a variety between abelian groups and commutative A-loops where

- each finite loop splits onto p-components,
- there exists a non-associative *p*-loop for each *p*.

Question:

Does there exist a (finite) non-solvable commutative A-loop?

Question:

Does there exist a (finite) simple non-cyclic commutative A-loop?

Question:

Does there exist a variety between abelian groups and commutative A-loops where

- each finite loop splits onto p-components,
- there exists a non-associative *p*-loop for each *p*.

References

- R. H. Bruck, J. L. Paige: Loops whose inner mappings are automorphisms, The Annals of Math., 2nd Series, **63**, no. 2, (1956), 308–323
- A. Drápal: A class of comm. loops with metacyclic inner mapping groups, Comment. Math. Univ. Carolin. **49**,3 (2008) 357–382.
- P. Jedlička, M. K. Kinyon, P. Vojtěchovský: Constructions of commutative automorphic loops, to appear in Comm. in Alg.
- P. Jedlička, M. K. Kinyon, P. Vojtěchovský: Structure of commutative automorphic loops, to appear in Trans. of AMS
- P. Jedlička, D. Simon: Commutative A-loops of order pq (preprint)
- M. K. Kinyon, K. Kunen, J. D. Phillips: Every diassociative A-loop is Moufang, Proc. Amer. Math. Soc. **130** (2002), 619–624
- M. K. Kinyon, K. Kunen, J. D. Phillips: Some notes on the structure of A-loops, (preprint)