Combinatorial Construction of the Weak Order of a Coxeter Group

Přemysl Jedlička

Department of Mathematics
Faculty of Engineering (former Technical Faculty)
Czech University of Life Sciences (former Czech University of Agriculture), Prague

April 2008 - Denver, Colorado

Semidirect Product of Groups

$(k, h) *\left(k^{\prime}, h^{\prime}\right)=\left(k \cdot k^{\prime}, h \cdot \varphi_{k}\left(h^{\prime}\right)\right)$

Semidirect Product of Groups

$(k, h) *\left(k^{\prime}, h^{\prime}\right)=\left(k \cdot k^{\prime}, h \cdot \varphi_{k}\left(h^{\prime}\right)\right)$

A Lattice That Is a Semidirect Product

Definition of the Mappings φ and ψ

$$
\left(k^{\prime}, 0_{H}\right) \vee(k, h)=\left(k \vee k^{\prime}, \varphi_{k, k^{\prime}}(h)\right)
$$

Definition of the Mappings φ and ψ

$$
\begin{aligned}
& \left(k^{\prime}, 0_{H}\right) \vee(k, h)=\left(k \vee k^{\prime}, \varphi_{k, k^{\prime}}(h)\right) \\
& \left(k, 1_{H}\right) \wedge\left(k^{\prime}, h\right)=\left(k \wedge k^{\prime}, \psi_{k^{\prime}, k}(h)\right)
\end{aligned}
$$

Properties of the Mapping φ

Properties of the Mapping φ

Connection Between φ and ψ

$$
\psi_{k, k^{\prime}} \circ \varphi_{k^{\prime}, k}(h) \geqslant h
$$

Semidirect Product of Lattices

Theorem (P.J.)

Let K, H be two lattices and let $\varphi, \psi: K^{2} \rightarrow H^{H}$ be two mappings satisfying eight specific conditions. Then the set $K \times H$ with the operations \vee, \wedge, defined by

$$
\begin{aligned}
(k, h) \vee\left(k^{\prime}, h^{\prime}\right) & =\left(k \vee k^{\prime}, \varphi_{k, k^{\prime}}(h) \vee \varphi_{k^{\prime}, k}\left(h^{\prime}\right)\right), \\
(k, h) \wedge\left(k^{\prime}, h^{\prime}\right) & =\left(k \wedge k^{\prime}, \psi_{k, k^{\prime}}(h) \wedge \psi_{k^{\prime}, k^{\prime}}\left(h^{\prime}\right)\right),
\end{aligned}
$$

forms a lattice, called the semidirect product of K and H and denoted by $K \ltimes_{\psi}^{\varphi} H$.

Example of a Semidirect Product 1

Let K, H be two arbitrary lattices and let $\varphi_{k, k^{\prime}}=\psi_{k, k^{\prime}}=\operatorname{id}_{H}$, for all k, k^{\prime} in K. Then the semidirect product $K \ltimes_{\psi}^{\varphi} H$ is the carthesian product $K \times H$.

Example of a Semidirect Product 2

Let K, H be two arbitrary lattices and let, for each $k \leqslant k^{\prime}$ and h in H, be $\varphi_{k, k^{\prime}}(h)=0_{H}, \psi_{k^{\prime}, k}(h)=1_{H}$. Then we have $(k, h) \leqslant\left(k^{\prime}, h^{\prime}\right)$ if and only if $k<k^{\prime}$ in K or $k=k^{\prime}$ and $h \leqslant h^{\prime}$ in H. Therefore, the semidirect product of K and H consists of $|K|$ copies of the lattice H arranged in the form of the lattice K.

Example of a Semidirect Product 3

Let K, H be arbitrary lattices and, for all $k \leqslant k^{\prime}$, let $\varphi_{k, k^{\prime}}(h)=1_{H}$, for $h>0_{H}$, and $\psi_{k^{\prime}, k}(h)=0_{H}$, for $h<1_{H}$. In this case if K has at least 2 elements and H has at least 3 elements, the lattice $K \ltimes_{\psi}^{\varphi} H$ is not modular.

Semidirect Product of Semilattices

Theorem (P.J.)

Let K and H be two meet-semilattices and let $\psi: K^{2} \rightarrow \operatorname{End}(H)$ be a mapping satisfying, for all k, k^{\prime} and $k^{\prime \prime}$ from K,

$$
\begin{aligned}
\psi_{k, k} & =\operatorname{id}_{H} ; \\
\psi_{k, k^{\prime} \wedge k^{\prime \prime}} & =\psi_{k \wedge k^{\prime}, k^{\prime \prime}} \circ \psi_{k, k^{\prime}} .
\end{aligned}
$$

Then the set $K \times H$ together with the operation \wedge defined by

$$
(k, h) \wedge\left(k^{\prime}, h^{\prime}\right)=\left(k \wedge k^{\prime}, \psi_{k, k^{\prime}}(h) \wedge \psi_{k^{\prime}, k}\left(h^{\prime}\right)\right)
$$

forms a semilattice. This semilattice is denoted $K \ltimes_{\psi} H$.

Coxeter Groups

Definition

A Coxeter system is a pair (W, S), where W is a group and S is a subset of W such that W has a presentation in form

$$
W=\left\langle S ; s^{2}=1,(s t)^{m_{s t}}=1 ; \text { for all } s, t \in S\right\rangle
$$

where $m_{s t} \in\{2,3,4, \ldots, \infty\}$.
Such a group W is called a Coxeter group.

Examples

- Weyl groups
- Dihedral groups
- Groups of symmetries of a Euclidean space
- Groups of symmetries of an affine space

Coxeter Groups

Definition

A Coxeter system is a pair (W, S), where W is a group and S is a subset of W such that W has a presentation in form

$$
W=\left\langle S ; s^{2}=1,(s t)^{m_{s t}}=1 ; \text { for all } s, t \in S\right\rangle
$$

where $m_{s t} \in\{2,3,4, \ldots, \infty\}$.
Such a group W is called a Coxeter group.

Examples

- Weyl groups
- Dihedral groups
- Groups of symmetries of a Euclidean space
- Groups of symmetries of an affine space

Weak Order

Definition

Let (W, S) be a Coxeter system and take $w \in W$. A reduced expression of w is an expression $w=s_{1} s_{2} \cdots s_{k}$, for $s_{i} \in S$, where k is minimal possible. The lenght of w, denoted by $\ell(w)$, is the lenght of this reduced expression.

Definition
Let (W, S) be a Coxeter system. We write $w \leqslant w^{\prime}$, for elements w and w^{\prime} in W, if $\ell\left(w^{\prime}\right)=\ell(w)+\ell\left(w^{-1} w^{\prime}\right)$. This relation is called the weak order of W or sometimes the weak Bruhat order of W.

Weak Order

Definition

Let (W, S) be a Coxeter system and take $w \in W$. A reduced expression of w is an expression $w=s_{1} s_{2} \cdots s_{k}$, for $s_{i} \in S$, where k is minimal possible. The lenght of w, denoted by $\ell(w)$, is the lenght of this reduced expression.

Definition

Let (W, S) be a Coxeter system. We write $w \leqslant w^{\prime}$, for elements w and w^{\prime} in W, if $\ell\left(w^{\prime}\right)=\ell(w)+\ell\left(w^{-1} w^{\prime}\right)$. This relation is called the weak order of W or sometimes the weak Bruhat order of W.

Properties of the Weak Order

Theorem (A. Björner)

The weak order on a Coxeter group W forms a meet-semilattice with 1 as the smallest element. The order forms a lattice if and only if W is finite.

Observation

Iet ($\mathbf{W} \boldsymbol{X}, \mathbf{S}$) be a Coxeter system. The unoriented Hasse diagram of the weak order on W and the unlabelled Cayley graph of the presentation given by S are the same graphs.

Properties of the Weak Order

Theorem (A. Björner)

The weak order on a Coxeter group W forms a meet-semilattice with 1 as the smallest element. The order forms a lattice if and only if W is finite.

Observation

Let (W, S) be a Coxeter system. The unoriented Hasse diagram of the weak order on W and the unlabelled Cayley graph of the presentation given by S are the same graphs.

Coxeter Groups

Weak Order of the Symmetric Group S_{4}

Standard Parabolic Subgroups

Definition

Let (W, S) be a Coxeter system and let X be a subset of S. The subgroup of W generated by X is called a standard parabolic subgroup and it is denoted by W_{X}.

Fact (well known)
Let $(\mathbf{W}, \mathbf{S}$) be a Coxeter system and let X be a subset of S. Then the pair $\left(W_{X}, X\right)$ is a Coxeter system. For each element in W_{X}, the length in W_{X} and in W are the same.

Standard Parabolic Subgroups

Definition

Let (W, S) be a Coxeter system and let X be a subset of S. The subgroup of W generated by X is called a standard parabolic subgroup and it is denoted by W_{X}.

Fact (well known)

Let (W, S) be a Coxeter system and let X be a subset of S. Then the pair $\left(W_{X}, X\right)$ is a Coxeter system. For each element in W_{X}, the length in W_{X} and in W are the same.

Reduced Elements

Definition

Let (W, S) be a Coxeter system and let X be a subset of S. An element w in W is called X-reduced if $x \star w$, for all $x \in X$. The set of all X-reduced elements is denoted W^{X}

Proposition (V. Deodhar)

For each element w in W, there exists a unique decomposition $w=w_{X} w^{X}$ with $w_{X} \in W_{X}$ and $w^{X} \in W^{X}$

Proposition (P.J.)

Iet θ he this equivalence: $\left(w, w^{\prime}\right) \in \theta$ if and only if $w_{X}=w_{X}^{\prime}$. Then θ is a congruence of the semilattice (W, \preccurlyeq) with $W / \theta \cong W_{X}$ and each of the congruence classes is isomorphic to W^{X}

Reduced Elements

Definition

Let (W, S) be a Coxeter system and let X be a subset of S. An element w in W is called X-reduced if $x \nless w$, for all $x \in X$. The set of all X-reduced elements is denoted W^{X}

Proposition (V. Deodhar)

For each element w in W, there exists a unique decomposition $w=w_{X} w^{X}$ with $w_{X} \in W_{X}$ and $w^{X} \in W^{X}$.

Proposition (P.J.)
Let θ be this equivalence: $\left(w, w^{\prime}\right) \in \theta$ if and only if $w_{X}=w_{X}^{\prime}$. Then θ is a congruence of the semilattice (W, \leqslant) with $W / \theta \cong W_{X}$ and each of the congruence classes is isomorphic to W^{X}.

Reduced Elements

Definition

Let (W, S) be a Coxeter system and let X be a subset of S. An element w in W is called X-reduced if $x \nless w$, for all $x \in X$. The set of all X-reduced elements is denoted W^{X}

Proposition (V. Deodhar)

For each element w in W, there exists a unique decomposition $w=w_{X} w^{X}$ with $w_{X} \in W_{X}$ and $w^{X} \in W^{X}$.

Proposition (P.J.)

Let θ be this equivalence: $\left(w, w^{\prime}\right) \in \theta$ if and only if $w_{X}=w_{X}^{\prime}$. Then θ is a congruence of the semilattice (W, \preccurlyeq) with $W / \theta \cong W_{X}$ and each of the congruence classes is isomorphic to W^{X}.

Construction for the Groups of Type A

Fact (well known)

The group of type A_{n} is the symmetric group on $n+1$ elements, with $s_{i}=(i, i+1)$. Let $X=\left\{s_{1}, \ldots, s_{n-1}\right\}$. Then

$$
W_{X}=\left\{1, s_{n}, s_{n} s_{n-1}, s_{n} s_{n-1} s_{n-2}, \ldots, s_{n} s_{n-1} \cdots s_{2} s_{1}\right\}
$$

Construction for the Groups of Type A

Fact (well known)

The group of type A_{n} is the symmetric group on $n+1$ elements, with $s_{i}=(i, i+1)$. Let $X=\left\{s_{1}, \ldots, s_{n-1}\right\}$. Then

$$
W_{X}=\left\{1, s_{n}, s_{n} s_{n-1}, s_{n} s_{n-1} s_{n-2}, \ldots, s_{n} s_{n-1} \cdots s_{2} s_{1}\right\}
$$

Constructions of the Weak Orders

Cayley Graph / Weak Order of the Group of Type A_{3}

Cayley Graph / Weak Order of the Group of Type B3

Constructions of the Weak Orders

Cayley Graph / Weak Order of the Group of Type D_{3}

Constructions of the Weak Orders

Cayley Graph / Weak Order of the Group of Type H_{3}

Cayley Graph / Weak Order of the Group of Type \tilde{A}_{2}

Bibliography

圊 A．Björner：Orderings of Coxeter Groups
Cont．Math．34，AMS：Providence，R．I．，1984，175－195
囯 V．Deodhar：
A splitting criterion for the Bruhat orderings on Coxeter groups Comm．in Algebra 15 （9），1987，1889－1894

䍰 P．Jedlička：Combinatorial Construction of the Weak Order of a
Coxeter Group
Comm．in Algebra 33 （5），2005，1447－1460
R．Jedlička：Semidirect Product of Lattices
to appear in Algebra Universalis（2007）
（1）．Le Conte de Poly－Barbut：
Treillis de Cayley des groupes de Coxeter finis．Construction par récurrence et décompositions sur des quotiens．
Math．Inf．Sci．Hum．140，1997，11－33

