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P̌remysl Jedlička1, Michael K. Kinyon2, Petr Vojtěchovský2
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Preliminaries

Quasigroups

Definition

Let (G, ·) be a groupoid. The mapping Lx : a 7→ xa is called the
left translation and the mapping Rx : a 7→ ax the right translation.

Definition (Combinatorial)

A groupoid (Q, ·) is called a quasigroup if the mappings Lx and Rx
are bijections, for each x ∈ Q.

Definition (Universal algebraic)

The algebra (Q, ·, /, \) is called a quasigroup if it satisfies the
following identities:

x\(x · y) = y (x · y)/y = x
x · (x\y) = y (x/y) · y = x
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Preliminaries

Loops

Definition

A quasigroup Q is called a loop if it contains the identity element.

Example (A minimal nonassociative loop)

1 2 3 4 5
1 1 2 3 4 5
2 2 1 5 3 4
3 3 4 1 5 2
4 4 5 2 1 3
5 5 3 4 2 1
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Automorphic loops

Multiplication Groups

Definitions

Let Q be a loop.

The group generated by Lx and Rx, for all x ∈ Q, is called the
multiplication group of Q and it is denoted by Mlt(Q).

The subgroup of Mlt(Q) stabilizing the neutral element of Q
is called the inner mapping group of Q and it is denoted
by Inn(Q).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

A loop Q is called an automorphic loop (or an A-loop) if
Inn(Q) 6 Aut(Q).
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Automorphic loops

Basic properties of A-loops

Fact

Any characteristic subloop of an A-loop is normal.

Theorem (R. H. Bruck, J. L. Paige)

Every monogenerated subloop of an A-loop is a group.

Notation

We write x3 instead of x · (x · x) or (x · x) · x.
We write x−1 instead of 1/x or x\1.
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Automorphic loops

Variety of A-loops

Fact

Let Q be a loop. The inner mapping group of Q is generated by
the mappings

L−1
xy LxLy, R−1

xy RxRy and L−1
x Rx,

where x, y ∈ Q.

Corollary

A loop is an A-loop iff it satisfies the following three identities:

(xy)\(x(y · uv)) = ((xy)\(x · yu)) · ((xy)\(x · yv)),
((uv · x)y)/(xy) = ((ux · y)/(xy)) · ((vx · y)/(xy)),

x\(uv · x) = (x\(ux)) · (x\(vx)).
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Decomposition of Finite Commutative A-loops

Squares in Commutative A-loops

Question:

Do squares form a subloop of a commutative A-loop?

Lemma (P. J., M. K., P. V.)

x2 · y2 =
((

x(x2 · y) \ (x2 · y)
)
/(x2 · y)

)−2

Corollary (P. J., M. K., P. V.)

The set of all the squares forms a characteristic subloop of a
commutative A-loop.
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Decomposition of Finite Commutative A-loops

Associated Loop

Definition

x � y =
((

x(x2 · y) \ (x2 · y)
)
/(x2 · y)

)−1

Proposition (P. J., M. K., P. V.)

Let Q be a commutative A-loop. Then (Q, �) is a commutative
loop and powers in (Q, �) correspond to powers in (Q, ·).
Moreover, if |Q| is odd then (Q, �) = (Q, ·).
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Decomposition of Finite Commutative A-loops

Decomposition of Finite A-loops

Theorem (P. J., M. K., P. V.)

If Q is a finite commutative A-loop then Q = K × H where

K = { x ∈ Q; |x| is odd },

H = { x ∈ Q; x2n
= 1, for an n ∈ N }.

Moreover, |K| is odd.

Idea of the proof.

We put

K =
⋂
n>0

{ x2n
; x ∈ Q } and H =

⋃
n>0

{ x ∈ Q; x2n
= 1 }.
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Structure of finite A-loops

Commutatives A-loops of odd orders

Proposition (P. J., M. K., P. V.)

Let (Q, ·) be an commutative A-loop of an odd order. We
associate to Q an operation ◦ defined as:

x ◦ y =

√
(x · y2)/x−1

Then Q is a Bruck loop. Moreover, the powers in (Q, ·) coincide
with the powers in (Q, ◦)

Corollary

Lagrange theorem,

If p | |Q|, for p prime, then there exists x ∈ Q of order p,

Existence of Sylow p-subloops,

Solvability.
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Structure of finite A-loops

Commutative A-loops of exponent 2

Proposition (P. J., M. K., P. V.)

Let Q be a commutative A-loop of exponent 2. Then (Q, �) is an
elementary abelian group of exponent 2.

Corollary

Let Q be a finite commutative A-loop of exponent 2k. Then
|Q| = 2n, for some n.

Theorem (P. J., M. K., P. V.)

Let Q be a finite commutative A-loop. Then

Q has the Lagrange property.

Q has Sylow p-subloops, for each prime p dividing |Q|.

Q has an element of order p, for such a p.
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Coda

Open Questions

Question:

Does there exist a (finite) non-solvable commutative A-loop?

Question:

Does there exist a (finite) simple non-cyclic commutative A-loop?

Question:

Does there exist a variety between abelian groups and
commutative A-loops where

each finite loop splits onto p-components,

there exists a non-associative p-loop for each p.

Perhaps nilpotent commutative A-loops?
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