An Invariant for Left Distributivity and Idempotency

Přemysl Jedlička

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

> Arbeitstagung Allgemeine Algebra 76 24 May 2008, Linz

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Invariants of Left Distributivity and Idempotecy

Left Distributivity and Idempotency

Definition		
	$x \cdot yz = xy \cdot xz$	left distributivity
	x = xx	idempotency

Example

Let (G, \cdot) be a group and let us define

$$x * y = x^{-1} \cdot y \cdot x.$$

Then (G, *) is an LDI groupoid.

Theorem (D. Larue; A. Drápal, T. Kepka, M. Musílek)

Groups with conjugation generate a proper subvariety of LDI.

・ロト ・ 同ト ・ ヨト ・ ヨト

Invariants of Left Distributivity and Idempotecy

Left Distributivity and Idempotency

Definition		
	$x \cdot yz = xy \cdot xz$	left distributivity
	x = xx	idempotency

Example

Let (G, \cdot) be a group and let us define

$$x * y = x^{-1} \cdot y \cdot x.$$

Then (G, *) is an LDI groupoid.

Theorem (D. Larue; A. Drápal, T. Kepka, M. Musílek)

Groups with conjugation generate a proper subvariety of LDI.

イロト 不得 トイヨト イヨト

ъ

Invariants of Left Distributivity and Idempotecy

Left Distributivity and Idempotency

Definition		
	$x \cdot yz = xy \cdot xz$	left distributivity
	x = xx	idempotency

Example

Let (G,\cdot) be a group and let us define

$$x * y = x^{-1} \cdot y \cdot x.$$

Then (G, *) is an LDI groupoid.

Theorem (D. Larue; A. Drápal, T. Kepka, M. Musílek)

Groups with conjugation generate a proper subvariety of LDI.

An Invariant for Left Distributivity and Idempotency Invariants of Left Distributivity and Idempotecy

The Weight of Terms

Definition

Let us have a real number w_x , for each variable x, and $p \in [0, 1]$. The *weight* of a term t is defined inductively as

$$w(t) = \begin{cases} w_x & \text{for } t = x \\ p \cdot w(t_1) + (1-p) \cdot w(t_2) & \text{for } t = t_1 \cdot t_2 \end{cases}$$

Observatior

Two LDI-equivalent terms have the same weight.

Theorem (S. Fajtłowicz, J. Mycielski)

Two terms have always the same weight if and only if they are equivalent modulo mediality $(xy \cdot zw = xz \cdot yw)$ and idempotency.

An Invariant for Left Distributivity and Idempotency Invariants of Left Distributivity and Idempotecy

The Weight of Terms

Definition

Let us have a real number w_x , for each variable x, and $p \in [0, 1]$. The *weight* of a term t is defined inductively as

$$w(t) = \begin{cases} w_x & \text{for } t = x \\ p \cdot w(t_1) + (1-p) \cdot w(t_2) & \text{for } t = t_1 \cdot t_2 \end{cases}$$

Observation

Two LDI-equivalent terms have the same weight.

Theorem (S. Fajtłowicz, J. Mycielski)

Two terms have always the same weight if and only if they are equivalent modulo mediality $(xy \cdot zw = xz \cdot yw)$ and idempotency.

The Weight of Terms

Definition

Let us have a real number w_x , for each variable x, and $p \in [0, 1]$. The *weight* of a term t is defined inductively as

$$w(t) = \begin{cases} w_x & \text{for } t = x \\ p \cdot w(t_1) + (1-p) \cdot w(t_2) & \text{for } t = t_1 \cdot t_2 \end{cases}$$

Observation

Two LDI-equivalent terms have the same weight.

Theorem (S. Fajtłowicz, J. Mycielski)

Two terms have always the same weight if and only if they are equivalent modulo mediality ($xy \cdot zw = xz \cdot yw$) and idempotency.

Terms as Trees

Definitions

An address is a word on $\{0,1\}.$ The empty address is denoted by $\varnothing.$

Let t be a term. The subterm of t at an address α is defined as

$$\operatorname{sub}(t, \alpha) = \begin{cases} t & \text{for } \alpha = \emptyset \\ \operatorname{sub}(t_1, \beta) & \text{for } t = t_1 \cdot t_2 \text{ and } \alpha = 0\beta \\ \operatorname{sub}(t_2, \beta) & \text{for } t = t_1 \cdot t_2 \text{ and } \alpha = 1\beta \end{cases}$$

Terms as Trees

Definitions

An *address* is a word on $\{0, 1\}$. The empty address is denoted by \emptyset .

Let t be a term. The subterm of t at an address α is defined as

$$\operatorname{sub}(t, \alpha) = \begin{cases} t & \text{for } \alpha = \emptyset \\ \operatorname{sub}(t_1, \beta) & \text{for } t = t_1 \cdot t_2 \text{ and } \alpha = 0\beta \\ \operatorname{sub}(t_2, \beta) & \text{for } t = t_1 \cdot t_2 \text{ and } \alpha = 1\beta \end{cases}$$

Terms as Trees

Definitions

An *address* is a word on $\{0, 1\}$. The empty address is denoted by \emptyset .

Let t be a term. The subterm of t at an address α is defined as

$$\operatorname{sub}(t, \alpha) = \begin{cases} t & \text{for } \alpha = \emptyset \\ \operatorname{sub}(t_1, \beta) & \text{for } t = t_1 \cdot t_2 \text{ and } \alpha = 0\beta \\ \operatorname{sub}(t_2, \beta) & \text{for } t = t_1 \cdot t_2 \text{ and } \alpha = 1\beta \end{cases}$$

Terms as Trees

Definitions

An *address* is a word on $\{0, 1\}$. The empty address is denoted by \emptyset .

Let t be a term. The subterm of t at an address α is defined as

$$\operatorname{sub}(t, \alpha) = \begin{cases} t & \text{for } \alpha = \emptyset \\ \operatorname{sub}(t_1, \beta) & \text{for } t = t_1 \cdot t_2 \text{ and } \alpha = 0\beta \\ \operatorname{sub}(t_2, \beta) & \text{for } t = t_1 \cdot t_2 \text{ and } \alpha = 1\beta \end{cases}$$

Iterated Left Subterms

Definitions

For two terms t_1 and t_2 , we denot by $t_1 \sqsubset t_2$ if $t_1 = \operatorname{sub}(t_2, 0^p)$, for some $p \ge 1$. The order \sqsubseteq is defined analogously.

We write $t_1 \sqsubseteq_{\text{LDI}} t_2$ if there exist $t'_1 \stackrel{\text{LDI}}{=} t_1$ and $t'_2 \stackrel{\text{LDI}}{=} t_2$ with $t'_1 \sqsubseteq t'_2$.

Observation

The relation \sqsubseteq_{LDI} is a pre-order. The equivalence associated with \sqsubseteq_{LDI} contains $\stackrel{\text{LDI}}{=}$.

Observation

$$xy \sqsubset xy \cdot x \sqsubset (xy \cdot x) \cdot (xy \cdot y)$$

Since $xy \stackrel{\text{LDI}}{=} (xy \cdot x) \cdot (xy \cdot y)$ and $xy \stackrel{\text{LDI}}{\neq} xy \cdot x$, the relation $\stackrel{\text{LDI}}{=}$ is a proper subrelation of the equivalence given by \sqsubseteq_{LDI} .

Iterated Left Subterms

Definitions

For two terms t_1 and t_2 , we denot by $t_1 \sqsubset t_2$ if $t_1 = \operatorname{sub}(t_2, 0^p)$, for some $p \ge 1$. The order \sqsubseteq is defined analogously. We write $t_1 \sqsubseteq_{\operatorname{LDI}} t_2$ if there exist $t'_1 \stackrel{\operatorname{LDI}}{=} t_1$ and $t'_2 \stackrel{\operatorname{LDI}}{=} t_2$ with $t'_1 \sqsubseteq t'_2$.

Observation

The relation \sqsubseteq_{LDI} is a pre-order. The equivalence associated with \sqsubseteq_{LDI} contains $\stackrel{\text{LDI}}{=}$.

Observation

$$xy \sqsubset xy \cdot x \sqsubset (xy \cdot x) \cdot (xy \cdot y)$$

Since $xy \stackrel{\text{LDI}}{=} (xy \cdot x) \cdot (xy \cdot y)$ and $xy \stackrel{\text{LDI}}{\neq} xy \cdot x$, the relation $\stackrel{\text{LDI}}{=}$ is a proper subrelation of the equivalence given by \sqsubseteq_{LDI} .

Iterated Left Subterms

Definitions

For two terms t_1 and t_2 , we denot by $t_1 \sqsubset t_2$ if $t_1 = \operatorname{sub}(t_2, 0^p)$, for some $p \ge 1$. The order \sqsubseteq is defined analogously. We write $t_1 \sqsubseteq_{\operatorname{LDI}} t_2$ if there exist $t'_1 \stackrel{\operatorname{LDI}}{=} t_1$ and $t'_2 \stackrel{\operatorname{LDI}}{=} t_2$ with $t'_1 \sqsubseteq t'_2$.

Observation

The relation \sqsubseteq_{LDI} is a pre-order. The equivalence associated with \sqsubseteq_{LDI} contains $\stackrel{\text{LDI}}{=}$.

Observation

$$xy \sqsubset xy \cdot x \sqsubset (xy \cdot x) \cdot (xy \cdot y)$$

Since $xy \stackrel{\text{LDI}}{=} (xy \cdot x) \cdot (xy \cdot y)$ and $xy \stackrel{\text{LDI}}{\neq} xy \cdot x$, the relation $\stackrel{\text{LDI}}{=}$ is a proper subrelation of the equivalence given by \sqsubseteq_{LDI} .

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Iterated Left Subterms

Definitions

For two terms t_1 and t_2 , we denot by $t_1 \sqsubset t_2$ if $t_1 = \operatorname{sub}(t_2, 0^p)$, for some $p \ge 1$. The order \sqsubseteq is defined analogously. We write $t_1 \sqsubseteq_{\operatorname{LDI}} t_2$ if there exist $t'_1 \stackrel{\operatorname{LDI}}{=} t_1$ and $t'_2 \stackrel{\operatorname{LDI}}{=} t_2$ with $t'_1 \sqsubseteq t'_2$.

Observation

The relation \sqsubseteq_{LDI} is a pre-order. The equivalence associated with \sqsubseteq_{LDI} contains $\stackrel{\text{LDI}}{=}$.

Observation

$$xy \sqsubset xy \cdot x \sqsubset (xy \cdot x) \cdot (xy \cdot y)$$

Since $xy \stackrel{\text{LDI}}{=} (xy \cdot x) \cdot (xy \cdot y)$ and $xy \stackrel{\text{LDI}}{\neq} xy \cdot x$, the relation $\stackrel{\text{LDI}}{=}$ is a proper subrelation of the equivalence given by \sqsubseteq_{LDI} .

Cuts of Terms

Definition (P. Dehornoy)

The *cut* of a term *t* at an address α in *t* is defined as

$$\operatorname{cut}(t,\alpha) = \begin{cases} t & \text{for } \alpha = \emptyset \\ \operatorname{cut}(t_1,\beta) & \text{for } \alpha = 0\beta \text{ and } t = t_1 \cdot t_2 \\ t_1 \cdot \operatorname{cut}(t_2,\beta) & \text{for } \alpha = 1\beta \text{ and } t = t_1 \cdot t_2 \end{cases}$$

The cut of $x_1x_2 \bullet x_3 \bullet x_4x_5x_6 \bullet \bullet \bullet$ at 10 is $x_1x_2 \bullet x_3 \bullet x_4 \bullet$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Cuts of Terms

Definition (P. Dehornoy)

The *cut* of a term *t* at an address α in *t* is defined as

$$\operatorname{cut}(t,\alpha) = \begin{cases} t & \text{for } \alpha = \emptyset \\ \operatorname{cut}(t_1,\beta) & \text{for } \alpha = 0\beta \text{ and } t = t_1 \cdot t_2 \\ t_1 \cdot \operatorname{cut}(t_2,\beta) & \text{for } \alpha = 1\beta \text{ and } t = t_1 \cdot t_2 \end{cases}$$

The cut of $x_1x_2 \bullet x_3 \bullet x_4x_5x_6 \bullet \bullet \bullet$ at 10 is $x_1x_2 \bullet x_3 \bullet x_4 \bullet$.

Cut of Terms

Cuts and Left Iterated Terms

Observation

Let $s \sqsubseteq t$. Then s is a cut of t.

Proposition (P. Dehornoy)

Let *s* be a cut of a term *t*. Then $s \sqsubseteq_{LD} t$.

Proposition (P.J.)

Let *s* be a cut of a term *t*. If *t'* is obtained from *t* in one step, then there exist two external addresses $\alpha \ge \beta$ in *t'* such that

 $s \stackrel{\text{LDI}}{=} \operatorname{cut}(t', \alpha) \cdot \operatorname{cut}(t', \beta).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Cut of Terms

Cuts and Left Iterated Terms

Observation

Let $s \sqsubseteq t$. Then s is a cut of t.

Proposition (P. Dehornoy)

Let *s* be a cut of a term *t*. Then $s \sqsubseteq_{LD} t$.

Proposition (P.J.)

Let *s* be a cut of a term *t*. If *t*' is obtained from *t* in one step, then there exist two external addresses $\alpha \ge \beta$ in *t*' such that

 $s \stackrel{\text{LDI}}{=} \operatorname{cut}(t', \alpha) \cdot \operatorname{cut}(t', \beta).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Cut of Terms

Cuts and Left Iterated Terms

Observation

Let $s \sqsubseteq t$. Then s is a cut of t.

Proposition (P. Dehornoy)

Let *s* be a cut of a term *t*. Then $s \sqsubseteq_{LD} t$.

Proposition (P.J.)

Let *s* be a cut of a term *t*. If *t'* is obtained from *t* in one step, then there exist two external addresses $\alpha \ge \beta$ in *t'* such that

 $s \stackrel{\text{LDI}}{=} \operatorname{cut}(t', \alpha) \cdot \operatorname{cut}(t', \beta).$

Set of All Cuts

Definition

For a term t, we denote by Cut(t) the smallest set satisfying

- every cut of *t* belongs to Cut(*t*);
- if t' is LDI-equivalent to some $t \in Cut(t)$ then $t' \in Cut(t)$;
- if s and s' belong to Cut(t) and s' ⊑ s then s ⋅ s' belongs to Cut(t).

Theorem (P.J.)

- $s \sqsubseteq_{\text{LDI}} t;$
- there exists $t' \stackrel{\text{LIII}}{=} t$ such that s is a cut of t';
- $s \in \operatorname{Cut}(t)$;
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

Set of All Cuts

Definition

For a term t, we denote by Cut(t) the smallest set satisfying

- every cut of *t* belongs to Cut(*t*);
- if t' is LDI-equivalent to some $t \in Cut(t)$ then $t' \in Cut(t)$;
- if s and s' belong to Cut(t) and s' \sqsubseteq s then $s \cdot s'$ belongs to Cut(t).

Theorem (P.J.)

- $s \sqsubseteq_{\text{LDI}} t;$
- there exists $t' \stackrel{\text{lim}}{=} t$ such that s is a cut of t';
- $s \in \operatorname{Cut}(t)$;
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

Set of All Cuts

Definition

For a term t, we denote by Cut(t) the smallest set satisfying

- every cut of *t* belongs to Cut(*t*);
- if t' is LDI-equivalent to some $t \in Cut(t)$ then $t' \in Cut(t)$;
- if s and s' belong to Cut(t) and s' ⊑ s then s ⋅ s' belongs to Cut(t).

Theorem (P.J.)

- $s \sqsubseteq_{\text{LDI}} t;$
- there exists $t' \stackrel{\text{LIII}}{=} t$ such that s is a cut of t';
- $s \in \operatorname{Cut}(t);$
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

Set of All Cuts

Definition

For a term t, we denote by Cut(t) the smallest set satisfying

- every cut of *t* belongs to Cut(*t*);
- if t' is LDI-equivalent to some $t \in Cut(t)$ then $t' \in Cut(t)$;
- if s and s' belong to Cut(t) and s' ⊑ s then s ⋅ s' belongs to Cut(t).

Theorem (P.J.)

- $s \sqsubseteq_{\text{LDI}} t$;
- there exists $t' \stackrel{\text{LM}}{=} t$ such that s is a cut of t';
- $s \in \operatorname{Cut}(t);$
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

Set of All Cuts

Definition

For a term t, we denote by Cut(t) the smallest set satisfying

- every cut of *t* belongs to Cut(*t*);
- if t' is LDI-equivalent to some $t \in Cut(t)$ then $t' \in Cut(t)$;
- if s and s' belong to Cut(t) and s' ⊑ s then s · s' belongs to Cut(t).

Theorem (P.J.)

```
• s \sqsubseteq_{\text{LDI}} t;
```

- there exists $t' \stackrel{\text{LDI}}{=} t$ such that *s* is a cut of *t'*;
- $s \in \operatorname{Cut}(t)$;
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

Set of All Cuts

Definition

For a term t, we denote by Cut(t) the smallest set satisfying

- every cut of *t* belongs to Cut(*t*);
- if t' is LDI-equivalent to some $t \in Cut(t)$ then $t' \in Cut(t)$;
- if s and s' belong to Cut(t) and s' ⊑ s then s · s' belongs to Cut(t).

Theorem (P.J.)

•
$$s \sqsubseteq_{\text{LDI}} t$$
;

- there exists $t' \stackrel{\text{LDI}}{=} t$ such that *s* is a cut of *t'*;
- $s \in \operatorname{Cut}(t)$;
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

Set of All Cuts

Definition

For a term t, we denote by Cut(t) the smallest set satisfying

- every cut of *t* belongs to Cut(*t*);
- if t' is LDI-equivalent to some $t \in Cut(t)$ then $t' \in Cut(t)$;
- if s and s' belong to Cut(t) and s' ⊑ s then s ⋅ s' belongs to Cut(t).

Theorem (P.J.)

•
$$s \sqsubseteq_{\text{LDI}} t;$$

- there exists $t' \stackrel{\text{LDI}}{=} t$ such that *s* is a cut of *t'*;
- $s \in \operatorname{Cut}(t);$
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

Set of All Cuts

Definition

For a term t, we denote by Cut(t) the smallest set satisfying

- every cut of *t* belongs to Cut(*t*);
- if t' is LDI-equivalent to some $t \in Cut(t)$ then $t' \in Cut(t)$;
- if s and s' belong to Cut(t) and s' ⊑ s then s · s' belongs to Cut(t).

Theorem (P.J.)

•
$$s \sqsubseteq_{\text{LDI}} t$$
;

- there exists $t' \stackrel{\text{LDI}}{=} t$ such that s is a cut of t';
- $s \in \operatorname{Cut}(t);$
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

Set of All Cuts

Definition

For a term t, we denote by Cut(t) the smallest set satisfying

- every cut of *t* belongs to Cut(*t*);
- if t' is LDI-equivalent to some $t \in Cut(t)$ then $t' \in Cut(t)$;
- if s and s' belong to Cut(t) and s' ⊑ s then s · s' belongs to Cut(t).

Theorem (P.J.)

•
$$s \sqsubseteq_{\text{LDI}} t$$
;

- there exists $t' \stackrel{\text{LDI}}{=} t$ such that *s* is a cut of *t'*;
- $s \in \operatorname{Cut}(t);$
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

An Example

Fact

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Observation

$$(x \cdot xy)(yx \cdot y) \stackrel{\text{RD}}{=} (x \cdot xy)(yy \cdot xy) \stackrel{\text{RD}}{=} (x \cdot yy)(xy) \stackrel{\text{I}}{=} (xy)(xy) \stackrel{\text{I}}{=} xy$$

Lemma

Let us take the following weight: $w_x = 1$, $w_y = -1$, p = 1/2. Then, for every *t* in Cut(*xy*), the weight of *t* is positive.

Proof.

- w(x) = 1, w(xy) = 0;
- w(t') = w(t) for $t' \stackrel{\text{LDI}}{=} t$;
- if $w(s) \ge 0$ and $w(s') \ge 0$ then $w(s \cdot s') \ge 0$.

An Example

Fact

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Observation

$$(x \cdot xy)(yx \cdot y) \stackrel{\text{RD}}{=} (x \cdot xy)(yy \cdot xy) \stackrel{\text{RD}}{=} (x \cdot yy)(xy) \stackrel{\text{I}}{=} (xy)(xy) \stackrel{\text{I}}{=} xy$$

_emma

Let us take the following weight: $w_x = 1$, $w_y = -1$, p = 1/2. Then, for every *t* in Cut(*xy*), the weight of *t* is positive.

Proof.

- w(x) = 1, w(xy) = 0;
- w(t') = w(t) for $t' \stackrel{\text{LDI}}{=} t$;
- if $w(s) \ge 0$ and $w(s') \ge 0$ then $w(s \cdot s') \ge 0$.

An Example

Fact

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Observation

$$(x \cdot xy)(yx \cdot y) \stackrel{\text{RD}}{=} (x \cdot xy)(yy \cdot xy) \stackrel{\text{RD}}{=} (x \cdot yy)(xy) \stackrel{\text{I}}{=} (xy)(xy) \stackrel{\text{I}}{=} xy$$

Lemma

Let us take the following weight: $w_x = 1$, $w_y = -1$, p = 1/2. Then, for every *t* in Cut(*xy*), the weight of *t* is positive.

Proof.

- w(x) = 1, w(xy) = 0;
- w(t') = w(t) for $t' \stackrel{\text{LDI}}{=} t$;
- if $w(s) \ge 0$ and $w(s') \ge 0$ then $w(s \cdot s') \ge 0$.

An Example

Fact

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Observation

$$(x \cdot xy)(yx \cdot y) \stackrel{\text{RD}}{=} (x \cdot xy)(yy \cdot xy) \stackrel{\text{RD}}{=} (x \cdot yy)(xy) \stackrel{\text{I}}{=} (xy)(xy) \stackrel{\text{I}}{=} xy$$

Lemma

Let us take the following weight: $w_x = 1$, $w_y = -1$, p = 1/2. Then, for every *t* in Cut(*xy*), the weight of *t* is positive.

Proof.

•
$$w(x) = 1, w(xy) = 0;$$

•
$$w(t') = w(t)$$
 for $t' \stackrel{\text{LDI}}{=} t$;

An Example

Fact

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Observation

$$(x \cdot xy)(yx \cdot y) \stackrel{\text{RD}}{=} (x \cdot xy)(yy \cdot xy) \stackrel{\text{RD}}{=} (x \cdot yy)(xy) \stackrel{\text{I}}{=} (xy)(xy) \stackrel{\text{I}}{=} xy$$

Lemma

Let us take the following weight: $w_x = 1$, $w_y = -1$, p = 1/2. Then, for every *t* in Cut(*xy*), the weight of *t* is positive.

Proof.

•
$$w(x) = 1, w(xy) = 0;$$

•
$$w(t') = w(t)$$
 for $t' \stackrel{\text{LDI}}{=} t$

An Example

Fact

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Observation

$$(x \cdot xy)(yx \cdot y) \stackrel{\text{RD}}{=} (x \cdot xy)(yy \cdot xy) \stackrel{\text{RD}}{=} (x \cdot yy)(xy) \stackrel{\text{I}}{=} (xy)(xy) \stackrel{\text{I}}{=} xy$$

Lemma

Let us take the following weight: $w_x = 1$, $w_y = -1$, p = 1/2. Then, for every *t* in Cut(*xy*), the weight of *t* is positive.

Proof.

•
$$w(x) = 1, w(xy) = 0;$$

•
$$w(t') = w(t)$$
 for $t' \stackrel{\text{LDI}}{=} t$;

An Example

Fact

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Observation

$$(x \cdot xy)(yx \cdot y) \stackrel{\text{RD}}{=} (x \cdot xy)(yy \cdot xy) \stackrel{\text{RD}}{=} (x \cdot yy)(xy) \stackrel{\text{I}}{=} (xy)(xy) \stackrel{\text{I}}{=} xy$$

Lemma

Let us take the following weight: $w_x = 1$, $w_y = -1$, p = 1/2. Then, for every *t* in Cut(*xy*), the weight of *t* is positive.

Proof.

•
$$w(x) = 1, w(xy) = 0;$$

•
$$w(t') = w(t)$$
 for $t' \stackrel{\text{LDI}}{=} t$;

The Example

Proposition

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Proof.

The term $(x \cdot xy)y$ is a cut of $(x \cdot xy)(yx \cdot y)$. Its weight is -1/4. According to the previous lemma, $(x \cdot xy)y \notin Cut(xy)$. And hence $x \cdot y \stackrel{\text{Lpt}}{\neq} (x \cdot xy)(yx \cdot y)$.

The Example

Proposition

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Proof.

The term $(x \cdot xy)y$ is a cut of $(x \cdot xy)(yx \cdot y)$.

Its weight is -1/4. According to the previous lemma, $(x \cdot xy)y \notin \operatorname{Cut}(xy)$ And hence $x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$.

The Example

Proposition

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Proof.

The term $(x \cdot xy)y$ is a cut of $(x \cdot xy)(yx \cdot y)$. Its weight is -1/4.

According to the previous lemma, $(x \cdot xy)y \notin Cut(xy)$ And hence $x \cdot y \stackrel{\text{LPI}}{\neq} (x \cdot xy)(yx \cdot y)$.

The Example

Proposition

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Proof.

The term $(x \cdot xy)y$ is a cut of $(x \cdot xy)(yx \cdot y)$. Its weight is -1/4. According to the previous lemma, $(x \cdot xy)y \notin Cut(xy)$. And hence $x \cdot y \stackrel{\text{LPI}}{\neq} (x \cdot xy)(yx \cdot y)$.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

The Example

Proposition

$$x \cdot y \stackrel{\text{LDI}}{\neq} (x \cdot xy)(yx \cdot y)$$

Proof.

The term $(x \cdot xy)y$ is a cut of $(x \cdot xy)(yx \cdot y)$. Its weight is -1/4. According to the previous lemma, $(x \cdot xy)y \notin Cut(xy)$. And hence $x \cdot y \neq (x \cdot xy)(yx \cdot y)$.

Bibliography

P. Dehornoy:

Braids and Self-Distributivity Progress in Mathematics 192: Birkhäuser, 2000

- A. Drápal, T. Kepka, M. Musílek: Group Conjugation has Non-Trivial LD-Identities Comment, Mathematicae Univ. Carolinae 35/2, 1994, 596–606
- P. Jedlička: On a Partial Syntactical Criterion for the Left Distributivity and the Idempotency to appear in Mathematica Slovaca

D. Larue:

Left Distributive Idempotent Algebras

Communications in Algebra 27/5, 1999, 2003–2009