Aleš Drápal¹ Přemysl Jedlička²

¹Department of Mathematics Faculty of Mathematics and Physics Charles University, Prague

²Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

LOOPS '07 Prague, August 2007

<ロト < 団 ト < 三 ト < 三 ト 三 の < ()</p>

First Definitions

Definition

Let Q be a quasigroup. An *autotopism* of Q is a triple (α,β,γ) of bijections on Q, satisfying

$$\alpha(y) \cdot \beta(z) = \gamma(yz),$$

for each y, z in Q.

Definition

Let Q be a quasigroup. The permutation $L_x : a \mapsto xa$ is called the *left translation*. The permutation $R_x : a \mapsto ax$ is called the *right translation*.

Definition

A quasigroup Q is called a *loop* if there exists a neutral element in Q (usually denoted by 1).

Moufang Loops Through Autotopisms

Let us consider the identity (so called Moufang identity)

$$xy \cdot zx = x(yz \cdot x).$$

It can be rewritten as

$$L_x(y) \cdot R_x(z) = L_x R_x(yz)$$

Observation

A loop Q satisfies the Moufang identity if and only if the triple $(L_x, R_x, L_x R_x)$ is an autotopism of Q, for each x in Q.

Moufang Loops Through Autotopisms

Let us consider the identity (so called Moufang identity)

$$xy \cdot zx = x(yz \cdot x).$$

It can be rewritten as

$$L_x(y) \cdot R_x(z) = L_x R_x(yz)$$

Observation

A loop Q satisfies the Moufang identity if and only if the triple $(L_x, R_x, L_x R_x)$ is an autotopism of Q, for each x in Q.

Moufang Loops Through Autotopisms

Let us consider the identity (so called Moufang identity)

$$xy \cdot zx = x(yz \cdot x).$$

It can be rewritten as

$$L_x(y) \cdot R_x(z) = L_x R_x(yz)$$

Observation

A loop Q satisfies the Moufang identity if and only if the triple $(L_x, R_x, L_x R_x)$ is an autotopism of Q, for each x in Q.

Nuclei Through Autotopisms

Definition

The *left nucleus* of a loop Q is the set $N_{\lambda} = \{a \in Q; a \cdot xy = ax \cdot y\}$. The *middle nucleus* of Q is the set $N_{\mu} = \{a \in Q; x \cdot ay = xa \cdot y\}$. The *right nucleus* of Q is the set $N_{\rho} = \{a \in Q; x \cdot ya = xy \cdot a\}$.

An element a lies in the right nucleus if and only if

$$x \cdot \boldsymbol{R}_a(\boldsymbol{y}) = \boldsymbol{R}_a(\boldsymbol{x}\boldsymbol{y}).$$

Observation

- $a \in N_{\rho} \Leftrightarrow (\mathrm{id}, R_a, R_a)$ is an autotopism of Q.
- $a \in N_{\lambda} \Leftrightarrow (L_a, \mathrm{id}, L_a)$ is an autotopism of Q.
- $a \in N_{\mu} \Leftrightarrow (R_a^{-1}, L_a, \mathrm{id})$ is an autotopism of Q.

Nuclei Through Autotopisms

Definition

The *left nucleus* of a loop Q is the set $N_{\lambda} = \{a \in Q; a \cdot xy = ax \cdot y\}$. The *middle nucleus* of Q is the set $N_{\mu} = \{a \in Q; x \cdot ay = xa \cdot y\}$. The *right nucleus* of Q is the set $N_{\rho} = \{a \in Q; x \cdot ya = xy \cdot a\}$.

An element *a* lies in the right nucleus if and only if

$$x \cdot R_a(y) = R_a(xy).$$

Observation

- $a \in N_{\rho} \Leftrightarrow (\mathrm{id}, R_a, R_a)$ is an autotopism of Q.
- $a \in N_{\lambda} \Leftrightarrow (L_a, \mathrm{id}, L_a)$ is an autotopism of Q.
- $a \in N_{\mu} \Leftrightarrow (R_a^{-1}, L_a, \mathrm{id})$ is an autotopism of Q.

Nuclei Through Autotopisms

Definition

The *left nucleus* of a loop Q is the set $N_{\lambda} = \{a \in Q; a \cdot xy = ax \cdot y\}$. The *middle nucleus* of Q is the set $N_{\mu} = \{a \in Q; x \cdot ay = xa \cdot y\}$. The *right nucleus* of Q is the set $N_{\rho} = \{a \in Q; x \cdot ya = xy \cdot a\}$.

An element *a* lies in the right nucleus if and only if

$$x \cdot R_a(y) = R_a(xy).$$

Observation

- $a \in N_{\rho} \Leftrightarrow (\mathrm{id}, R_a, R_a)$ is an autotopism of Q.
- $a \in N_{\lambda} \Leftrightarrow (L_a, \mathrm{id}, L_a)$ is an autotopism of Q.
- $a \in N_{\mu} \Leftrightarrow (R_a^{-1}, L_a, \mathrm{id})$ is an autotopism of Q.

Nuclear Identification

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_{\lambda}} \cdot \underbrace{(\operatorname{id}, R_x, R_x)}_{x \in N_{\rho}} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \mathrm{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identities

nuclei	autotopism	law	loop
$\lambda \cdot \mu$	$(L_x R_x^{-1}, L_x, L_x)$	$xy \cdot xz = x(yx \cdot z)$	left extra
$\lambda \cdot \mu^{-1}$	$(L_x R_x, L_x^{-1}, L_x)$	$(x \cdot yx)z = x(y \cdot xz)$	left Bol
$\lambda \cdot ho$	$(L_x, R_x, L_x R_x)$	$xy \cdot zx = (x \cdot yz)x$	middle Moufang 1
$\lambda \cdot ho^{-1}$	$(L_x, R_x^{-1}, L_x R_x^{-1})$	$x \backslash (xy \cdot z) = (y \cdot zx)/x$	Buchsteiner
$\lambda^{-1} \cdot ho$	$(L_x^{-1}, R_x, L_x^{-1}R_x)$	$x(y \cdot zx) = (xy \cdot z)x$	middle extra
$\mu \cdot \lambda$	$(R_x^{-1}L_x, L_x, L_x)$	$((xy)/x)z = x \cdot y(x \setminus z)$	LCC
$\mu^{-1}\cdot\lambda$	$(R_x L_x, L_x^{-1}, L_x)$	$(xy \cdot x)z = x(y \cdot xz)$	left Moufang
$\mu \cdot ho$	$(R_x^{-1}, L_x R_x, R_x)$	$y(x \cdot zx) = (yx \cdot z)x$	right Moufang
$\mu^{-1} \cdot ho$	$(R_x, L_x^{-1}R_x, R_x)$	$y(x \setminus (zx)) = (y/x)z \cdot x$	RCC
$ ho\cdot\lambda$	$(L_x, R_x, R_x L_x)$	$xy \cdot zx = x(yz \cdot x)$	middle Moufang 2
$ ho \cdot \mu$	$(R_x^{-1}, R_x L_x, R_x)$	$y(xz \cdot x) = (yx \cdot z)x$	right Bol
$ ho^{-1}\cdot\mu$	$(R_x, R_x L_x^{-1}, R_x)$	$yx \cdot zx = (y \cdot xz)x$	right extra

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Nuclear Identities

nuclei	autotopism	law	loop
$\lambda \cdot \mu$	$(L_x R_x^{-1}, L_x, L_x)$	$xy \cdot xz = x(yx \cdot z)$	left extra
$\lambda \cdot \mu^{-1}$	$(L_x R_x, L_x^{-1}, L_x)$	$(x \cdot yx)z = x(y \cdot xz)$	left Bol
$\lambda \cdot ho$	$(L_x, R_x, L_x R_x)$	$xy \cdot zx = (x \cdot yz)x$	middle Moufang 1
$\lambda \cdot ho^{-1}$	$(L_x, R_x^{-1}, L_x R_x^{-1})$	$x \backslash (xy \cdot z) = (y \cdot zx)/x$	Buchsteiner
$\lambda^{-1} \cdot \rho$	$(L_x^{-1}, R_x, L_x^{-1}R_x)$	$x(y \cdot zx) = (xy \cdot z)x$	middle extra
$\mu \cdot \lambda$	$(R_x^{-1}L_x, L_x, L_x)$	$((xy)/x)z = x \cdot y(x \setminus z)$	LCC
$\mu^{-1}\cdot\lambda$	$(R_x L_x, L_x^{-1}, L_x)$	$(xy \cdot x)z = x(y \cdot xz)$	left Moufang
$\mu \cdot ho$	$(R_x^{-1}, L_x R_x, R_x)$	$y(x \cdot zx) = (yx \cdot z)x$	right Moufang
$\mu^{-1} \cdot ho$	$(R_x, L_x^{-1}R_x, R_x)$	$y(x \setminus (zx)) = (y/x)z \cdot x$	RCC
$ ho\cdot\lambda$	$(L_x, R_x, R_x L_x)$	$xy \cdot zx = x(yz \cdot x)$	middle Moufang 2
$ ho \cdot \mu$	$(R_x^{-1}, R_x L_x, R_x)$	$y(xz \cdot x) = (yx \cdot z)x$	right Bol
$ ho^{-1}\cdot\mu$	$(R_x, R_x L_x^{-1}, R_x)$	$yx \cdot zx = (y \cdot xz)x$	right extra

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

I-shifts of Automorphisms

Definition

Denote $I: x \mapsto x \setminus 1$ and $J: x \mapsto 1/x$. Let (α, β, γ) be an autotopism. The triple $(J\gamma I, \alpha, J\beta I)$ is called the *I*-shift of the autotopism.

Observation

The *I*-shift of $(L_x R_x^{-1}, L_x, L_x)$ is $(JL_x I, L_x R_x^{-1}, JL_x I)$ which looks similar to $(R_x^{-1}, L_x R_x^{-1}, R_x^{-1})$.

Definition

We say that a loop Q has the weak inverse property if $JL_xI = R_x^{-1}$.

・ロト・日本・日本・日本・日本・日本

I-shifts of Automorphisms

Definition

Denote $I: x \mapsto x \setminus 1$ and $J: x \mapsto 1/x$. Let (α, β, γ) be an autotopism. The triple $(J\gamma I, \alpha, J\beta I)$ is called the *I*-shift of the autotopism.

Observation

The *I*-shift of $(L_x R_x^{-1}, L_x, L_x)$ is $(JL_x I, L_x R_x^{-1}, JL_x I)$ which looks similar to $(R_x^{-1}, L_x R_x^{-1}, R_x^{-1})$.

Definition

We say that a loop Q has the weak inverse property if $JL_xI = R_x^{-1}$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

I-shifts of Automorphisms

Definition

Denote $I: x \mapsto x \setminus 1$ and $J: x \mapsto 1/x$. Let (α, β, γ) be an autotopism. The triple $(J\gamma I, \alpha, J\beta I)$ is called the *I*-shift of the autotopism.

Observation

The *I*-shift of $(L_x R_x^{-1}, L_x, L_x)$ is $(JL_x I, L_x R_x^{-1}, JL_x I)$ which looks similar to $(R_x^{-1}, L_x R_x^{-1}, R_x^{-1})$.

Definition

We say that a loop Q has the weak inverse property if $JL_xI = R_x^{-1}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

I-shifts of Automorphisms

Definition

Denote $I: x \mapsto x \setminus 1$ and $J: x \mapsto 1/x$. Let (α, β, γ) be an autotopism. The triple $(J\gamma I, \alpha, J\beta I)$ is called the *I*-shift of the autotopism.

Observation

The *I*-shift of
$$(L_x R_x^{-1}, L_x, L_x)$$
 is $(JL_x I, L_x R_x^{-1}, JL_x I)$
which looks similar to $(R_x^{-1}, L_x R_x^{-1}, R_x^{-1})$.

Definition

We say that a loop Q has the weak inverse property if $JL_xI = R_x^{-1}$.

Lemma

In a weak inverse property loop, an I-shift of an autotopism is an autotopism.

Observation

The *I*-shift of $(R_x, R_x L_x^{-1}, R_x)$ is $(JR_x I, R_x, JR_x L_x^{-1}I)$. Under the weak investe property and the assumption I = J we obtain $(L_x^{-1}, R_x, L_x^{-1}R_x)$.

Observation

Lemma

In a weak inverse property loop, an I-shift of an autotopism is an autotopism.

Observation

The *I*-shift of $(R_x, R_x L_x^{-1}, R_x)$ is $(JR_x I, R_x, JR_x L_x^{-1}I)$.

Under the weak inverse property and the assumption I = J we obtain $(L_x^{-1}, R_x, L_x^{-1}R_x)$.

Observation

Lemma

In a weak inverse property loop, an I-shift of an autotopism is an autotopism.

Observation

The *I*-shift of $(R_x, R_x L_x^{-1}, R_x)$ is $(JR_x I, R_x, JR_x L_x^{-1}I)$. Under the weak inverse property and the assumption I = J we obtain $(L_x^{-1}, R_x, L_x^{-1}R_x)$.

Observation

Lemma

In a weak inverse property loop, an I-shift of an autotopism is an autotopism.

Observation

The *I*-shift of $(R_x, R_x L_x^{-1}, R_x)$ is $(JR_x I, R_x, JR_x L_x^{-1}I)$. Under the weak inverse property and the assumption I = J we obtain $(L_x^{-1}, R_x, L_x^{-1}R_x)$.

Observation

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- Ieft Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using *I*-shifts, under the WIP and the condition I = J.

_emma

All extra loop identities imply the weak inverse property with I = J.

Corollary

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- left Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using I-shifts, under the WIP and the condition I = J.

_emma

All extra loop identities imply the weak inverse property with I = J.

Corollary

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- left Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using I-shifts, under the WIP and the condition I = J.

_emma

All extra loop identities imply the weak inverse property with I = J.

Corollary

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- left Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using I-shifts, under the WIP and the condition I = J.

_emma

All extra loop identities imply the weak inverse property with I = J.

Corollary

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- left Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using *I*-shifts, under the WIP and the condition I = J.

Lemma

All extra loop identities imply the weak inverse property with I = J.

Corollary

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- left Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using *I*-shifts, under the WIP and the condition I = J.

Lemma

All extra loop identities imply the weak inverse property with I = J.

Corollary

CC and Buchsteiner Loops are Extra

Definition (loop identities)

- flexibility: $x \cdot yx = xy \cdot x$,
- right alternativity: $x \cdot xy = x^2y$,
- right inverse property: $y/x = y(x \setminus 1)$.

_emma

For a quasigroup Q, the following are equivalent:

- Q is extra
- Q is flexible LCC
- Q is flexible RCC
 Q is flexible Buch
 - Q is flexible Buchsteiner

Proof.

 $(L_x R_x^{-1}, L_x, L_x)(R_x^{-1}L_x, L_x, L_x)^{-1} = (L_x R_x^{-1}L_x^{-1}R_x, \text{id}, \text{id})$

The last is an autotopism $\Leftrightarrow Q$ is flexible.

CC and Buchsteiner Loops are Extra

Definition (loop identities)

- flexibility: $x \cdot yx = xy \cdot x$,
- right alternativity: $x \cdot xy = x^2y$,
- right inverse property: $y/x = y(x \setminus 1)$.

Lemma

For a quasigroup Q, the following are equivalent:

- Q is extra Q is flexible RCC
- Q is flexible LCC

- Q is floxible Ruchstein
- Q is flexible Buchsteiner

Proof.

 $(L_x R_x^{-1}, L_x, L_x)(R_x^{-1}L_x, L_x, L_x)^{-1} = (L_x R_x^{-1}L_x^{-1}R_x, \text{id}, \text{id})$

The last is an autotopism $\Leftrightarrow Q$ is flexible.

CC and Buchsteiner Loops are Extra

Definition (loop identities)

- flexibility: $x \cdot yx = xy \cdot x$,
- right alternativity: $x \cdot xy = x^2y$,
- right inverse property: $y/x = y(x \setminus 1)$.

Lemma

For a quasigroup Q, the following are equivalent:

- Q is extra Q is flexible RCC
- Q is flexible LCC

• Q is flexible Buchsteiner

Proof.

$$(L_x R_x^{-1}, L_x, L_x)(R_x^{-1}L_x, L_x, L_x)^{-1} = (L_x R_x^{-1}L_x^{-1}R_x, \text{id}, \text{id})$$

The last is an autotopism $\Leftrightarrow Q$ is flexible.

CC and Buchsteiner Loops are Extra

Definition (loop identities)

- flexibility: $x \cdot yx = xy \cdot x$,
- right alternativity: $x \cdot xy = x^2y$,
- right inverse property: $y/x = y(x \setminus 1)$.

Lemma

For a quasigroup Q, the following are equivalent:

- Q is extra Q is flexible RCC
- Q is flexible LCC

• *Q* is flexible Buchsteiner

Proof.

$$(L_x R_x^{-1}, L_x, L_x)(R_x^{-1}L_x, L_x, L_x)^{-1} = (L_x R_x^{-1}L_x^{-1}R_x, \text{id}, \text{id})$$

The last is an autotopism $\Leftrightarrow Q$ is flexible.

Intersection of Nuclear Identities

Further properties

Lemma

Let Q be a Buchsteiner loop. Then Q is

flexible \Leftrightarrow left altern. \Leftrightarrow right altern. \Leftrightarrow LIP \Leftrightarrow RIP \Leftrightarrow extra

_emma

Let Q be a left Bol loop (or LCC loop). Then Q is

flexible \Leftrightarrow right alternative \Leftrightarrow RIP

Corollary

Moufang loops are exactly left and right Bol loops.

Intersection of Nuclear Identities

Further properties

Lemma

Let Q be a Buchsteiner loop. Then Q is

flexible \Leftrightarrow left altern. \Leftrightarrow right altern. \Leftrightarrow LIP \Leftrightarrow RIP \Leftrightarrow extra

Lemma

Let Q be a left Bol loop (or LCC loop). Then Q is

flexible \Leftrightarrow right alternative \Leftrightarrow RIP

Corollary

Moufang loops are exactly left and right Bol loops.

・ロト・西ト・市・ 市・ うらぐ

Intersection of Nuclear Identities

Further properties

Lemma

Let Q be a Buchsteiner loop. Then Q is

flexible \Leftrightarrow left altern. \Leftrightarrow right altern. \Leftrightarrow LIP \Leftrightarrow RIP \Leftrightarrow extra

Lemma

Let Q be a left Bol loop (or LCC loop). Then Q is

flexible \Leftrightarrow right alternative \Leftrightarrow RIP

Corollary

Moufang loops are exactly left and right Bol loops.

Extra Loops Are Moufang CC Loops

Lemma

Extra loops are Moufang loops

Proof.

$$(L_x^{-1}, R_x, L_x^{-1}R_x)(L_x R_x^{-1}, L_x, L_x)(\text{id}, \text{id}, L_x^{-1}R_x^{-1}L_x R_x)$$

= $(R_x^{-1}, R_x L_x, R_x)$

Corollary

Extra loops are exactly conjugacy closed Moufang loops.

Definition

Left Bol LCC loop is called *(left) Burn* loop.

Extra Loops Are Moufang CC Loops

Lemma

Extra loops are Moufang loops

Proof.

$$(L_x^{-1}, R_x, L_x^{-1}R_x)(L_x R_x^{-1}, L_x, L_x)(\text{id}, \text{id}, L_x^{-1}R_x^{-1}L_x R_x)$$
$$= (R_x^{-1}, R_x L_x, R_x) \quad \Box$$

Corollary

Extra loops are exactly conjugacy closed Moufang loops.

Definition

Left Bol LCC loop is called *(left) Burn* loop.

・ロト・日本・日本・日本・日本・日本

Extra Loops Are Moufang CC Loops

Lemma

Extra loops are Moufang loops

Proof.

$$(L_x^{-1}, R_x, L_x^{-1}R_x)(L_x R_x^{-1}, L_x, L_x)(\text{id}, \text{id}, L_x^{-1}R_x^{-1}L_x R_x)$$
$$= (R_x^{-1}, R_x L_x, R_x) \quad \square$$

Corollary

Extra loops are exactly conjugacy closed Moufang loops.

Definition

Left Bol LCC loop is called *(left) Burn* loop.

・ロト・西ト・山田・山田・山下・

Extra Loops Are Moufang CC Loops

Lemma

Extra loops are Moufang loops

Proof.

$$(L_x^{-1}, R_x, L_x^{-1}R_x)(L_x R_x^{-1}, L_x, L_x)(\text{id}, \text{id}, L_x^{-1} R_x^{-1}L_x R_x)$$

= $(R_x^{-1}, R_x L_x, R_x)$

Corollary

Extra loops are exactly conjugacy closed Moufang loops.

Definition

Left Bol LCC loop is called (left) Burn loop.

Buchsteiner CC Loops

Proposition

Let Q be a CC loop. Then Q is a Buchsteiner loop if and only if $x^2 \in N(Q)$, for each $x \in Q$.

Definition

A conjugacy closed loop Q with $x^2 \in N(Q)$, for each $x \in Q$, is called *Boolean CC* loop.

Proposition

A Buchsteiner loop is LCC if and only if it is RCC.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Buchsteiner CC Loops

Proposition

Let Q be a CC loop. Then Q is a Buchsteiner loop if and only if $x^2 \in N(Q)$, for each $x \in Q$.

Definition

A conjugacy closed loop Q with $x^2 \in N(Q)$, for each $x \in Q$, is called *Boolean CC* loop.

Proposition

A Buchsteiner loop is LCC if and only if it is RCC.

ション 小田 マイビット ビー シックション

Buchsteiner CC Loops

Proposition

Let Q be a CC loop. Then Q is a Buchsteiner loop if and only if $x^2 \in N(Q)$, for each $x \in Q$.

Definition

A conjugacy closed loop Q with $x^2 \in N(Q)$, for each $x \in Q$, is called *Boolean CC* loop.

Proposition

A Buchsteiner loop is LCC if and only if it is RCC.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Intersection Semilattice of Nuclear Varieties

