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Preliminaries

Quasigroups

Definition
Let (G, ·) be a groupoid. The mapping Lx : a 7→ xa is called the left
translation and the mapping Rx : a 7→ ax the right translation.

Definition (Combinatorial)

A groupoid (Q, ·) is called a quasigroup if the mappings Lx and Rx
are bijections for each x ∈ Q.

Definition (Universal algebraic)

The algebra (Q, ·, /, \) is called a quasigroup if it satisfies the
following identities:

x\(x · y) = y (x · y)/y = x
x · (x\y) = y (x/y) · y = x
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Preliminaries

Loops

Definition
A quasigroup Q is called a loop if it contains the identity element.

Example (A minimal nonassociative loop)

1 2 3 4 5
1 1 2 3 4 5
2 2 1 5 3 4
3 3 4 1 5 2
4 4 5 2 1 3
5 5 3 4 2 1
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Preliminaries

Multiplication Groups

Definitions
Let Q be a loop.

The group generated by Lx and Rx, for all x ∈ Q, is called the
multiplication group of Q and it is denoted by Mlt(Q).

The subgroup of Mlt(Q) stabilizing the neutral element of Q is
called the inner mapping group of Q and it is denoted
by Inn(Q).

Fact
An inner mapping of a loop needs not to be an automorphism.

Definition
A loop Q is called an A-loop if Inn(Q) ≤ Aut(Q).
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Preliminaries

Characteristic subloops

Fact
Any characteristic subloop of an A-loop is normal.

Definition
Let Q be a loop. An element a ∈ Q belongs to the center of Q if
ax = xa, a · xy = ax · y, x · ay = xa · y, and x · ya = xy · a,
for all x, y ∈ Q.

Definition
Let Q be a loop. We define the left, right and middle nuclei as

Nλ = {a ∈ Q; a · xy = ax · y ∀x, y ∈ Q};
Nµ = {a ∈ Q; x · ay = xa · y ∀x, y ∈ Q};
Nρ = {a ∈ Q; x · ya = xy · a ∀x, y ∈ Q}.
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Preliminaries

Variety of A-loops

Fact
Let Q be a loop. The inner mapping group of Q is generated by the
mappings

L−1
xy LxLy, R−1

xy RxRy and L−1
x Rx,

where x, y ∈ Q.

Corollary

A loop is an A-loop if it satisfies the following three identities:

(xy)\(x(y · uv)) = ((xy)\(x · yu)) · ((xy)\(x · yv)),

((uv · x)y)/(xy) = ((ux · y)/(xy)) · ((vx · y)/(xy)),

x\(uv · x) = (x\(ux)) · (x\(vx)).
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Index 2 Subgroup Constructions

Examples of Commutative A-loops

Examples

Examples of commutative A-loops
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Index 2 Subgroup Constructions

Smallest Moufang Loop

Construction by O. Chein:

1 2 3 4 5 6 1̄ 2̄ 3̄ 4̄ 5̄ 6̄
2 1 4 3 6 5 2̄ 1̄ 6̄ 5̄ 4̄ 3̄
3 6 5 2 1 4 3̄ 4̄ 5̄ 6̄ 1̄ 2̄
4 5 6 1 2 3 4̄ 3̄ 2̄ 1̄ 5̄ 6̄
5 4 1 6 3 2 5̄ 6̄ 1̄ 2̄ 3̄ 4̄
6 3 2 5 4 1 6̄ 5̄ 4̄ 3̄ 2̄ 1̄
1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 1 2 3 4 5 6
2̄ 1̄ 6̄ 5̄ 4̄ 3̄ 2 1 4 3 6 5
3̄ 4̄ 5̄ 6̄ 1̄ 2̄ 3 6 5 2 1 4
4̄ 3̄ 2̄ 1̄ 5̄ 6̄ 4 5 6 1 2 3
5̄ 6̄ 1̄ 2̄ 3̄ 4̄ 5 4 1 6 3 2
6̄ 5̄ 4̄ 3̄ 2̄ 1̄ 6 3 2 5 4 1
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Index 2 Subgroup Constructions

Smallest Conjugacy Closed Loop

Construction by A. Drápal:
We take a group G(+), an automorphism f ∈ Aut(G) and t ∈ G
satisfying f 2(x) = t−1xt and f (t) , t. We construct

x ∗ y = x + y f (x) + y
x + y f (x) + y + t

Example

1 2 3 1̄ 2̄ 3̄
2 3 1 3̄ 1̄ 2̄
3 1 2 2̄ 3̄ 1̄
1̄ 2̄ 3̄ 2 3 1
2̄ 3̄ 1̄ 1 2 3
3̄ 1̄ 2̄ 3 1 2
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Index 2 Subgroup Constructions

Smallest A-loop

Example

1 2 3 1̄ 2̄ 3̄
2 3 1 2̄ 3̄ 1̄
3 1 2 3̄ 1̄ 2̄
1̄ 3̄ 2̄ 1 3 2
3̄ 2̄ 1̄ 3 2 1
2̄ 1̄ 3̄ 2 1 3

Construction by R. H. Bruck & L. J. Paige:
We take a group G and a nontrivial automorphism f ∈ Aut(G). We
construct

x ∗ y =
x + y x + y

f (x + y) f−1(x + y)
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Index 2 Subgroup Constructions

Commutative A-loops of Order 8

1 2 3 4 1̄ 2̄ 3̄ 4̄
2 3 4 1 2̄ 3̄ 4̄ 1̄
3 4 1 2 3̄ 4̄ 1̄ 2̄
4 1 2 3 4̄ 1̄ 2̄ 3̄
1̄ 2̄ 3̄ 4̄ 1 4 3 2
2̄ 3̄ 4̄ 1̄ 4 3 2 1
3̄ 4̄ 1̄ 2̄ 3 2 1 4
4̄ 1̄ 2̄ 3̄ 2 1 4 3

1 2 3 4 1̄ 2̄ 3̄ 4̄
2 1 4 3 2̄ 1̄ 4̄ 3̄
3 4 1 2 3̄ 4̄ 1̄ 2̄
4 3 2 1 4̄ 3̄ 2̄ 1̄
1̄ 2̄ 3̄ 4̄ 1 3 4 2
2̄ 1̄ 4̄ 3̄ 3 1 2 4
3̄ 4̄ 1̄ 2̄ 4 2 1 3
4̄ 3̄ 2̄ 1̄ 2 4 3 1

1 2 3 4 1̄ 2̄ 3̄ 4̄
2 1 4 3 2̄ 1̄ 4̄ 3̄
3 4 1 2 3̄ 4̄ 1̄ 2̄
4 3 2 1 4̄ 3̄ 2̄ 1̄
1̄ 2̄ 3̄ 4̄ 1 2 4 3
2̄ 1̄ 4̄ 3̄ 2 1 3 4
3̄ 4̄ 1̄ 2̄ 4 3 1 2
4̄ 3̄ 2̄ 1̄ 3 4 2 1

1 2 3 4 1̄ 2̄ 3̄ 4̄
2 1 4 3 2̄ 1̄ 4̄ 3̄
3 4 1 2 3̄ 4̄ 1̄ 2̄
4 3 2 1 4̄ 3̄ 2̄ 1̄
1̄ 2̄ 3̄ 4̄ 2 1 3 4
2̄ 1̄ 4̄ 3̄ 1 2 4 3
3̄ 4̄ 1̄ 2̄ 3 4 2 1
4̄ 3̄ 2̄ 1̄ 4 3 1 2
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Index 2 Subgroup Constructions

Construction of the Smallest Commutative A-loops

Theorem (P.J.,M.K.,P.V.)

Let (G,+) be an abelian group, f an automorphism of G and t a
fixed point of f . We define an operation ∗ on Q = G ∪ Ḡ as follows:

x ∗ y = x + y, x̄ ∗ y = x + y,
x ∗ ȳ = x + y, x̄ ∗ ȳ = f (x + y) + t.

Then Q is a loop and

Q is associative if and only if f is trivial;

if f is not trivial then Nµ = G and Z(Q) = {x ∈ G; f (x) = x};
Q is an A-loop if and only if f (2x) = 2x, for all x ∈ G.

Moreover, if a commutative A-loop Q has [Q : Nµ] = 2 then Q can
be obtained via this construction with G = Nµ.
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Index 2 Subgroup Constructions

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are
1 G = Z4, f : x 7→ 3x and t = 0 or 2;
2 G = Z2

2, f of order 2 and t neutral;
3 G = Z2

2, f of order 2 and t not neutral.
4 G = Z2

2, f of order 3 and t neutral;

Corollary

There exist commutative A-loops with trivial center for any size 2k

with k > 2.
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Cocycle Extensions

Cocycles in Groups

Definition

Let G be a group and V an abelian group. A mapping θ : G2 → V
is called a group cocycle if, for all g,h,k in G,

θ(g,1) = θ(1, g) = 0,

θ(g,hk) + θ(h,k) = θ(g,h)k + θ(gh,k).

Theorem
Ler G be a group and V an abelian group. The set G × V with the
operation

(g,u) · (h, v) = (gh, θ(g,h) + u + v)

is a group denoted by E(θ,G,V).
On the other hand, every group E, with a normal abelian
subgroup V is isomorphic to E(θ,E/V,V), for some cocycle θ.
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Cocycle Extensions

Cocycle Extensions of A-loops

Theorem (R. H. Bruck & L. J. Paige, special version)

Let Z be an elementary abelian 2-group and K a
commutative A-loop of exponent 2. Let θ : K ×K → Z be a loop
cocycle satisfying θ(x, y) = θ(y, x), for every x, y ∈ K, θ(x, x) = 1, for
every x ∈ K, and

θ(x, y)θ(x′, y)θ(xx′, y)θ(x, x′)θ(xy, z)θ(x′y, z)θ(y, z)θ((xx′)y, z) =

θ(R(y, z)x, yz)θ(R(y, z)x′, yz)θ(R(y, z)(xx′), yz)

θ(R(y, z)x,R(y, z)x,R(y, z)x′)

for every x, y, z, x′ ∈ K, where R(y, z) = RyRzR−1
yz . Then K nθ R is

a commutative A-loop of exponent 2.
Conversely, every commutative A-loop of exponent two that is a
central extension of Z by K can be represented in this manner.
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Cocycle Extensions

Cocycles from Trilinear Forms

Proposition (P.J., M.K., P.V.)

Let Z = F2 and let V be a vector space over F2. Let g : V3 → F2
be a trilinear form such that g(x, y, z) = g(z, y, x) for every
x, y, z ∈ V. Define θ : V2 → Z by θ(x, y) = g(x, x + y, y). Then
Q = V nθ Z is a commutative A-loop of exponent 2.
Moreover, (y,b) ∈ Nµ(Q) if and only if the induced bilinear form
g(y,−,−) : V2 → F2 is symmetric.

Example

Let {e1, e2, . . . , en} be a basis of V, with n ≥ 3. For all i, set
g(ei, ei, ei+1) = 1, where n + 1 is identified with 1, and
g(ei, ej, ek) = 0 otherwise.
For x =

∑
αjej we have g(x, ei, ei+1) = αi and g(x, ei+1, ei) = 0 and

therefore g(x,−,−) is symmetric if and only if x = 0.
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Commutative A-loops of odd orders

Drápal’s Construction of Commutative A-loops

Theorem (A. Drápal; P.J. & D. Simon)

Let K be the q-element finite field, char(K) , 2. Let k be an odd
divisor either of q − 1 or of q + 1. Take ξ, a k-th primitive root of
unity. We define an operation ∗ on the set Q = K × Zk as follows:

(a, i) ∗ (b, j) =
(

(a + b) ·
(ξi + 1) · (ξj + 1)

2 · (ξi+j + 1)
, i + j

)
.

Then (Q, ∗) is a commutative A-loop, Z(Q) = 1 and Nµ(Q) = K.

Conjecture

If k and q are primes then the construction gives the only (up to
isomorphism) non-associative commutative A-loop of order kq.
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Commutative A-loops of odd orders

Commutative A-loops of order p3

Proposition (P.J., M.K., P.V.)

We define a loop Q(Zn) as the set Z3
n with an operation

(x1, x2, x3) ∗ (y1, y2, y3) = (x1 + y1 + (x2 + y2)x3y3,

x2 + y2 , x3 + y3).

This loop is a commutative A-loop, its center is Zn and its middle
nucleus is Z2

n.
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Commutative A-loops of order p3

Proposition (P.J., M.K., P.V.)

We define a loop Qa,b(Zn) as the set Z3
n with an operation

(x1, x2, x3) ∗ (y1, y2, y3) = (x1 + y1 + (x2 + y2)x3y3

+ a(x2, y2)n + b(x3, y3)n , x2 + y2 , x3 + y3),

where the overflow indicator (x, y)n is defined by

(x, y)n =

0 if x + y < n,
1 if x + y ≥ n.

This loop is a commutative A-loop, its center is Zn and its middle
nucleus is Z2

n.
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Commutative A-loops of odd orders

Isomorphisms of Loops of Order p3

Conjecture

Up to isomorphism, there are exactly four non-associative
commutative A-loops of order p3.
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Coda

Enumeration

loop order
all loops

(non-associative)
exponent p +

non-trivial center trivial center
8 4 1 1
15 1 – 1
16 46 10 2
21 1 – 1
24 4 – 0
27 4 0 0
30 1 – 0
32 ??? 211 6 + ?
33 1 – 1
39 1 – 1
40 4 – 0
42 1 – 0
45 2 + ? – 1 + ?
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Coda

Questions

Question:
Does there exist any finite simple non-associative commutative
A-loop? If does, it has to be a loop of exponent two.

Question:
Does there exist a (finite) commutative A-loop with trivial middle
nucleus?

Question:
Find more examples of commutative A-loops.
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