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Nuclear Identification by Autotopisms

First Definitions

Definition
Let Q be a quasigroup. An autotopism of Q is a triple (α, β, γ) of
bijections on Q, satisfying

α(y) · β(z) = γ(yz),

for each y, z in Q.

Definition
Let Q be a quasigroup. The permutation Lx : a 7→ xa is called the
left translation. The permutation Rx : a 7→ ax is called the right
translation.

Definition
A quasigroup Q is called a loop if there exists a neutral element
in Q (usually denoted by 1).
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Nuclear Identification by Autotopisms

Moufang Loops Through Autotopisms

Let us consider the identity (so called Moufang identity)

xy · zx = x(yz · x).

It can be rewritten as

Lx(y) ·Rx(z) = LxRx(yz)

Observation
A loop Q satisfies the Moufang identity if and only if the triple
(Lx,Rx,LxRx) is an autotopism of Q, for each x in Q.
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Nuclear Identification by Autotopisms

Nuclei Through Autotopisms

Definition
The left nucleus of a loop Q is the set Nλ = {a ∈ Q; a · xy = ax · y}.
The middle nucleus of Q is the set Nµ = {a ∈ Q; x · ay = xa · y}.
The right nucleus of Q is the set Nρ = {a ∈ Q; x · ya = xy · a}.

An element a lies in the right nucleus if and only if

x ·Ra(y) = Ra(xy).

Observation
a ∈ Nρ ⇔ (id,Ra,Ra) is an autotopism of Q.

a ∈ Nλ ⇔ (La, id,La) is an autotopism of Q.

a ∈ Nµ ⇔ (R−1
a ,La, id) is an autotopism of Q.
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Nuclear Identification by Autotopisms

Nuclear Identification

(Lx, id,Lx)︸       ︷︷       ︸
x ∈ Nλ

· (id,Rx,Rx)︸        ︷︷        ︸
x ∈ Nρ

= (Lx,Rx,LxRx)︸            ︷︷            ︸
Moufang

.

Proposition

In a Moufang loop the left and the right nuclei coincide.

(Lx, id,Lx)︸       ︷︷       ︸
x ∈ Nλ

· (R−1
x ,Lx, id)−1︸             ︷︷             ︸
x ∈ Nµ

= (LxRx,L−1
x ,Lx).

(x ·yx) · (x\z) = x ·yz substituting z 7→ xz gives (x ·yx) · z = x · (y ·xz)

Proposition

In a left Bol loop the left and the middle nuclei coincide.
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Nuclear Identification by Autotopisms

Nuclear Identities

nuclei autotopism law loop
λ · µ (LxR−1

x ,Lx,Lx) xy · xz = x(yx · z) left extra
λ · µ−1 (LxRx,L−1

x ,Lx) (x · yx)z = x(y · xz) left Bol
λ · ρ (Lx,Rx,LxRx) xy · zx = (x · yz)x middle Moufang 1
λ · ρ−1 (Lx,R−1

x ,LxR−1
x ) x\(xy · z) = (y · zx)/x Buchsteiner

λ−1 · ρ (L−1
x ,Rx,L−1

x Rx) x(y · zx) = (xy · z)x middle extra
µ · λ (R−1

x Lx,Lx,Lx) ((xy)/x)z = x · y(x\z) LCC
µ−1 · λ (RxLx,L−1

x ,Lx) (xy · x)z = x(y · xz) left Moufang
µ · ρ (R−1

x ,LxRx,Rx) y(x · zx) = (yx · z)x right Moufang
µ−1 · ρ (Rx,L−1

x Rx,Rx) y(x\(zx)) = (y/x)z · x RCC
ρ · λ (Lx,Rx,RxLx) xy · zx = x(yz · x) middle Moufang 2
ρ · µ (R−1

x ,RxLx,Rx) y(xz · x) = (yx · z)x right Bol
ρ−1 · µ (Rx,RxL−1

x ,Rx) yx · zx = (y · xz)x right extra
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WIP Loops

I-shifts of Automorphisms

Definition
Denote I : x 7→ x\1 and J : x 7→ 1/x. Let (α, β, γ) be an
autotopism. The triple (JγI, α,JβI) is called the I-shift of the
autotopism.

Observation

The I-shift of (LxR−1
x ,Lx,Lx) is (JLxI,LxR−1

x ,JLxI)
which looks similar to (R−1

x ,LxR−1
x ,R−1

x ).

Definition

We say that a loop Q has the weak inverse property if JLxI = R−1
x .
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WIP Loops

More I-shifts

Lemma
In a weak inverse property loop, an I-shift of an autotopism is an
autotopism.

Observation

The I-shift of (Rx,RxL−1
x ,Rx) is (JRxI,Rx,JRxL−1

x I).
Under the weak inverse property and the assumption I = J we
obtain (L−1

x ,Rx,L−1
x Rx).

Observation

The I-shift of (L−1
x ,Rx,L−1

x Rx) is (JL−1
x RxI,L−1

x ,JRxI).
Under the weak inverse property and the assumption I = J we
obtain (RxL−1

x ,L−1
x ,L−1

x ).
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WIP Loops

Classes of Equivalence

Proposition

The nuclear identities fall into four classes:

left extra, right extra, middle extra

left Moufang, right Bol, middle Moufang 2

left Bol, right Moufang, middle Moufang 1

LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another
using I-shifts, under the WIP and the condition I = J.

Lemma
All extra loop identities imply the weak inverse property with I = J.

Corollary

In the variety of loops, all the extra laws are equivalent.
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Intersection of Nuclear Identities

CC and Buchsteiner Loops are Extra

Definition (loop identities)

flexibility: x · yx = xy · x,

right alternativity: x · xy = x2y,

right inverse property: y/x = y(x\1).

Lemma
For a quasigroup Q, the following are equivalent:

Q is extra

Q is flexible LCC

Q is flexible RCC

Q is flexible Buchsteiner

Proof.

(LxR−1
x ,Lx,Lx)(R−1

x Lx,Lx,Lx)−1 = (LxR−1
x L−1

x Rx, id, id)

The last is an autotopism⇔ Q is flexible. �
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Intersection of Nuclear Identities

Further properties

Lemma
Let Q be a Buchsteiner loop. Then Q is

flexible⇔ left altern.⇔ right altern.⇔ LIP⇔ RIP⇔ extra

Lemma
Let Q be a left Bol loop (or LCC loop). Then Q is

flexible⇔ right alternative⇔ RIP

Corollary

Moufang loops are exactly left and right Bol loops.
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Intersection of Nuclear Identities

Extra Loops Are Moufang CC Loops

Lemma
Extra loops are Moufang loops

Proof.

(L−1
x ,Rx,L−1

x Rx)(LxR−1
x ,Lx,Lx)(id, id,L−1

x R−1
x LxRx)

= (R−1
x ,RxLx,Rx) �

Corollary

Extra loops are exactly conjugacy closed Moufang loops.

Definition
Left Bol LCC loop is called (left) Burn loop.
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Buchsteiner CC Loops

Proposition

Let Q be a CC loop. Then Q is a Buchsteiner loop if and only if
x2 ∈ N(Q), for each x ∈ Q.

Definition

A conjugacy closed loop Q with x2 ∈ N(Q), for each x ∈ Q, is
called Boolean CC loop.

Proposition

A Buchsteiner loop is LCC if and only if it is RCC.
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Intersection Semilattice of Nuclear Varieties

boolCC

extra

LCC

BuchLBurn

RCC

RBurn

Moufang

RBol

CC

LBol
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