Combinatorial Construction of the Weak Order of a Coxeter Group

Přemysl Jedlička

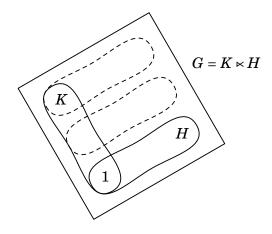
Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

April 2008 - Denver, Colorado

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Semidirect Products

Semidirect Product of Groups

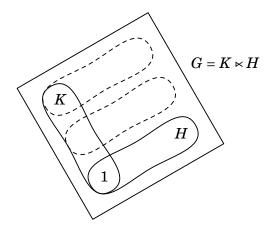


 $(k,h)*(k',h')=(k\cdot k',h\cdot \varphi_k(h'))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ≫ へ⊙

Semidirect Products

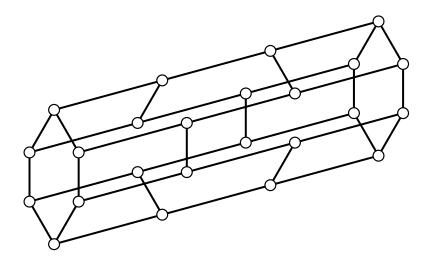
Semidirect Product of Groups



 $(k,h)*(k',h')=(k\cdot k',h\cdot \varphi_k(h'))$

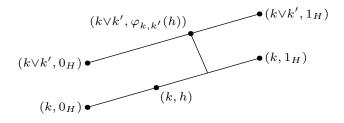
Semidirect Products

A Lattice That Is a Semidirect Product



▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへ⊙

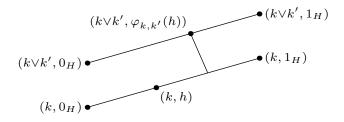
Definition of the Mappings φ and ψ



$$\begin{split} & (k', 0_H) \lor (k, h) = (k \lor k', \varphi_{k,k'}(h)) \\ & (k, 1_H) \land (k', h) = (k \land k', \psi_{k',k}(h)) \end{split}$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● の�?

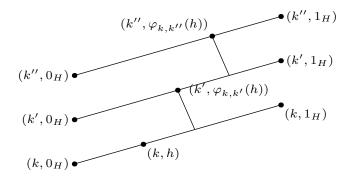
Definition of the Mappings φ and ψ



$$\begin{aligned} (k',0_H) \lor (k,h) &= (k \lor k',\varphi_{k,k'}(h)) \\ (k,1_H) \land (k',h) &= (k \land k',\psi_{k',k}(h)) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□▶ ◆○◆

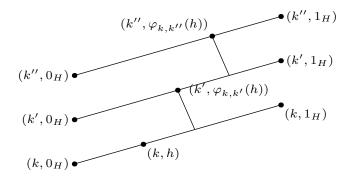
Properties of the Mapping φ



$$\begin{split} \varphi_{k,k''} &= \varphi_{k',k''} \circ \varphi_{k,k'} \quad \text{ for } k \leqslant k' \leqslant k'' \\ \varphi_{k,k'}(h \lor h') &= \varphi_{k,k'}(h) \lor \varphi_{k,k'}(h') \end{split}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

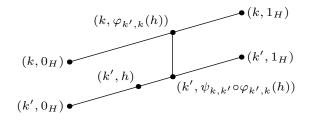
Properties of the Mapping φ



$$\begin{split} \varphi_{k,k''} &= \varphi_{k',k''} \circ \varphi_{k,k'} \quad \text{ for } k \leqslant k' \leqslant k'' \\ \varphi_{k,k'}(h \lor h') &= \varphi_{k,k'}(h) \lor \varphi_{k,k'}(h') \end{split}$$

▲□▶▲御▶▲臣▶▲臣▶ 臣 のへ⊙

Connection Between φ and ψ



 $\psi_{k,k'} \circ \varphi_{k',k}(h) \ge h$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ○○○

Semidirect Product of Lattices

Theorem (P.J.)

Let K, H be two lattices and let $\varphi, \psi : K^2 \to H^H$ be two mappings satisfying eight specific conditions. Then the set $K \times H$ with the operations \lor , \land , defined by

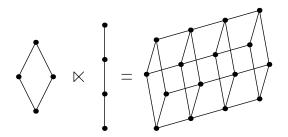
$$\begin{aligned} & (k,h) \lor (k',h') = (k \lor k', \, \varphi_{k,k'}(h) \lor \varphi_{k',k}(h')), \\ & (k,h) \land (k',h') = (k \land k', \, \psi_{k,k'}(h) \land \psi_{k',k'}(h')), \end{aligned}$$

forms a lattice, called the semidirect product of K and H and denoted by $K \ltimes^{\varphi}_{\psi} H$.

ション 小田 マイビット ビー シックション

Example of a Semidirect Product 1

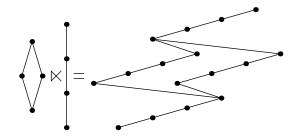
Let K, H be two arbitrary lattices and let $\varphi_{k,k'} = \psi_{k,k'} = \mathrm{id}_H$, for all k, k' in K. Then the semidirect product $K \ltimes_{\psi}^{\varphi} H$ is the carthesian product $K \times H$.



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Example of a Semidirect Product 2

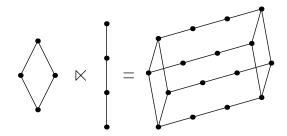
Let K, H be two arbitrary lattices and let, for each $k \leq k'$ and hin H, be $\varphi_{k,k'}(h) = 0_H$, $\psi_{k',k}(h) = 1_H$. Then we have $(k, h) \leq (k', h')$ if and only if k < k' in K or k = k' and $h \leq h'$ in H. Therefore, the semidirect product of K and H consists of |K|copies of the lattice H arranged in the form of the lattice K.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example of a Semidirect Product 3

Let K, H be arbitrary lattices and, for all $k \leq k'$, let $\varphi_{k,k'}(h) = 1_H$, for $h > 0_H$, and $\psi_{k',k}(h) = 0_H$, for $h < 1_H$. In this case if K has at least 2 elements and H has at least 3 elements, the lattice $K \ltimes_{\psi}^{\varphi} H$ is not modular.



Semidirect Product of Semilattices

Theorem (P.J.)

Let *K* and *H* be two meet-semilattices and let $\psi : K^2 \to \text{End}(H)$ be a mapping satisfying, for all k, k' and k'' from *K*,

 $\psi_{k,k} = \mathrm{id}_H;$ $\psi_{k,k'\wedge k''} = \psi_{k\wedge k',k''} \circ \psi_{k,k'}.$

Then the set $K \times H$ together with the operation \land defined by

 $(k,h) \land (k',h') = (k \land k', \psi_{k,k'}(h) \land \psi_{k',k}(h'))$

forms a semilattice. This semilattice is denoted $K \ltimes_{\psi} H$.

Coxeter Groups

Definition

A *Coxeter system* is a pair (W, S), where W is a group and S is a subset of W such that W has a presentation in form

$$W=\left\langle S;\ s^{2}=1,\ (st)^{m_{st}}=1;\ ext{for all }s,t\in S
ight
angle$$

where $m_{st} \in \{2, 3, 4, ..., \infty\}$. Such a group *W* is called a *Coxeter group*.

Examples

- Weyl groups
- Dihedral groups
- Groups of symmetries of a Euclidean space
- Groups of symmetries of an affine space

Coxeter Groups

Definition

A *Coxeter system* is a pair (W, S), where W is a group and S is a subset of W such that W has a presentation in form

$$W=\left\langle S;\ s^{2}=1,\ (st)^{m_{st}}=1;\ ext{for all }s,t\in S
ight
angle$$

where $m_{st} \in \{2, 3, 4, ..., \infty\}$. Such a group *W* is called a *Coxeter group*.

Examples

- Weyl groups
- Dihedral groups
- Groups of symmetries of a Euclidean space
- Groups of symmetries of an affine space

Weak Order

Definition

Let (W, S) be a Coxeter system and take $w \in W$. A reduced expression of w is an expression $w = s_1 s_2 \cdots s_k$, for $s_i \in S$, where k is minimal possible. The *lenght* of w, denoted by $\ell(w)$, is the lenght of this reduced expression.

Definition

Let (W, S) be a Coxeter system. We write $w \leq w'$, for elements w and w' in W, if $\ell(w') = \ell(w) + \ell(w^{-1}w')$. This relation is called the *weak order* of W or sometimes the *weak Bruhat order* of W.

Weak Order

Definition

Let (W, S) be a Coxeter system and take $w \in W$. A reduced expression of w is an expression $w = s_1 s_2 \cdots s_k$, for $s_i \in S$, where k is minimal possible. The *lenght* of w, denoted by $\ell(w)$, is the lenght of this reduced expression.

Definition

Let (W, S) be a Coxeter system. We write $w \leq w'$, for elements w and w' in W, if $\ell(w') = \ell(w) + \ell(w^{-1}w')$. This relation is called the *weak order* of W or sometimes the *weak Bruhat order* of W.

Properties of the Weak Order

Theorem (A. Björner)

The weak order on a Coxeter group W forms a meet-semilattice with 1 as the smallest element. The order forms a lattice if and only if W is finite.

Observation

Let (W, S) be a Coxeter system. The unoriented Hasse diagram of the weak order on W and the unlabelled Cayley graph of the presentation given by S are the same graphs.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Properties of the Weak Order

Theorem (A. Björner)

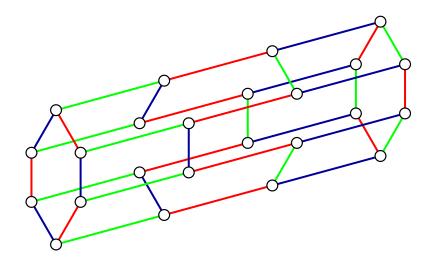
The weak order on a Coxeter group W forms a meet-semilattice with 1 as the smallest element. The order forms a lattice if and only if W is finite.

Observation

Let (W, S) be a Coxeter system. The unoriented Hasse diagram of the weak order on W and the unlabelled Cayley graph of the presentation given by S are the same graphs.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Weak Order of the Symmetric Group S_4



Standard Parabolic Subgroups

Definition

Let (W, S) be a Coxeter system and let X be a subset of S. The subgroup of W generated by X is called a *standard parabolic subgroup* and it is denoted by W_X .

Fact (well known)

Let (W, S) be a Coxeter system and let X be a subset of S. Then the pair (W_X, X) is a Coxeter system. For each element in W_X , the length in W_X and in W are the same.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Standard Parabolic Subgroups

Definition

Let (W, S) be a Coxeter system and let X be a subset of S. The subgroup of W generated by X is called a *standard parabolic subgroup* and it is denoted by W_X .

Fact (well known)

Let (W, S) be a Coxeter system and let X be a subset of S. Then the pair (W_X, X) is a Coxeter system. For each element in W_X , the length in W_X and in W are the same.

Reduced Elements

Definition

Let (W, S) be a Coxeter system and let X be a subset of S. An element w in W is called X-reduced if $x \not\leq w$, for all $x \in X$. The set of all X-reduced elements is denoted W^X

Proposition (V. Deodhar)

For each element w in W, there exists a unique decomposition $w = w_X w^X$ with $w_X \in W_X$ and $w^X \in W^X$.

Proposition (P.J.)

Let θ be this equivalence: $(w, w') \in \theta$ if and only if $w_X = w'_X$. Then θ is a congruence of the semilattice (W, \leq) with $W/\theta \cong W_X$ and each of the congruence classes is isomorphic to W^X .

Reduced Elements

Definition

Let (W, S) be a Coxeter system and let X be a subset of S. An element w in W is called X-reduced if $x \not\leq w$, for all $x \in X$. The set of all X-reduced elements is denoted W^X

Proposition (V. Deodhar)

For each element w in W, there exists a unique decomposition $w = w_X w^X$ with $w_X \in W_X$ and $w^X \in W^X$.

Proposition (P.J.)

Let θ be this equivalence: $(w, w') \in \theta$ if and only if $w_X = w'_X$. Then θ is a congruence of the semilattice (W, \leq) with $W/\theta \cong W_X$ and each of the congruence classes is isomorphic to W^X .

Reduced Elements

Definition

Let (W, S) be a Coxeter system and let X be a subset of S. An element w in W is called X-reduced if $x \not\leq w$, for all $x \in X$. The set of all X-reduced elements is denoted W^X

Proposition (V. Deodhar)

For each element w in W, there exists a unique decomposition $w = w_X w^X$ with $w_X \in W_X$ and $w^X \in W^X$.

Proposition (P.J.)

Let θ be this equivalence: $(w, w') \in \theta$ if and only if $w_X = w'_X$. Then θ is a congruence of the semilattice (W, \leq) with $W/\theta \cong W_X$ and each of the congruence classes is isomorphic to W^X .

Construction for the Groups of Type A

Fact (well known)

The group of type A_n is the symmetric group on n + 1 elements, with $s_i = (i, i + 1)$. Let $X = \{s_1, \dots, s_{n-1}\}$. Then

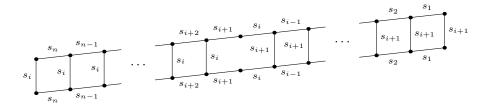
 $W_X = \{1, s_n, s_n s_{n-1}, s_n s_{n-1} s_{n-2}, \dots, s_n s_{n-1} \cdots s_2 s_1\}.$

Construction for the Groups of Type A

Fact (well known)

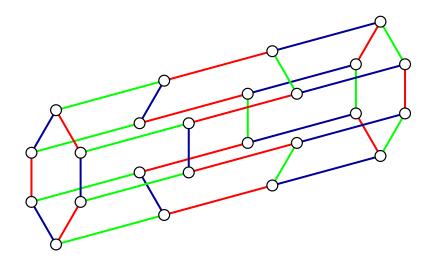
The group of type A_n is the symmetric group on n + 1 elements, with $s_i = (i, i + 1)$. Let $X = \{s_1, \dots, s_{n-1}\}$. Then

 $W_X = \{1, s_n, s_n s_{n-1}, s_n s_{n-1} s_{n-2}, \dots, s_n s_{n-1} \cdots s_2 s_1\}.$



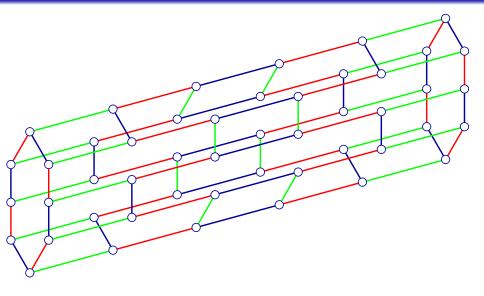
▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ の Q @

Cayley Graph / Weak Order of the Group of Type A₃

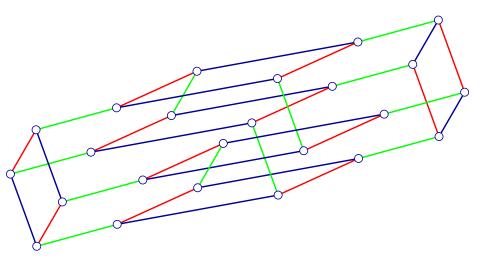


▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

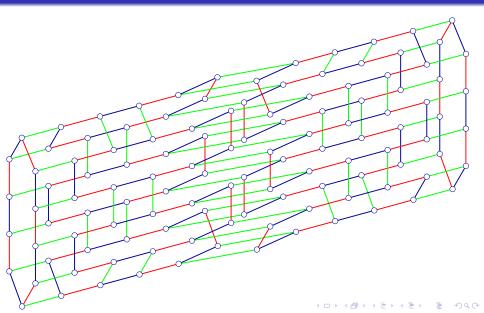
Cayley Graph / Weak Order of the Group of Type B₃



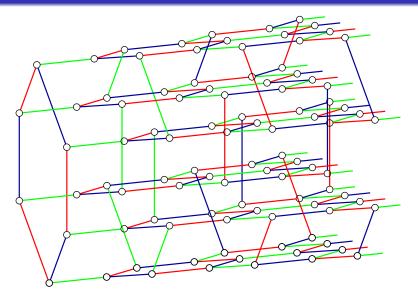
Cayley Graph / Weak Order of the Group of Type D₃



Cayley Graph / Weak Order of the Group of Type H₃



Cayley Graph / Weak Order of the Group of Type \tilde{A}_2



Bibliography

A. Björner: Orderings of Coxeter Groups Cont. Math. 34, AMS: Providence, R.I., 1984, 175–195

V. Deodhar:

A splitting criterion for the Bruhat orderings on Coxeter groups Comm. in Algebra 15 (9), 1987, 1889–1894

P. Jedlička: Combinatorial Construction of the Weak Order of a Coxeter Group Comm. in Algebra 33 (5), 2005, 1447–1460

- P. Jedlička: Semidirect Product of Lattices to appear in Algebra Universalis (2007)
- C. Le Conte de Poly-Barbut: Treillis de Cayley des groupes de Coxeter finis. Construction par récurrence et décompositions sur des quotiens. Math. Inf. Sci. Hum. 140, 1997, 11–33