Přemysl Jedlička¹, Michael K. Kinyon², Petr Vojtěchovský²

¹Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

> ²Department of Mathematics University of Denver

2nd Mile High Denver, June 22, 2009

イロト 不得 トイヨト イヨト

Quasigroups

Definition

Let (G, \cdot) be a groupoid. The mapping $L_x : a \mapsto xa$ is called the *left translation* and the mapping $R_x : a \mapsto ax$ the right translation.

Definition (Combinatorial)

A groupoid (Q, \cdot) is called a *quasigroup* if the mappings L_x and R_x are bijections for each $x \in Q$.

Definition (Universal algebraic)

The algebra $(Q, \cdot, /, \cdot)$ is called a *quasigroup* if it satisfies the following identities:

 $x \setminus (x \cdot y) = y \qquad (x \cdot y)/y = x$ $x \cdot (x \setminus y) = y \qquad (x/y) \cdot y = x$

Quasigroups

Definition

Let (G, \cdot) be a groupoid. The mapping $L_x : a \mapsto xa$ is called the *left translation* and the mapping $R_x : a \mapsto ax$ the right translation.

Definition (Combinatorial)

A groupoid (Q, \cdot) is called a *quasigroup* if the mappings L_x and R_x are bijections for each $x \in Q$.

Definition (Universal algebraic)

The algebra $(Q, \cdot, /, \cdot)$ is called a *quasigroup* if it satisfies the following identities:

 $x \setminus (x \cdot y) = y \qquad (x \cdot y)/y = x$ $x \cdot (x \setminus y) = y \qquad (x/y) \cdot y = x$

Definition

A quasigroup Q is called a *loop* if it contains the identity element.

Example (A minimal nona	SSO	ciati	ve l	оор)	
	1	2	3	4	5	
1	1	2	3	4	5	
2	2	1	5	3	4	
3	3	4	1	5	2	
4	4	5	2	1	3	
5	5	3	4	2	1	

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the multiplication group of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the multiplication group of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the multiplication group of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the multiplication group of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the multiplication group of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(Q) stabilizing the neutral element of Q is called *the inner mapping group* of Q and it is denoted by Inn(Q).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Characteristic subloops

Fact

Any characteristic subloop of an A-loop is normal.

Definition

Let *Q* be a loop. An element $a \in Q$ belongs to the *center* of *Q* if ax = xa, $a \cdot xy = ax \cdot y$, $x \cdot ay = xa \cdot y$, and $x \cdot ya = xy \cdot a$, for all $x, y \in Q$.

Definition

Let Q be a loop. We define the *left*, *right* and *middle nuclei* as

$$\begin{split} N_{\lambda} &= \{ a \in Q; \; a \cdot xy = ax \cdot y \; \forall x, y \in Q \}; \\ N_{\mu} &= \{ a \in Q; \; x \cdot ay = xa \cdot y \; \forall x, y \in Q \}; \\ N_{\rho} &= \{ a \in Q; \; x \cdot ya = xy \cdot a \; \forall x, y \in Q \}. \end{split}$$

Characteristic subloops

Fact

Any characteristic subloop of an A-loop is normal.

Definition

Let Q be a loop. An element $a \in Q$ belongs to the *center* of Q if ax = xa, $a \cdot xy = ax \cdot y$, $x \cdot ay = xa \cdot y$, and $x \cdot ya = xy \cdot a$, for all $x, y \in Q$.

Definition

Let Q be a loop. We define the *left*, *right* and *middle nuclei* as

$$\begin{split} N_{\lambda} &= \{ a \in Q; \; a \cdot xy = ax \cdot y \; \forall x, y \in Q \}; \\ N_{\mu} &= \{ a \in Q; \; x \cdot ay = xa \cdot y \; \forall x, y \in Q \}; \\ N_{\rho} &= \{ a \in Q; \; x \cdot ya = xy \cdot a \; \forall x, y \in Q \}. \end{split}$$

Characteristic subloops

Fact

Any characteristic subloop of an A-loop is normal.

Definition

Let Q be a loop. An element $a \in Q$ belongs to the *center* of Q if ax = xa, $a \cdot xy = ax \cdot y$, $x \cdot ay = xa \cdot y$, and $x \cdot ya = xy \cdot a$, for all $x, y \in Q$.

Definition

Let Q be a loop. We define the *left*, *right* and *middle nuclei* as

$$\begin{split} N_{\lambda} &= \{ a \in Q; \; a \cdot xy = ax \cdot y \; \forall x, y \in Q \}; \\ N_{\mu} &= \{ a \in Q; \; x \cdot ay = xa \cdot y \; \forall x, y \in Q \}; \\ N_{\rho} &= \{ a \in Q; \; x \cdot ya = xy \cdot a \; \forall x, y \in Q \}. \end{split}$$

Variety of A-loops

Fact

Let Q be a loop. The inner mapping group of Q is generated by the mappings

$$L_{xy}^{-1}L_xL_y, \qquad R_{xy}^{-1}R_xR_y$$
 and $L_x^{-1}R_x,$

where $x, y \in Q$.

Corollary

A loop is an A-loop if it satisfies the following three identities:

 $\begin{aligned} &(xy)\backslash(x(y \cdot uv)) = ((xy)\backslash(x \cdot yu)) \cdot ((xy)\backslash(x \cdot yv)), \\ &((uv \cdot x)y)/(xy) = ((ux \cdot y)/(xy)) \cdot ((vx \cdot y)/(xy)), \\ &x\backslash(uv \cdot x) = (x\backslash(ux)) \cdot (x\backslash(vx)). \end{aligned}$

Variety of A-loops

Fact

Let Q be a loop. The inner mapping group of Q is generated by the mappings

$$L_{xy}^{-1}L_xL_y, \qquad R_{xy}^{-1}R_xR_y$$
 and $L_x^{-1}R_x,$

where $x, y \in Q$.

Corollary

A loop is an A-loop if it satisfies the following three identities:

$$\begin{aligned} (xy)\backslash(x(y \cdot uv)) &= ((xy)\backslash(x \cdot yu)) \cdot ((xy)\backslash(x \cdot yv)), \\ ((uv \cdot x)y)/(xy) &= ((ux \cdot y)/(xy)) \cdot ((vx \cdot y)/(xy)), \\ x\backslash(uv \cdot x) &= (x\backslash(ux)) \cdot (x\backslash(vx)). \end{aligned}$$

Index 2 Subgroup Constructions

Examples of Commutative A-loops

Examples

Examples of commutative A-loops

- Commutative Moufang loops
- ? ? ?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Index 2 Subgroup Constructions

Examples of Commutative A-loops

Examples

Examples of commutative A-loops

Commutative Moufang loops

•???

▲□▶▲□▶▲□▶▲□▶ □ □ ● ●

Index 2 Subgroup Constructions

Examples of Commutative A-loops

Examples

Examples of commutative A-loops

- Commutative Moufang loops
- •???

▲□▶▲□▶▲□▶▲□▶ □ □ ● ●

Smallest Moufang Loop

Construction by O. Chein:

1	2	3	4	5	6	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\overline{5}$	<u></u> 6
2	1	4	3	6	5	$\bar{2}$	ī	$\bar{6}$	$\bar{5}$	$\bar{4}$	3
3	6	5	2	1	4	$\bar{3}$	$\bar{4}$	$\overline{5}$	$\bar{6}$	ī	$\bar{2}$
4	5	6	1	2	3	$\overline{4}$	$\bar{3}$	$\bar{2}$	ī	$\overline{5}$	ē
5	4	1	6	3	2	$\overline{5}$	$\bar{6}$	ī	$\bar{2}$	$\bar{3}$	$\bar{4}$
6	3	2	5	4	1	$\bar{6}$	$\overline{5}$	$\bar{4}$	$\bar{3}$	$\bar{2}$	ī
ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	1	2	3	4	5	6
$ar{1} \ ar{2}$	$ar{2} ar{1}$	3 6	$\bar{4}$ $\bar{5}$	$ar{5}{4}$	$ar{6} \ ar{3}$	$egin{array}{c} 1 \\ 2 \end{array}$	$2 \\ 1$	$\frac{3}{4}$	$\frac{4}{3}$	5 6	6 5
$ar{1} \ ar{2} \ ar{3}$	$ar{2} \ ar{1} \ ar{4}$	3 6 5	$\overline{4}$ $\overline{5}$ $\overline{6}$	$ar{5}{4}$	$ar{6} \ ar{3} \ ar{2}$	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	2 1 6	3 4 5	4 3 2	5 6 1	6 5 4
$ar{1} \ ar{2} \ ar{3} \ ar{4}$	$ar{2} \ ar{1} \ ar{4} \ ar{3}$	$ \frac{\bar{3}}{\bar{6}} $ $ \bar{5} $ $ \bar{2} $	$ar{4} \ ar{5} \ ar{6} \ ar{1}$	$ar{5}{4}$ $ar{1}{5}$	$ar{6} \\ ar{3} \\ ar{2} \\ ar{6} \end{array}$	$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$	2 1 6 5	3 4 5 6	4 3 2 1	5 6 1 2	6 5 4 3
$ar{1}{ar{2}}{ar{3}}{ar{4}}{ar{5}}$	$ar{2} \ ar{1} \ ar{4} \ ar{3} \ ar{6}$		$ar{4}{5}{ar{6}}{1}{ar{2}}$		$\begin{array}{c}\bar{6}\\\bar{3}\\\bar{2}\\\bar{6}\\\bar{4}\end{array}$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	2 1 6 5 4	3 4 5 6 1	4 3 2 1 6	5 6 1 2 3	6 5 4 3 2

Smallest Conjugacy Closed Loop

Construction by A. Drápal: We take a group G(+), an automorphism $f \in Aut(G)$ and $t \in G$ satisfying $f^2(x) = t^{-1}xt$ and $f(t) \neq t$. We construct

$$x * y = \frac{x + y}{x + y} \frac{f(x) + y}{f(x) + y + t}$$

Example

Index 2 Subgroup Constructions

Smallest A-loop

Example							
	1	2	3	Ī	$\overline{2}$	$\bar{3}$	
	2	3	1	$ \bar{2} $	$\bar{3}$	Ī	
	3	1	2	Ī	Ī	$\bar{2}$	
	Ī	$\bar{3}$	$\bar{2}$	1	3	2	
	$\bar{3}$	$\bar{2}$	ī	3	2	1	
	$\bar{2}$	Ī	$\bar{3}$	2	1	3	

Construction by R. H. Bruck & L. J. Paige:

We take a group G and a nontrivial automorphism $f \in Aut(G)$. We construct

$$x * y = \frac{x + y}{f(x + y)} \frac{x + y}{f^{-1}(x + y)}$$

10/22

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Index 2 Subgroup Constructions

Smallest A-loop

Example							
	1	2	3	1	$\overline{2}$	$\bar{3}$	
	2	3	1	$\overline{2}$	$\bar{3}$	ī	
	3	1	2	Ī	ī	$\overline{2}$	
	Ī	$\bar{3}$	$\bar{2}$	1	3	2	
	$\bar{3}$	$\bar{2}$	ī	3	2	1	
	$\bar{2}$	ī	$\bar{3}$	2	1	3	

Construction by R. H. Bruck & L. J. Paige:

We take a group G and a nontrivial automorphism $f \in Aut(G)$. We construct

$$x * y = \frac{x + y}{f(x + y)} \frac{x + y}{f^{-1}(x + y)}$$

Commutative A-loops of Order 8

1	2	3	4	1	$\bar{2}$	$\bar{3}$	$\bar{4}$		1	2	3	4	1	$\bar{2}$	$\bar{3}$	$\bar{4}$
2	3	4	1	$\overline{2}$	$\bar{3}$	$\overline{4}$	Ī		2	1	4	3	$\overline{2}$	Ī	$\bar{4}$	$\bar{3}$
3	4	1	2	3	$\bar{4}$	Ī	$\bar{2}$		3	4	1	2	3	$\bar{4}$	ī	$\bar{2}$
4	1	2	3	$\overline{4}$	ī	$\bar{2}$	$\bar{3}$		4	3	2	1	$\overline{4}$	$\bar{3}$	$\bar{2}$	ī
Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	1	4	3	2		Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	1	3	4	2
$\bar{2}$	$\bar{3}$	$\bar{4}$	ī	4	3	2	1		$\bar{2}$	ī	$\bar{4}$	$\bar{3}$	3	1	2	4
$\bar{3}$	$\bar{4}$	ī	$\bar{2}$	3	2	1	4		$\bar{3}$	$\bar{4}$	ī	$\bar{2}$	4	2	1	3
$\bar{4}$	Ī	$\bar{2}$	$\bar{3}$	2	1	4	3		$\bar{4}$	$\bar{3}$	$\bar{2}$	ī	2	4	3	1
								,								
1	2	3	4	1	$\bar{2}$	$\bar{3}$	$\overline{4}$		1	2	3	4	1	$\bar{2}$	$\bar{3}$	$\overline{4}$
2	1	4	3	$\overline{2}$	ī	$\bar{4}$	$\bar{3}$		2	1	4	3	$\overline{2}$	ī	$\bar{4}$	$\bar{3}$
3	4	1	2	3	$\bar{4}$	ī	$\bar{2}$		3	4	1	2	3	$\bar{4}$	ī	$\bar{2}$
4	3	2	1	$\overline{4}$	$\bar{3}$	$\bar{2}$	ī		4	3	2	1	$\overline{4}$	$\bar{3}$	$\bar{2}$	ī
Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	1	2	4	3	ĺ	Ī	$\bar{2}$	Ī	$\bar{4}$	2	1	3	4
$\bar{2}$	ī	$\bar{4}$	$\bar{3}$	2	1	3	4		$\bar{2}$	ī	$\bar{4}$	$\bar{3}$	1	2	4	3
$\bar{3}$	$\bar{4}$	ī	$\bar{2}$	4	3	1	2		ā	$\bar{4}$	ī	$\bar{2}$	3	4	2	1
$\bar{4}$	$\bar{3}$	$\bar{2}$	ī	3	4	2	1		$\bar{4}$	$\bar{3}$	$\bar{2}$	ī	4	3	1	2
								,				< □		171 ▶	< E)	E

Construction of the Smallest Commutative A-loops

Theorem (P.J.,M.K.,P.V.)

Let (G, +) be an abelian group, f an automorphism of G and t a fixed point of f. We define an operation * on $Q = G \cup \overline{G}$ as follows:

$$x * y = x + y,$$
 $\overline{x} * y = \overline{x + y},$

$$\overline{y}$$
, $\bar{x} * \bar{y} = f(x + y) + t$.

Then Q is a loop and

 $x * \overline{y} = \overline{x + y}$

- *Q* is associative if and only if *f* is trivial;
- if f is not trivial then $N_{\mu} = G$ and $Z(Q) = \{x \in G; f(x) = x\};$

• Q is an A-loop if and only if f(2x) = 2x, for all $x \in G$.

Moreover, if a commutative A-loop Q has $[Q : N_{\mu}] = 2$ then Q can be obtained via this construction with $G = N_{\mu}$.

Construction of the Smallest Commutative A-loops

Theorem (P.J.,M.K.,P.V.)

Let (G, +) be an abelian group, f an automorphism of G and t a fixed point of f. We define an operation * on $Q = G \cup \overline{G}$ as follows:

$$x * y = x + y, \qquad \bar{x} * y = \overline{x + y},$$

$$x * \overline{y} = \overline{x + y},$$
 $\overline{x} * \overline{y} = f(x + y) + t.$

Then Q is a loop and

- Q is associative if and only if f is trivial;
- if f is not trivial then $N_{\mu} = G$ and $Z(Q) = \{x \in G; f(x) = x\};$

• Q is an A-loop if and only if f(2x) = 2x, for all $x \in G$. Moreover, if a commutative A-loop Q has $[Q : N_{\mu}] = 2$ then Q can be obtained via this construction with $G = N_{\mu}$.

Construction of the Smallest Commutative A-loops

Theorem (P.J.,M.K.,P.V.)

Let (G, +) be an abelian group, f an automorphism of G and t a fixed point of f. We define an operation * on $Q = G \cup \overline{G}$ as follows:

$$x * y = x + y,$$
 $\bar{x} * y = \overline{x + y},$

$$x * \overline{y} = \overline{x + y},$$
 $\overline{x} * \overline{y} = f(x + y) + t.$

Then Q is a loop and

- Q is associative if and only if f is trivial;
- if f is not trivial then $N_{\mu} = G$ and $Z(Q) = \{x \in G; f(x) = x\};$

• Q is an A-loop if and only if f(2x) = 2x, for all $x \in G$. Moreover, if a commutative A-loop Q has $[Q : N_{\mu}] = 2$ then Q car be obtained via this construction with $G = N_{\mu}$.

Construction of the Smallest Commutative A-loops

Theorem (P.J.,M.K.,P.V.)

Let (G, +) be an abelian group, f an automorphism of G and t a fixed point of f. We define an operation * on $Q = G \cup \overline{G}$ as follows:

$$x * y = x + y,$$
 $\overline{x} * y = \overline{x + y},$

$$x * \overline{y} = \overline{x + y},$$
 $\overline{x} * \overline{y} = f(x + y) + t.$

Then Q is a loop and

- Q is associative if and only if f is trivial;
- if f is not trivial then $N_{\mu} = G$ and $Z(Q) = \{x \in G; f(x) = x\};$
- Q is an A-loop if and only if f(2x) = 2x, for all $x \in G$.

Moreover, if a commutative A-loop Q has $[Q : N_{\mu}] = 2$ then Q can be obtained via this construction with $G = N_{\mu}$.

Construction of the Smallest Commutative A-loops

Theorem (P.J.,M.K.,P.V.)

Let (G, +) be an abelian group, f an automorphism of G and t a fixed point of f. We define an operation * on $Q = G \cup \overline{G}$ as follows:

$$x * y = x + y,$$
 $\overline{x} * y = \overline{x + y},$

$$x * \overline{y} = \overline{x + y},$$
 $\overline{x} * \overline{y} = f(x + y) + t.$

Then Q is a loop and

- Q is associative if and only if f is trivial;
- if f is not trivial then $N_{\mu} = G$ and $Z(Q) = \{x \in G; f(x) = x\};$

• Q is an A-loop if and only if f(2x) = 2x, for all $x \in G$.

Moreover, if a commutative A-loop Q has $[Q : N_{\mu}] = 2$ then Q can be obtained via this construction with $G = N_{\mu}$.

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

$$\bigcirc \ G=\mathbb{Z}_4, f: x\mapsto 3x \text{ and } t=0 \text{ or } 2;$$

2)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t neutral;

3)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2$$
, f of order 3 and t neutral;

Corollary

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

$$\ \, {\bf 0} \ \, G=\mathbb{Z}_4, f:x\mapsto 3x \text{ and }t=0 \text{ or }2;$$

2 $G = \mathbb{Z}_2^2$, f of order 2 and t neutral;

3) $G = \mathbb{Z}_2^2$, f of order 2 and t not neutral.

④
$$G = \mathbb{Z}_2^2$$
, f of order 3 and t neutral;

Corollary

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

•
$$G = \mathbb{Z}_4, f : x \mapsto 3x$$
 and $t = 0$ or 2;

2
$$G = \mathbb{Z}_2^2, f$$
 of order 2 and t neutral;

3)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2$$
, f of order 3 and t neutral;

Corollary

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

•
$$G = \mathbb{Z}_4, f : x \mapsto 3x$$
 and $t = 0$ or 2;

2)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t neutral;

3)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2$$
, f of order 3 and t neutral;

Corollary

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

•
$$G = \mathbb{Z}_4, f : x \mapsto 3x$$
 and $t = 0$ or 2;

2
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t neutral;

3
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2$$
, f of order 3 and t neutral;

Corollary

There exist commutative A-loops with trivial center for any size 2^k with k > 2.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

•
$$G = \mathbb{Z}_4, f : x \mapsto 3x$$
 and $t = 0$ or 2;

2)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t neutral;

3)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2, f$$
 of order 3 and t neutral;

Corollary

Cocycles in Groups

Definition

Let G be a group and V an abelian group. A mapping $\theta: G^2 \to V$ is called a *group cocycle* if, for all g, h, k in G,

$$\theta(g, 1) = \theta(1, g) = 0,$$

$$\theta(g, hk) + \theta(h, k) = \theta(g, h)^k + \theta(gh, k).$$

Theorem

Ler G be a group and V an abelian group. The set $G \times V$ with the operation

$$(g, u) \cdot (h, v) = (gh, \theta(g, h) + u + v)$$

is a group denoted by $E(\theta, G, V)$. On the other hand, every group E, with a normal abelian subgroup V is isomorphic to $E(\theta, E/V, V)$, for some cocycle θ .

Cocycles in Groups

Definition

Let G be a group and V an abelian group. A mapping $\theta: G^2 \to V$ is called a *group cocycle* if, for all g, h, k in G,

$$\theta(g, 1) = \theta(1, g) = 0,$$

$$\theta(g, hk) + \theta(h, k) = \theta(g, h)^k + \theta(gh, k).$$

Theorem

Ler G be a group and V an abelian group. The set $G \times V$ with the operation

$$(g,u)\cdot(h,v)=(gh,\theta(g,h)+u+v)$$

is a group denoted by $E(\theta, G, V)$. On the other hand, every group E, with a normal abelian subgroup V is isomorphic to $E(\theta, E/V, V)$, for some cocycle θ .

Cocycle Extensions of A-loops

Theorem (R. H. Bruck & L. J. Paige, special version)

Let *Z* be an elementary abelian 2-group and *K* a commutative A-loop of exponent 2. Let θ : $K \times K \rightarrow Z$ be a loop cocycle satisfying $\theta(x, y) = \theta(y, x)$, for every $x, y \in K$, $\theta(x, x) = 1$, for every $x \in K$, and

$$\begin{aligned} \theta(x, y)\theta(x', y)\theta(xx', y)\theta(x, x')\theta(xy, z)\theta(x'y, z)\theta(y, z)\theta((xx')y, z) &= \\ \theta(R(y, z)x, yz)\theta(R(y, z)x', yz)\theta(R(y, z)(xx'), yz) \\ \theta(R(y, z)x, R(y, z)x, R(y, z)x') \end{aligned}$$

for every $x, y, z, x' \in K$, where $R(y, z) = R_y R_z R_{yz}^{-1}$. Then $K \ltimes_{\theta} R$ is a commutative A-loop of exponent 2.

Conversely, every commutative A-loop of exponent two that is a central extension of Z by K can be represented in this manner.

Cocycles from Trilinear Forms

Proposition (P.J., M.K., P.V.)

Let $Z = \mathbb{F}_2$ and let V be a vector space over \mathbb{F}_2 . Let $g : V^3 \to \mathbb{F}_2$ be a trilinear form such that g(x, y, z) = g(z, y, x) for every $x, y, z \in V$. Define $\theta : V^2 \to Z$ by $\theta(x, y) = g(x, x + y, y)$. Then $Q = V \ltimes_{\theta} Z$ is a commutative A-loop of exponent 2. Moreover, $(y, b) \in N_{\mu}(Q)$ if and only if the induced bilinear form $g(y, -, -) : V^2 \to \mathbb{F}_2$ is symmetric.

Example

Let $\{e_1, e_2, \ldots, e_n\}$ be a basis of V, with $n \ge 3$. For all i, set $g(e_i, e_i, e_{i+1}) = 1$, where n + 1 is identified with 1, and $g(e_i, e_j, e_k) = 0$ otherwise. For $x = \sum \alpha_j e_j$ we have $g(x, e_i, e_{i+1}) = \alpha_i$ and $g(x, e_{i+1}, e_i) = 0$ and therefore g(x, -, -) is symmetric if and only if x = 0.

Cocycles from Trilinear Forms

Proposition (P.J., M.K., P.V.)

Let $Z = \mathbb{F}_2$ and let V be a vector space over \mathbb{F}_2 . Let $g : V^3 \to \mathbb{F}_2$ be a trilinear form such that g(x, y, z) = g(z, y, x) for every $x, y, z \in V$. Define $\theta : V^2 \to Z$ by $\theta(x, y) = g(x, x + y, y)$. Then $Q = V \ltimes_{\theta} Z$ is a commutative A-loop of exponent 2. Moreover, $(y, b) \in N_{\mu}(Q)$ if and only if the induced bilinear form $g(y, -, -) : V^2 \to \mathbb{F}_2$ is symmetric.

Example

Let $\{e_1, e_2, \ldots, e_n\}$ be a basis of V, with $n \ge 3$. For all i, set $g(e_i, e_i, e_{i+1}) = 1$, where n + 1 is identified with 1, and $g(e_i, e_j, e_k) = 0$ otherwise. For $x = \sum \alpha_j e_j$ we have $g(x, e_i, e_{i+1}) = \alpha_i$ and $g(x, e_{i+1}, e_i) = 0$ and therefore g(x, -, -) is symmetric if and only if x = 0.

Cocycles from Trilinear Forms

Proposition (P.J., M.K., P.V.)

Let $Z = \mathbb{F}_2$ and let V be a vector space over \mathbb{F}_2 . Let $g : V^3 \to \mathbb{F}_2$ be a trilinear form such that g(x, y, z) = g(z, y, x) for every $x, y, z \in V$. Define $\theta : V^2 \to Z$ by $\theta(x, y) = g(x, x + y, y)$. Then $Q = V \ltimes_{\theta} Z$ is a commutative A-loop of exponent 2. Moreover, $(y, b) \in N_{\mu}(Q)$ if and only if the induced bilinear form $g(y, -, -) : V^2 \to \mathbb{F}_2$ is symmetric.

Example

Let $\{e_1, e_2, \ldots, e_n\}$ be a basis of V, with $n \ge 3$. For all i, set $g(e_i, e_i, e_{i+1}) = 1$, where n + 1 is identified with 1, and $g(e_i, e_j, e_k) = 0$ otherwise. For $x = \sum \alpha_j e_j$ we have $g(x, e_i, e_{i+1}) = \alpha_i$ and $g(x, e_{i+1}, e_i) = 0$ and therefore g(x, -, -) is symmetric if and only if x = 0.

Drápal's Construction of Commutative A-loops

Theorem (A. Drápal; P.J. & D. Simon)

Let *K* be the *q*-element finite field, $char(K) \neq 2$. Let *k* be an odd divisor either of q - 1 or of q + 1. Take ξ , a *k*-th primitive root of unity. We define an operation * on the set $Q = K \times \mathbb{Z}_k$ as follows:

$$(a,i)*(b,j) = \left((a+b) \cdot \frac{(\xi^i+1) \cdot (\xi^j+1)}{2 \cdot (\xi^{i+j}+1)} , i+j \right).$$

Then (Q, *) is a commutative A-loop, Z(Q) = 1 and $N_{\mu}(Q) = K$.

Conjecture

If k and q are primes then the construction gives the only (up to isomorphism) non-associative commutative A-loop of order kq.

Drápal's Construction of Commutative A-loops

Theorem (A. Drápal; P.J. & D. Simon)

Let *K* be the *q*-element finite field, $char(K) \neq 2$. Let *k* be an odd divisor either of q - 1 or of q + 1. Take ξ , a *k*-th primitive root of unity. We define an operation * on the set $Q = K \times \mathbb{Z}_k$ as follows:

$$(a,i)*(b,j) = \left((a+b) \cdot \frac{(\xi^i+1) \cdot (\xi^j+1)}{2 \cdot (\xi^{i+j}+1)} , i+j \right).$$

Then (Q, *) is a commutative A-loop, Z(Q) = 1 and $N_{\mu}(Q) = K$.

Conjecture

If k and q are primes then the construction gives the only (up to isomorphism) non-associative commutative A-loop of order kq.

Commutative A-loops of order p^3

Proposition (P.J., M.K., P.V.)

We define a loop $Q(\mathbb{Z}_n)$ as the set \mathbb{Z}_n^3 with an operation

$$(x_1, x_2, x_3) * (y_1, y_2, y_3) = (x_1 + y_1 + (x_2 + y_2)x_3y_3),$$

 $x_2 + y_2$, $x_3 + y_3$).

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

This loop is a commutative A-loop, its center is \mathbb{Z}_n and its middle nucleus is \mathbb{Z}_n^2 .

Commutative A-loops of order p^3

Proposition (P.J., M.K., P.V.)

We define a loop $Q_{a,b}(\mathbb{Z}_n)$ as the set \mathbb{Z}_n^3 with an operation

$$(x_1, x_2, x_3) * (y_1, y_2, y_3) = (x_1 + y_1 + (x_2 + y_2)x_3y_3)$$

+ $a(x_2, y_2)_n + b(x_3, y_3)_n$, $x_2 + y_2$, $x_3 + y_3$,

where the overflow indicator $(x, y)_n$ is defined by

$$(x,y)_n = \begin{cases} 0 & \text{if } x + y < n, \\ 1 & \text{if } x + y \ge n. \end{cases}$$

This loop is a commutative A-loop, its center is \mathbb{Z}_n and its middle nucleus is \mathbb{Z}_n^2 .

Isomorphisms of Loops of Order p^3

Conjecture

Up to isomorphism, there are exactly four non-associative commutative A-loops of order p^3 .

Enumeration

loop order	all loops (non-associative)	exponent p + non-trivial center	trivial center
8	4	1	1
15	1	_	1
16	46	10	2
21	1	_	1
24	4	_	0
27	4	0	0
30	1	_	0
32	???	211	6+?
33	1	_	1
39	1	_	1
40	4	_	0
42	1	_	0
45	2 + ?	_	1 + ?

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

Coda

Questions

Question:

Does there exist any finite simple non-associative commutative A-loop? If does, it has to be a loop of exponent two.

Question:

Does there exist a (finite) commutative A-loop with trivial middle nucleus?

Question:

Find more examples of commutative A-loops.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Coda

Questions

Question:

Does there exist any finite simple non-associative commutative A-loop? If does, it has to be a loop of exponent two.

Question:

Does there exist a (finite) commutative A-loop with trivial middle nucleus?

Question:

Find more examples of commutative A-loops.

Coda

Questions

Question:

Does there exist any finite simple non-associative commutative A-loop? If does, it has to be a loop of exponent two.

Question:

Does there exist a (finite) commutative A-loop with trivial middle nucleus?

Question:

Find more examples of commutative A-loops.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Bibliography

- R.H. Bruck, J.L. Paige:
- Loops whose inner mappings are automorphisms The Annals of Math., 2nd Series, **63**, no. 2, (1956), 308–323
- A. Drápal: A class of comm. loops with metacyclic inner mapping groups Comment. Math. Univ. Carolin. **49**,3 (2008) 357–382.
- P. Jedlička, M. K. Kinyon, P. Vojtěchovský:

Constructions of commutative automorphic loops, to appear in Comm. in Alg.

P. Jedlička, M. K. Kinyon, P. Vojtěchovský:

Structure of commutative automorphic loops, to appear in Trans. of AMS

- P. Jedlička, D. Simon: Commutative A-loops of order pq (preprint)
- M. K. Kinyon, K. Kunen, J. D. Phillips: Every diassociative A-loop is Moufang Proc. Amer. Math. Soc. 130 (2002), 619–624
 - M. K. Kinyon, K. Kunen, J. D. Phillips:

Some notes on the structure of A-loops (preprint)

ション 小田 マイビット ビー シックション