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Semidirect Products

Semidirect Product of Groups
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(k,h) ∗ (k′,h′) = (k · k′,h · ϕk(h′))
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Semidirect Products

A Lattice That Is a Semidirect Product
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Semidirect Products

Semidirect Product of Semilattices

Theorem (P.J.)

Let K and H be two join-semilattices and let ϕ : K2 → End(H) be
a mapping satisfying, for all k, k′ and k′′ from K,

ϕk,k = idH;

ϕk,k′∨k′′ = ϕk∨k′,k′′ ◦ ϕk,k′ .

Then the set K ×H together with the operation ∨ defined by

(k,h) ∨ (k′,h′) = (k ∨ k′, ϕk,k′(h) ∨ ϕk′,k(h′))

forms a semilattice.
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Coxeter Groups

Coxeter Groups

Definition
A Coxeter system is a pair (W,S), where W is a group and S is a
subset of W such that W has a presentation in form

W =
〈
S; s2 = 1, (st)mst = 1; for all s, t ∈ S

〉
where mst ∈ {2,3,4, . . . ,∞}.
Such a group W is called a Coxeter group.

Examples
Weyl groups

Dihedral groups

Groups of symmetries of a Euclidean space

Groups of symmetries of an affine space
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Coxeter Groups

Weak Order

Definition
Let (W,S) be a Coxeter system and take w ∈ W. A reduced
expression of w is an expression w = s1s2 · · · sk, for si ∈ S,
where k is minimal possible. The lenght of w, denoted by `(w), is
the lenght of this reduced expression.

Definition
Let (W,S) be a Coxeter system. We write w 4 w′, for elements w
and w′ in W, if `(w′) = `(w) + `(w−1w′). This relation is called the
weak order of W or sometimes the weak Bruhat order of W.
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Coxeter Groups

Properties of the Weak Order

Theorem (A. Björner)

The weak order on a Coxeter group W forms a meet-semilattice
with 1 as the smallest element. The order forms a lattice if and
only if W is finite.

Observation
Let (W,S) be a Coxeter system. The unoriented Hasse diagram of
the weak order on W and the unlabelled Cayley graph of the
presentation given by S are the same graphs.
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Coxeter Groups

Weak Order of the Symmetric Group S4



Combinatorial Construction of the Weak Order of a Coxeter Group 9 / 17

Coxeter Groups

Standard Parabolic Subgroups

Definition
Let (W,S) be a Coxeter system and let X be a subset of S. The
subgroup of W generated by X is called a standard parabolic
subgroup and it is denoted by WX .

Fact (well known)

Let (W,S) be a Coxeter system and let X be a subset of S. Then
the pair (WX ,X) is a Coxeter system. For each element in WX , the
length in WX and in W are the same.
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Coxeter Groups

Reduced Elements

Definition
Let (W,S) be a Coxeter system and let X be a subset of S. An
element w in W is called X-reduced if x $ w, for all x ∈ X. The set
of all X-reduced elements is denoted WX

Proposition (V. Deodhar)

For each element w in W, there exists a unique decomposition
w = wXwX with wX ∈ WX and wX ∈WX .

Proposition (P.J.)

Let θ be this equivalence: (w,w′) ∈ θ if and only if wX = w′X . Then
θ is a congruence of the semilattice (W,4) with W/θ �WX and
each of the congruence classes is isomorphic to WX .
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Constructions of the Weak Orders

Construction for the Groups of Type A

Fact (well known)

The group of type An is the symmetric group on n + 1 elements,
with si = (i, i + 1). Let X = {s1, . . . , sn−1}. Then

WX = {1, sn, snsn−1, snsn−1sn−2, . . . , snsn−1 · · · s2s1}.
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Constructions of the Weak Orders

Cayley Graph / Weak Order of the Group of Type A3
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Constructions of the Weak Orders

Cayley Graph / Weak Order of the Group of Type B3
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Constructions of the Weak Orders

Cayley Graph / Weak Order of the Group of Type D3
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Constructions of the Weak Orders

Cayley Graph / Weak Order of the Group of Type H3
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Constructions of the Weak Orders

Cayley Graph / Weak Order of the Group of Type Ã2
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