An Invariant for Left Distributivity and Idempotency

Přemysl Jedlička

Department of Mathematics
Faculty of Engineering (former Technical Faculty)
Czech University of Life Sciences (former Czech University of Agriculture), Prague

Arbeitstagung Allgemeine Algebra 76 24 May 2008, Linz

Left Distributivity and Idempotency

Definition

$$
\begin{aligned}
x \cdot y z & =x y \cdot x z \\
x & =x x
\end{aligned}
$$

left distributivity idempotency

Example

\square
Let (G, \cdot) be a group and let us define

Then $(G, *)$ is an LDI groupoid.

Theorem (D. Larue; A. Drápal, T. Kepka, M. Musílek)

Groups with conjugation generate a proper subvariety of LDI.

Left Distributivity and Idempotency

Definition

$$
\begin{aligned}
x \cdot y z & =x y \cdot x z \\
x & =x x
\end{aligned}
$$

left distributivity idempotency

Example

Let (G, \cdot) be a group and let us define

$$
x * y=x^{-1} \cdot y \cdot x
$$

Then $(G, *)$ is an LDI groupoid.

Theorem (D. Larue; A. Drápal, T. Kepka, M. Musílek)

Groups with conjugation generate a proper subvariety of LDI.

Left Distributivity and Idempotency

Definition

$$
\begin{aligned}
x \cdot y z & =x y \cdot x z \\
x & =x x
\end{aligned}
$$

left distributivity idempotency

Example

Let (G, \cdot) be a group and let us define

$$
x * y=x^{-1} \cdot y \cdot x
$$

Then $(G, *)$ is an LDI groupoid.

Theorem (D. Larue; A. Drápal, T. Kepka, M. Musílek)

Groups with conjugation generate a proper subvariety of LDI.

The Weight of Terms

Definition

Let us have a real number w_{x}, for each variable x, and $p \in[0,1]$. The weight of a term t is defined inductively as

$$
w(t)= \begin{cases}w_{x} & \text { for } t=x \\ p \cdot w\left(t_{1}\right)+(1-p) \cdot w\left(t_{2}\right) & \text { for } t=t_{1} \cdot t_{2}\end{cases}
$$

Observation

Two LDI-equivalent terms have the same weight.

Theorem (S. Fajttowicz, J. Mycielski)
Two terms have always the same weigh if and only if they are equivalent modulo mediality $(x y \cdot z w=x z \cdot y w)$ and idempotency.

The Weight of Terms

Definition

Let us have a real number w_{x}, for each variable x, and $p \in[0,1]$. The weight of a term t is defined inductively as

$$
w(t)= \begin{cases}w_{x} & \text { for } t=x \\ p \cdot w\left(t_{1}\right)+(1-p) \cdot w\left(t_{2}\right) & \text { for } t=t_{1} \cdot t_{2}\end{cases}
$$

Observation

Two LDI-equivalent terms have the same weight.

Theorem (S. Fajtowicz, J. Mycielski)
Two terms have always the same weight if and only if they are equivalent modulo mediality $(x y \cdot z w=x z \cdot y w)$ and idempotency.

The Weight of Terms

Definition

Let us have a real number w_{x}, for each variable x, and $p \in[0,1]$. The weight of a term t is defined inductively as

$$
w(t)= \begin{cases}w_{x} & \text { for } t=x \\ p \cdot w\left(t_{1}\right)+(1-p) \cdot w\left(t_{2}\right) & \text { for } t=t_{1} \cdot t_{2}\end{cases}
$$

Observation

Two LDI-equivalent terms have the same weight.

Theorem (S. Fajtłowicz, J. Mycielski)

Two terms have always the same weight if and only if they are equivalent modulo mediality $(x y \cdot z w=x z \cdot y w)$ and idempotency.

Terms as Trees

Definitions

An address is a word on $\{0,1\}$. The empty address is denoted by \varnothing.
Let t be a term. The subterm of t at an address α is defined as

$$
\operatorname{sub}(t, \alpha)= \begin{cases}t & \text { for } \alpha=\varnothing \\ \operatorname{sub}\left(t_{1}, \beta\right) & \text { for } t=t_{1} \cdot t_{2} \text { and } \alpha=0 \beta \\ \operatorname{sub}\left(t_{2}, \beta\right) & \text { for } t=t_{1} \cdot t_{2} \text { and } \alpha=1 \beta\end{cases}
$$

An address α is in a term t if $\operatorname{sub}(t, \alpha)$ exists. The address α is called external if $\operatorname{sub}(t, \alpha)$ is a variable.

Terms as Trees

Definitions

An address is a word on $\{0,1\}$. The empty address is denoted by \varnothing.
Let t be a term. The subterm of t at an address α is defined as

$$
\operatorname{sub}(t, \alpha)= \begin{cases}t & \text { for } \alpha=\varnothing \\ \operatorname{sub}\left(t_{1}, \beta\right) & \text { for } t=t_{1} \cdot t_{2} \text { and } \alpha=0 \beta \\ \operatorname{sub}\left(t_{2}, \beta\right) & \text { for } t=t_{1} \cdot t_{2} \text { and } \alpha=1 \beta\end{cases}
$$

An address α is in a term t if $\operatorname{sub}(t, \alpha)$ exists. The address α is called external if $\operatorname{sub}(t, \alpha)$ is a variable.

Terms as Trees

Definitions

An address is a word on $\{0,1\}$. The empty address is denoted by \varnothing.
Let t be a term. The subterm of t at an address α is defined as

$$
\operatorname{sub}(t, \alpha)= \begin{cases}t & \text { for } \alpha=\varnothing \\ \operatorname{sub}\left(t_{1}, \beta\right) & \text { for } t=t_{1} \cdot t_{2} \text { and } \alpha=0 \beta \\ \operatorname{sub}\left(t_{2}, \beta\right) & \text { for } t=t_{1} \cdot t_{2} \text { and } \alpha=1 \beta\end{cases}
$$

An address α is in a term t if $\operatorname{sub}(t, \alpha)$ exists. The address α is called external if $\operatorname{sub}(t, \alpha)$ is a variable.

Terms as Trees

Definitions

An address is a word on $\{0,1\}$. The empty address is denoted by \varnothing.
Let t be a term. The subterm of t at an address α is defined as

$$
\operatorname{sub}(t, \alpha)= \begin{cases}t & \text { for } \alpha=\varnothing \\ \operatorname{sub}\left(t_{1}, \beta\right) & \text { for } t=t_{1} \cdot t_{2} \text { and } \alpha=0 \beta \\ \operatorname{sub}\left(t_{2}, \beta\right) & \text { for } t=t_{1} \cdot t_{2} \text { and } \alpha=1 \beta\end{cases}
$$

An address α is in a term t if $\operatorname{sub}(t, \alpha)$ exists. The address α is called external if $\operatorname{sub}(t, \alpha)$ is a variable.

Iterated Left Subterms

Definitions

For two terms t_{1} and t_{2}, we denot by $t_{1} \sqsubset t_{2}$ if $t_{1}=\operatorname{sub}\left(t_{2}, 0^{p}\right)$, for some $p \geqslant 1$. The order \sqsubseteq is defined analogously.
We write $t_{1} \sqsubseteq_{\mathrm{LDI}} t_{2}$ if there exist $t_{1}^{\prime} \stackrel{\text { DID }}{=} t_{1}$ and $t_{2}^{\prime} \xlongequal{=} t_{2}$ with $t_{1}^{\prime} \sqsubseteq t_{2}^{\prime}$.

Observation

The relation $\sqsubseteq_{\text {ini }}$ is a pre-order. The equivalence associated with $\sqsubseteq_{\text {LDI }}$ contains $\stackrel{\text { Lill }}{=}$

Observation

$$
x y \sqsubset x y \cdot x \sqsubset(x y \cdot x) \cdot(x y \cdot y)
$$

Since $x y \stackrel{\text { LDI }}{=}(x y \cdot x) \cdot(x y \cdot y)$ and $x y \stackrel{\text { LDI }}{\neq} x y \cdot x$, the relation $\stackrel{\text { LDI }}{=}$ is a proper subrelation of the equivalence given by $\sqsubseteq_{\text {LDI }}$.

Iterated Left Subterms

Definitions

For two terms t_{1} and t_{2}, we denot by $t_{1} \sqsubset t_{2}$ if $t_{1}=\operatorname{sub}\left(t_{2}, 0^{p}\right)$, for some $p \geqslant 1$. The order \sqsubseteq is defined analogously. We write $t_{1} \sqsubseteq_{\text {LDI }} t_{2}$ if there exist $t_{1}^{\prime} \stackrel{\text { LDI }}{=} t_{1}$ and $t_{2}^{\prime} \stackrel{\text { LDI }}{=} t_{2}$ with $t_{1}^{\prime} \sqsubseteq t_{2}^{\prime}$.

Observation

The relation $\sqsubseteq_{\text {IDI }}$ is a pre-order. The equivalence associated with $\sqsubseteq_{\text {LDI }}$ contains $\stackrel{101}{=}$.

Observation

$$
x y \sqsubset x y \cdot x \sqsubset(x y \cdot x) \cdot(x y \cdot y)
$$

Since $x y \stackrel{\text { LDI }}{=}(x y \cdot x) \cdot(x y \cdot y)$ and $x y \stackrel{\text { LII }}{\neq} x y \cdot x$, the relation $\stackrel{\text { LDI }}{=}$ is a
proper subrelation of the equivalence given by $\sqsubseteq_{\text {LDI }}$.

Iterated Left Subterms

Definitions

For two terms t_{1} and t_{2}, we denot by $t_{1} \sqsubset t_{2}$ if $t_{1}=\operatorname{sub}\left(t_{2}, 0^{p}\right)$, for some $p \geqslant 1$. The order \sqsubseteq is defined analogously. We write $t_{1} \sqsubseteq_{\text {LDI }} t_{2}$ if there exist $t_{1}^{\prime} \stackrel{\text { LDI }}{=} t_{1}$ and $t_{2}^{\prime} \stackrel{\text { LDI }}{=} t_{2}$ with $t_{1}^{\prime} \sqsubseteq t_{2}^{\prime}$.

Observation

The relation $\sqsubseteq_{\text {LDI }}$ is a pre-order. The equivalence associated with $\sqsubseteq_{\text {LDI }}$ contains $\stackrel{\text { LDI }}{=}$.

Observation

$$
x y \sqsubset x y \cdot x \sqsubset(x y \cdot x) \cdot(x y \cdot y)
$$

Since $x y \stackrel{\text { LDI }}{=}(x y \cdot x) \cdot(x y \cdot y)$ and $x y \stackrel{\text { LDI }}{\neq} x y \cdot x$, the relation $\stackrel{\text { LDI }}{=}$ is a proper subrelation of the equivalence given by $\sqsubseteq_{\text {LDI }}$.

Iterated Left Subterms

Definitions

For two terms t_{1} and t_{2}, we denot by $t_{1} \sqsubset t_{2}$ if $t_{1}=\operatorname{sub}\left(t_{2}, 0^{p}\right)$, for some $p \geqslant 1$. The order \sqsubseteq is defined analogously. We write $t_{1} \sqsubseteq_{\text {LDI }} t_{2}$ if there exist $t_{1}^{\prime} \stackrel{\text { LII }}{=} t_{1}$ and $t_{2}^{\prime} \stackrel{\text { LDI }}{=} t_{2}$ with $t_{1}^{\prime} \sqsubseteq t_{2}^{\prime}$.

Observation

The relation $\sqsubseteq_{\text {LDI }}$ is a pre-order. The equivalence associated with $\sqsubseteq_{\text {LDI }}$ contains $\stackrel{\text { LDI }}{=}$.

Observation

$$
x y \sqsubset x y \cdot x \sqsubset(x y \cdot x) \cdot(x y \cdot y)
$$

Since $x y \stackrel{\text { LDI }}{=}(x y \cdot x) \cdot(x y \cdot y)$ and $x y \stackrel{\text { LDI }}{\neq} x y \cdot x$, the relation $\stackrel{\text { LDI }}{=}$ is a proper subrelation of the equivalence given by $\sqsubseteq_{\text {LDI }}$.

Cuts of Terms

Definition (P. Dehornoy)

The cut of a term t at an address α in t is defined as

$$
\operatorname{cut}(t, \alpha)= \begin{cases}t & \text { for } \alpha=\varnothing \\ \operatorname{cut}\left(t_{1}, \beta\right) & \text { for } \alpha=0 \beta \text { and } t=t_{1} \cdot t_{2} \\ t_{1} \cdot \operatorname{cut}\left(t_{2}, \beta\right) & \text { for } \alpha=1 \beta \text { and } t=t_{1} \cdot t_{2}\end{cases}
$$

Cuts of Terms

Definition (P. Dehornoy)

The cut of a term t at an address α in t is defined as

$$
\operatorname{cut}(t, \alpha)= \begin{cases}t & \text { for } \alpha=\varnothing \\ \operatorname{cut}\left(t_{1}, \beta\right) & \text { for } \alpha=0 \beta \text { and } t=t_{1} \cdot t_{2} \\ t_{1} \cdot \operatorname{cut}\left(t_{2}, \beta\right) & \text { for } \alpha=1 \beta \text { and } t=t_{1} \cdot t_{2}\end{cases}
$$

The cut of $x_{1} x_{2} \bullet x_{3} \bullet x_{4} x_{5} x_{6} \bullet \bullet$ at 10 is $x_{1} x_{2} \bullet x_{3} \bullet x_{4} \bullet$.

Cuts and Left Iterated Terms

Observation

Let $s \sqsubseteq t$. Then s is a cut of t.

```
Proposition (P. Dehornoy)
Lets be a cut of a term t.Then s}\mp@subsup{\sqsubseteq}{LD}{}t\mathrm{ .
```

Proposition (P.J.)
Let s be a cut of a term t. If t^{\prime} is obtained from t in one step, then
there exist two external addresses $\alpha \geqslant \beta$ in t^{\prime} such that
$s \stackrel{\text { LDI }}{=} \operatorname{cut}\left(t^{\prime}, \alpha\right) \cdot \operatorname{cut}\left(t^{\prime}, \beta\right)$.

Cuts and Left Iterated Terms

Observation

Let $s \sqsubseteq t$. Then s is a cut of t.
Proposition (P. Dehornoy)
Let s be a cut of a term t. Then $s \sqsubseteq_{\mathrm{LD}} t$.

Proposition (P.J.)
Let s be a cut of a term t. If t^{\prime} is obtained from t in one step, then there exist two external addresses $\alpha \geqslant \beta$ in t^{\prime} such that

Cuts and Left Iterated Terms

Observation

Let $s \sqsubseteq t$. Then s is a cut of t.

Proposition (P. Dehornoy)

Let s be a cut of a term t. Then $s \sqsubseteq_{\mathrm{LD}} t$.

Proposition (P.J.)

Let s be a cut of a term t. If t^{\prime} is obtained from t in one step, then there exist two external addresses $\alpha \geqslant \beta$ in t^{\prime} such that

$$
s \stackrel{\text { LDI }}{=} \operatorname{cut}\left(t^{\prime}, \alpha\right) \cdot \operatorname{cut}\left(t^{\prime}, \beta\right) .
$$

Set of All Cuts

Definition

For a term t, we denote by $\operatorname{Cut}(t)$ the smallest set satisfying

- every cut of t belongs to $\operatorname{Cut}(t)$;
- if t^{\prime} is LDI-equivalent to some $t \in \operatorname{Cut}(t)$ then $t^{\prime} \in \operatorname{Cut}(t)$;
- if s and s^{\prime} belong to $\mathrm{Cut}(t)$ and $s^{\prime} \Gamma s$ then $s \cdot s^{\prime}$ belongs to $\operatorname{Cut}(t)$.

Theorem (P.J.)

The following conditions are equivalent for two terms s and t

Set of All Cuts

Definition

For a term t, we denote by $\operatorname{Cut}(t)$ the smallest set satisfying

- every cut of t belongs to $\operatorname{Cut}(t)$;
- if t^{\prime} is LDI-equivalent to some $t \in \operatorname{Cut}(t)$ then $t^{\prime} \in \operatorname{Cut}(t)$;
- if s and s^{\prime} belong to $\operatorname{Cut}(t)$ and $s^{\prime} \sqsubseteq s$ then $s \cdot s^{\prime}$ belongs to $\operatorname{Cut}(t)$.

Theorem (P.J.)

The following conditions are equivalent for two terms s and t

Set of All Cuts

Definition

For a term t, we denote by $\operatorname{Cut}(t)$ the smallest set satisfying

- every cut of t belongs to $\operatorname{Cut}(t)$;
- if t^{\prime} is LDI-equivalent to some $t \in \operatorname{Cut}(t)$ then $t^{\prime} \in \operatorname{Cut}(t)$;
- if s and s^{\prime} belong to $\operatorname{Cut}(t)$ and $s^{\prime} \sqsubseteq s$ then $s \cdot s^{\prime}$ belongs to $\operatorname{Cut}(t)$.

Theorem (P.J.)

The following conditions are equivalent for two terms s and t

Set of All Cuts

Definition

For a term t, we denote by $\operatorname{Cut}(t)$ the smallest set satisfying

- every cut of t belongs to $\operatorname{Cut}(t)$;
- if t^{\prime} is LDI-equivalent to some $t \in \operatorname{Cut}(t)$ then $t^{\prime} \in \operatorname{Cut}(t)$;
- if s and s^{\prime} belong to $\operatorname{Cut}(t)$ and $s^{\prime} \sqsubseteq s$ then $s \cdot s^{\prime}$ belongs to $\operatorname{Cut}(t)$.

Theorem (P.J.)

The following conditions are equivalent for two terms s and t

Set of All Cuts

Definition

For a term t, we denote by $\operatorname{Cut}(t)$ the smallest set satisfying

- every cut of t belongs to $\operatorname{Cut}(t)$;
- if t^{\prime} is LDI-equivalent to some $t \in \operatorname{Cut}(t)$ then $t^{\prime} \in \operatorname{Cut}(t)$;
- if s and s^{\prime} belong to $\operatorname{Cut}(t)$ and $s^{\prime} \sqsubseteq s$ then $s \cdot s^{\prime}$ belongs to $\operatorname{Cut}(t)$.

Theorem (P.J.)

The following conditions are equivalent for two terms s and t :

- there exists $t^{\prime} \stackrel{\text { LDI }}{=} t$ such that s is a cut of t^{\prime}; - $s \in \operatorname{Cut}(t)$. - $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

Set of All Cuts

Definition

For a term t, we denote by $\operatorname{Cut}(t)$ the smallest set satisfying

- every cut of t belongs to $\operatorname{Cut}(t)$;
- if t^{\prime} is LDI-equivalent to some $t \in \operatorname{Cut}(t)$ then $t^{\prime} \in \operatorname{Cut}(t)$;
- if s and s^{\prime} belong to $\operatorname{Cut}(t)$ and $s^{\prime} \sqsubseteq s$ then $s \cdot s^{\prime}$ belongs to $\operatorname{Cut}(t)$.

Theorem (P.J.)

The following conditions are equivalent for two terms s and t :

- $s \sqsubseteq_{\mathrm{LDI}} t$;
- there exists $t^{\prime} \stackrel{\text { LDI }}{=} t$ such that s is a cut of t^{\prime};

Set of All Cuts

Definition

For a term t, we denote by $\operatorname{Cut}(t)$ the smallest set satisfying

- every cut of t belongs to $\operatorname{Cut}(t)$;
- if t^{\prime} is LDI-equivalent to some $t \in \operatorname{Cut}(t)$ then $t^{\prime} \in \operatorname{Cut}(t)$;
- if s and s^{\prime} belong to $\operatorname{Cut}(t)$ and $s^{\prime} \sqsubseteq s$ then $s \cdot s^{\prime}$ belongs to $\operatorname{Cut}(t)$.

Theorem (P.J.)

The following conditions are equivalent for two terms s and t :

- $s \sqsubseteq_{\text {LDI }} t$;
- there exists $t^{\prime} \stackrel{\text { LDI }}{=} t$ such that s is a cut of t^{\prime};
- $s \in \operatorname{Cut}(t)$;
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

Set of All Cuts

Definition

For a term t, we denote by $\operatorname{Cut}(t)$ the smallest set satisfying

- every cut of t belongs to $\operatorname{Cut}(t)$;
- if t^{\prime} is LDI-equivalent to some $t \in \operatorname{Cut}(t)$ then $t^{\prime} \in \operatorname{Cut}(t)$;
- if s and s^{\prime} belong to $\operatorname{Cut}(t)$ and $s^{\prime} \sqsubseteq s$ then $s \cdot s^{\prime}$ belongs to $\operatorname{Cut}(t)$.

Theorem (P.J.)

The following conditions are equivalent for two terms s and t :

- $s \sqsubseteq_{\text {LDI }} t$;
- there exists $t^{\prime} \stackrel{\text { LDI }}{=} t$ such that s is a cut of t^{\prime};
- $s \in \operatorname{Cut}(t)$;

Set of All Cuts

Definition

For a term t, we denote by $\operatorname{Cut}(t)$ the smallest set satisfying

- every cut of t belongs to $\operatorname{Cut}(t)$;
- if t^{\prime} is LDI-equivalent to some $t \in \operatorname{Cut}(t)$ then $t^{\prime} \in \operatorname{Cut}(t)$;
- if s and s^{\prime} belong to $\operatorname{Cut}(t)$ and $s^{\prime} \sqsubseteq s$ then $s \cdot s^{\prime}$ belongs to $\operatorname{Cut}(t)$.

Theorem (P.J.)

The following conditions are equivalent for two terms s and t :

- $s \sqsubseteq_{\text {LDI }} t$;
- there exists $t^{\prime} \stackrel{\text { LDI }}{=} t$ such that s is a cut of t^{\prime};
- $s \in \operatorname{Cut}(t)$;
- $\operatorname{Cut}(s) \subseteq \operatorname{Cut}(t)$.

The Criterion

An Example

Fact

$$
x \cdot y \stackrel{\text { LDI }}{F}(x \cdot x y)(y x \cdot y)
$$

Observation

$(x \cdot x y)(y x \cdot y) \stackrel{\mathrm{RD}}{=}(x \cdot x y)(y y \cdot x y) \stackrel{\mathrm{RD}}{=}(x \cdot y y)(x y) \stackrel{\mathrm{I}}{=}(x y)(x y) \stackrel{\mathrm{I}}{=} x y$

Lemma

Let us take the following weight: $w_{x}=1, w_{y}=-1, p=1 / 2$. Then, for every t in $\operatorname{Cut}(x y)$, the weight of t is positive.

Proof.

An Example

Fact

$$
x \cdot y \stackrel{\text { LDI }}{F}(x \cdot x y)(y x \cdot y)
$$

Observation

$$
(x \cdot x y)(y x \cdot y) \stackrel{\mathrm{RD}}{=}(x \cdot x y)(y y \cdot x y) \stackrel{\mathrm{RD}}{=}(x \cdot y y)(x y) \stackrel{\mathrm{I}}{=}(x y)(x y) \stackrel{\mathrm{I}}{=} x y
$$

Lemma

Let us take the following weight: $w_{x}=1, w_{y}=-1, p=1 / 2$. Then, for every t in $\operatorname{Cut}(x y)$, the weight of t is positive.

Proof.

An Example

Fact

$$
x \cdot y \neq 1(x \cdot x y)(y x \cdot y)
$$

Observation

$$
(x \cdot x y)(y x \cdot y) \stackrel{\mathrm{RD}}{=}(x \cdot x y)(y y \cdot x y) \stackrel{\mathrm{RD}}{=}(x \cdot y y)(x y) \stackrel{1}{=}(x y)(x y) \stackrel{1}{=} x y
$$

Lemma

Let us take the following weight: $w_{x}=1, w_{y}=-1, p=1 / 2$. Then, for every t in $\operatorname{Cut}(x y)$, the weight of t is positive.

An Example

Fact

$$
x \cdot y \neq 1(x \cdot x y)(y x \cdot y)
$$

Observation

$$
(x \cdot x y)(y x \cdot y) \stackrel{\mathrm{RD}}{=}(x \cdot x y)(y y \cdot x y) \stackrel{\mathrm{RD}}{=}(x \cdot y y)(x y) \stackrel{\mathrm{I}}{=}(x y)(x y) \stackrel{\mathrm{I}}{=} x y
$$

Lemma

Let us take the following weight: $w_{x}=1, w_{y}=-1, p=1 / 2$. Then, for every t in $\operatorname{Cut}(x y)$, the weight of t is positive.

Proof.

- $w(x)=1, w(x y)=0 ;$
- $w\left(t^{\prime}\right)=w(t)$ for $t^{\prime} \stackrel{\text { LDI }}{=} t$
- if $w(s) \geqslant 0$ and $w\left(s^{\prime}\right) \geqslant 0$ then $w\left(s \cdot s^{\prime}\right) \geqslant 0$.

An Example

Fact

$$
x \cdot y \text { 퍄 }(x \cdot x y)(y x \cdot y)
$$

Observation

$$
(x \cdot x y)(y x \cdot y) \stackrel{\mathrm{RD}}{=}(x \cdot x y)(y y \cdot x y) \stackrel{\mathrm{RD}}{=}(x \cdot y y)(x y) \stackrel{\mathrm{I}}{=}(x y)(x y) \stackrel{\mathrm{I}}{=} x y
$$

Lemma

Let us take the following weight: $w_{x}=1, w_{y}=-1, p=1 / 2$. Then, for every t in $\operatorname{Cut}(x y)$, the weight of t is positive.

Proof.

- $w(x)=1, w(x y)=0 ;$
- $w\left(t^{\prime}\right)=w(t)$ for $t^{\prime} \stackrel{\text { L }}{=} t$;
- if $w(s) \geqslant 0$ and $w\left(s^{\prime}\right) \geqslant 0$ then $w\left(s \cdot s^{\prime}\right) \geqslant 0$.

An Example

Fact

$$
x \cdot y \text { 퍄 }(x \cdot x y)(y x \cdot y)
$$

Observation

$$
(x \cdot x y)(y x \cdot y) \stackrel{\mathrm{RD}}{(}(x \cdot x y)(y y \cdot x y) \stackrel{\mathrm{RD}}{=}(x \cdot y y)(x y) \stackrel{\mathrm{I}}{=}(x y)(x y) \stackrel{\mathrm{I}}{=} x y
$$

Lemma

Let us take the following weight: $w_{x}=1, w_{y}=-1, p=1 / 2$. Then, for every t in $\operatorname{Cut}(x y)$, the weight of t is positive.

Proof.

- $w(x)=1, w(x y)=0$;
- $w\left(t^{\prime}\right)=w(t)$ for $t^{\prime} \stackrel{\text { LDI }}{=} t$;
- if $w(s) \geqslant 0$ and $w\left(s^{\prime}\right) \geqslant 0$ then $w\left(s \cdot s^{\prime}\right) \geqslant 0$.

An Example

Fact

$$
x \cdot y \text { 퍄 }(x \cdot x y)(y x \cdot y)
$$

Observation

$$
(x \cdot x y)(y x \cdot y) \stackrel{\mathrm{RD}}{(}(x \cdot x y)(y y \cdot x y) \stackrel{\mathrm{RD}}{=}(x \cdot y y)(x y) \stackrel{\mathrm{I}}{=}(x y)(x y) \stackrel{\mathrm{I}}{=} x y
$$

Lemma

Let us take the following weight: $w_{x}=1, w_{y}=-1, p=1 / 2$. Then, for every t in $\operatorname{Cut}(x y)$, the weight of t is positive.

Proof.

- $w(x)=1, w(x y)=0$;
- $w\left(t^{\prime}\right)=w(t)$ for $t^{\prime} \stackrel{\text { LDI }}{=} t$;
- if $w(s) \geqslant 0$ and $w\left(s^{\prime}\right) \geqslant 0$ then $w\left(s \cdot s^{\prime}\right) \geqslant 0$.

The Example

Proposition

$$
x \cdot y \stackrel{\text { Li }}{F}(x \cdot x y)(y x \cdot y)
$$

Proof.

The term $(x \cdot x y) y$ is a cut of $(x \cdot x y)(y x \cdot y)$.
Its weight is $-1 / 4$.
According to the previous lemma, $(x \cdot x y) y \notin \operatorname{Cut}(x y)$.
And hence $x \cdot y \stackrel{\text { Lipl }}{\neq}(x \cdot x y)(y x \cdot y)$.

The Example

Proposition

$$
x \cdot y \underset{F}{\text { 1" }}(x \cdot x y)(y x \cdot y)
$$

Proof.

The term $(x \cdot x y) y$ is a cut of $(x \cdot x y)(y x \cdot y)$.
Its weight is $-1 / 4$.
According to the previous lemma, $(x \cdot x y) y \notin \operatorname{Cut}(x y)$. And hence $x \cdot y \underset{F}{\text { L"I }}(x \cdot x y)(y x \cdot y)$.

The Example

Proposition

$$
x \cdot y \neq 1(x \cdot x y)(y x \cdot y)
$$

Proof.

The term $(x \cdot x y) y$ is a cut of $(x \cdot x y)(y x \cdot y)$. Its weight is $-1 / 4$.
According to the previous lemma, $(x \cdot x y) y \notin \operatorname{Cut}(x y)$. And hence $x \cdot y \neq(x \cdot x y)(y x \cdot y)$.

The Example

Proposition

$$
x \cdot y \underset{F}{\text { 1" }}(x \cdot x y)(y x \cdot y)
$$

Proof.

The term $(x \cdot x y) y$ is a cut of $(x \cdot x y)(y x \cdot y)$. Its weight is $-1 / 4$.
According to the previous lemma, $(x \cdot x y) y \notin \operatorname{Cut}(x y)$.

The Example

Proposition

$$
x \cdot y \stackrel{\text { LDI }}{F}(x \cdot x y)(y x \cdot y)
$$

Proof.

The term $(x \cdot x y) y$ is a cut of $(x \cdot x y)(y x \cdot y)$.
Its weight is $-1 / 4$.
According to the previous lemma, $(x \cdot x y) y \notin \operatorname{Cut}(x y)$.
And hence $x \cdot y \underset{\neq \text { LiI }}{ }(x \cdot x y)(y x \cdot y)$.

Bibliography

© P．Dehornoy：
Braids and Self－Distributivity
Progress in Mathematics 192；Birkhäuser， 2000
嗇 A．Drápal，T．Kepka，M．Musílek：
Group Conjugation has Non－Trivial LD－Identities
Comment．Mathematicae Univ．Carolinae 35／2，1994，596－606
凅 P．Jedlička：On a Partial Syntactical Criterion for the Left Distributivity and the Idempotency to appear in Mathematica Slovaca

囯 D．Larue：
Left Distributive Idempotent Algebras
Communications in Algebra 27／5，1999，2003－2009

