An application of the number theory in the non-associative algebra

Přemysl Jedlička¹, Denis Simon²

¹Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

> ²Laboratoire de Mathématiques Nicolas Oresme Université de Caen

> > **SSAOS 2009**

イロト イポト イヨト イヨト

Drápal's Construction

0-bijections

Definition

Let *R* be a ring. A partial mapping $f : R \rightarrow R$ is called a 0-*bijection* if twe following conditions hold;

- $f^i(0)$ is defined for every $i \in \mathbb{N}$;
- for each *i* ∈ N there exists some *x* ∈ *R* such that *fⁱ(x)* = 0: such an element is denoted by *f⁻ⁱ(0)*;
- $f(0) \in R^*$.

If there exists $k \in \mathbb{N}$ such that $f^k(0) = 0$ then such k is called the 0-order of f.

ション 小田 マイビット ビー シックション

Drápal's Construction

Drápal's Construction

Theorem (Aleš Drápal)

Let M be a module over a commutative ring R. Suppose that there exists $t \in R$ such that

$$f(x) = \frac{x+1}{tx+1}$$

is a 0-bijection of 0-order k. We define an operation * on the set $Q = M \times \mathbb{N}_k$ as follows:

$$(a,i)*(b,j) = \left(\frac{a+b}{1+tf^i(0)f^j(0)}\;,\;i+j\right).$$

Then (Q, *) is a commutative automorphic loop.

Example

Putting t = -3 we obtain k = 3 for any R where 2 is invertible.

ヘロア 人間 アメヨアメヨア 三日

Drápal's Construction

Drápal's Construction

Theorem (Aleš Drápal)

Let M be a module over a commutative ring R. Suppose that there exists $t \in R$ such that

$$f(x) = \frac{x+1}{tx+1}$$

is a 0-bijection of 0-order k. We define an operation * on the set $Q = M \times \mathbb{N}_k$ as follows:

$$(a,i)*(b,j) = \left(\frac{a+b}{1+tf^i(0)f^j(0)}\;,\;i+j\right).$$

Then (Q, *) is a commutative automorphic loop.

Example

Putting t = -3 we obtain k = 3 for any R where 2 is invertible.

イロト (雪) (目) (目)

Translating fractional mappings

Fact

A mapping

$$f(x) = \frac{x+1}{tx+1}$$

is a 0-bijection of order k if and only if

•
$$\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{k} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ a \end{pmatrix}$$
, for some $a \in R$
• $\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{\ell} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$, for no $\ell \in \mathbb{N}$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

Eigenvalues of the automorphism

Definition

Denote

$$F = \begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix},$$

Its characteristic polynomial is

$$P(x) = x^2 + 2x + 1 - t = (x - \lambda)(x - \mu)$$

⁼act

$$\operatorname{disc}(P) = -t$$
 hence $\lambda = \mu$ if and only if $t = 0$.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Eigenvalues of the automorphism

Definition

Denote

$$F = \begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix},$$

Its characteristic polynomial is

$$P(x) = x^2 + 2x + 1 - t = (x - \lambda)(x - \mu)$$

Fact

$$\operatorname{disc}(P) = -t$$
 hence $\lambda = \mu$ if and only if $t = 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Necessary condition for 0-order

Lemma

•
$$\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{k} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ a \end{pmatrix}$$
 if and only if $\begin{pmatrix} \lambda \\ \mu \end{pmatrix}^{k} = 1$,
• $\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{\ell} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$ if and only if $\begin{pmatrix} \lambda \\ \mu \end{pmatrix}^{\ell} = -1$,

Corollary

The order k must be odd or infinite.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Necessary condition for 0-order

Lemma

•
$$\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{k} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ a \end{pmatrix}$$
 if and only if $\begin{pmatrix} \lambda \\ \mu \end{pmatrix}^{k} = 1$,
• $\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{\ell} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$ if and only if $\begin{pmatrix} \lambda \\ \mu \end{pmatrix}^{\ell} = -1$,

Corollary

The order k must be odd or infinite.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Necessary and sufficient condition

Proposition

The number $\xi = \frac{\lambda}{\mu}$ has to be a primitive *k*-th root of unity.

- if λ, μ lie in the basic field \mathbb{F}_q then k divides q 1;
- if λ, μ do not lie in the basic field F_q then N(ξ) = 1 and therefore k divides q + 1.

Definition

Let v lie in a quadratic extension of a field K. Then the *norm* of v is computed as $N(v) = v \cdot \overline{v}$.

Necessary and sufficient condition

Proposition

The number $\xi = \frac{\lambda}{\mu}$ has to be a primitive *k*-th root of unity.

- if λ, μ lie in the basic field \mathbb{F}_q then k divides q 1;
- if λ, μ do not lie in the basic field F_q then N(ξ) = 1 and therefore k divides q + 1.

Definition

Let v lie in a quadratic extension of a field K. Then the *norm* of v is computed as $N(v) = v \cdot \bar{v}$.

Necessary and sufficient condition

Proposition

The number $\xi = \frac{\lambda}{\mu}$ has to be a primitive *k*-th root of unity.

- if λ, μ lie in the basic field \mathbb{F}_q then k divides q 1;
- if λ, μ do not lie in the basic field \mathbb{F}_q then $N(\xi) = 1$ and therefore k divides q + 1.

Definition

Let v lie in a quadratic extension of a field K. Then the *norm* of v is computed as $N(v) = v \cdot \overline{v}$.

Necessary and sufficient condition

Proposition

The number $\xi = \frac{\lambda}{\mu}$ has to be a primitive *k*-th root of unity.

- if λ, μ lie in the basic field \mathbb{F}_q then k divides q 1;
- if λ, μ do not lie in the basic field 𝔽_q then N(ξ) = 1 and therefore k divides q + 1.

Definition

Let v lie in a quadratic extension of a field K. Then the *norm* of v is computed as $N(v) = v \cdot \overline{v}$.

Necessary and sufficient condition

Proposition

The number $\xi = \frac{\lambda}{\mu}$ has to be a primitive *k*-th root of unity.

- if λ, μ lie in the basic field \mathbb{F}_q then k divides q 1;
- if λ, μ do not lie in the basic field 𝔽_q then N(ξ) = 1 and therefore k divides q + 1.

Definition

Let v lie in a quadratic extension of a field K. Then the *norm* of v is computed as $N(v) = v \cdot \overline{v}$.

Necessary and sufficient condition

Proposition

The number $\xi = \frac{\lambda}{\mu}$ has to be a primitive *k*-th root of unity.

- if λ, μ lie in the basic field \mathbb{F}_q then k divides q 1;
- if λ, μ do not lie in the basic field 𝔽_q then N(ξ) = 1 and therefore k divides q + 1.

Definition

Let v lie in a quadratic extension of a field K. Then the *norm* of v is computed as $N(v) = v \cdot \overline{v}$.

Drápal's construction revised

Drápal's Construction, New Point of View

Theorem

Let *K* be the *q*-element finite field, $char(K) \neq 2$. Let *k* be an odd divisor either of q - 1 or of q + 1. Take ξ , a *k*-th primitive root of unity. We define an operation * on the set $Q = K \times \mathbb{Z}_k$ as follows:

$$(a,i)*(b,j) = \left((a+b) \cdot \frac{(\xi^i+1) \cdot (\xi^j+1)}{2 \cdot (\xi^{i+j}+1)} , i+j \right).$$

Then (Q, *) is a commutative automorphic loop.

Conjecture

If k and q are primes then the construction gives the only (up to isomorphism) non-associative commutative automorphic loop of order kq.

Drápal's construction revised

Drápal's Construction, New Point of View

Theorem

Let *K* be the *q*-element finite field, $char(K) \neq 2$. Let *k* be an odd divisor either of q - 1 or of q + 1. Take ξ , a *k*-th primitive root of unity. We define an operation * on the set $Q = K \times \mathbb{Z}_k$ as follows:

$$(a,i)*(b,j) = \left((a+b) \cdot \frac{(\xi^i+1) \cdot (\xi^j+1)}{2 \cdot (\xi^{i+j}+1)} \ , \ i+j \right).$$

Then (Q, *) is a commutative automorphic loop.

Conjecture

If k and q are primes then the construction gives the only (up to isomorphism) non-associative commutative automorphic loop of order kq.

Bibliography

R. H. Bruck, J. L. Paige:

Loops whose inner mappings are automorphisms The Annals of Math., 2nd Series, **63**, no. 2, (1956), 308–323

- A. Drápal: A class of commutative loops with metacyclic inner mapping groups
 Comment. Math. Univ. Carolin. 49,3 (2008) 357–382.
- P. Jedlička, M. K. Kinyon, P. Vojtěchovský: Constructions of commutative automorphic loops to appear in Comm. in Alg.
- P. Jedlička, M. K. Kinyon, P. Vojtěchovský: Structure of commutative automorphic loops to appear in Trans. of AMS
- P. Jedlička, D. Simon: Commutative automorphic loops of order *pq* (preprint)