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Invariants of Left Distributivity and Idempotecy

Left Distributivity and Idempotency

Definition

x · yz = xy · xz left distributivity

x = xx idempotency

Example

Let (G, ·) be a group and let us define

x ∗ y = x−1 · y · x.

Then (G, ∗) is an LDI groupoid.

Theorem (D. Larue; A. Drápal, T. Kepka, M. Musílek)

Groups with conjugation generate a proper subvariety of LDI.
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Invariants of Left Distributivity and Idempotecy

The Weight of Terms

Definition
Let us have a real number wx, for each variable x, and p ∈ [0,1].
The weight of a term t is defined inductively as

w(t) =

wx for t = x
p ·w(t1) + (1 − p) ·w(t2) for t = t1 · t2

Observation
Two LDI-equivalent terms have the same weight.

Theorem (S. Fajtłowicz, J. Mycielski)

Two terms have always the same weight if and only if they are
equivalent modulo mediality (xy · zw = xz · yw) and idempotency.
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Terms as Trees

Terms as Trees

Definitions
An address is a word on {0,1}. The empty address is denoted
by �.
Let t be a term. The subterm of t at an address α is defined as

sub(t, α) =


t for α = �

sub(t1, β) for t = t1 · t2 and α = 0β
sub(t2, β) for t = t1 · t2 and α = 1β

An address α is in a term t if sub(t, α) exists. The address α is
called external if sub(t, α) is a variable.
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Terms as Trees

Iterated Left Subterms

Definitions
For two terms t1 and t2, we denot by t1 @ t2 if t1 = sub(t2,0p), for
some p > 1. The order v is defined analogously.
We write t1 vLDI t2 if there exist t′1

LDI
= t1 and t′2

LDI
= t2 with t′1 v t′2.

Observation
The relation vLDI is a pre-order. The equivalence associated with
vLDI contains LDI

= .

Observation

xy @ xy · x @ (xy · x) · (xy · y)

Since xy LDI
= (xy · x) · (xy · y) and xy 6LDI

= xy · x, the relation LDI
= is a

proper subrelation of the equivalence given by vLDI.
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Cut of Terms

Cuts of Terms

Definition (P. Dehornoy)

The cut of a term t at an address α in t is defined as

cut(t, α) =


t for α = �

cut(t1, β) for α = 0β and t = t1 · t2

t1 · cut(t2, β) for α = 1β and t = t1 · t2

x1 x2

x3 x4

x5 x6

S

The cut of x1x2•x3•x4x5x6••• at 10 is x1x2•x3•x4•.
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Cut of Terms

Cuts and Left Iterated Terms

Observation
Let s v t. Then s is a cut of t.

Proposition (P. Dehornoy)

Let s be a cut of a term t. Then s vLD t.

Proposition (P.J.)

Let s be a cut of a term t. If t′ is obtained from t in one step, then
there exist two external addresses α > β in t′ such that

s LDI
= cut(t′, α) · cut(t′, β).
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The Criterion

Set of All Cuts

Definition
For a term t, we denote by Cut(t) the smallest set satisfying

every cut of t belongs to Cut(t);
if t′ is LDI-equivalent to some t ∈ Cut(t) then t′ ∈ Cut(t);
if s and s′ belong to Cut(t) and s′ v s then s · s′ belongs
to Cut(t).

Theorem (P.J.)

The following conditions are equivalent for two terms s and t:
s vLDI t;
there exists t′ LDI

= t such that s is a cut of t′;
s ∈ Cut(t);
Cut(s) ⊆ Cut(t).
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The Criterion

An Example

Fact

x · y 6LDI
= (x · xy)(yx · y)

Observation

(x · xy)(yx · y) RD
= (x · xy)(yy · xy) RD

= (x · yy)(xy) I
= (xy)(xy) I

= xy

Lemma
Let us take the following weight: wx = 1, wy = −1, p = 1/2. Then,
for every t in Cut(xy), the weight of t is positive.

Proof.
w(x) = 1, w(xy) = 0;

w(t′) = w(t) for t′ LDI
= t;

if w(s) > 0 and w(s′) > 0 then w(s · s′) > 0. �
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The Criterion

The Example

Proposition

x · y 6LDI
= (x · xy)(yx · y)

Proof.
The term (x · xy)y is a cut of (x · xy)(yx · y).
Its weight is −1/4.
According to the previous lemma, (x · xy)y < Cut(xy).
And hence x · y 6LDI

= (x · xy)(yx · y). �
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