# Loop Identities Obtained by Nuclear Identification

## Aleš Drápal<sup>1</sup> Přemysl Jedlička<sup>2</sup>

<sup>1</sup>Department of Mathematics Charles University, Prague

<sup>2</sup>Department of Mathematics Czech University of Agriculture, Prague

AAA73 Klagenfurt, February 2007

# **First Definitions**

## Definition

Let Q be a quasigroup. An *autotopism* of Q is a triple  $(\alpha,\beta,\gamma)$  of bijections on Q, satisfying

$$\alpha(y) \cdot \beta(z) = \gamma(yz),$$

for each y, z in Q.

## Definition

A quasigroup Q is called a *loop* if there exists a neutral element in Q (usually denoted by 1).

# Moufang Loops Through Autotopisms

## Definition

A loop is called a *Moufang* loop if it satisfies one of the following identities:

 $x(y \cdot xz) = (xy \cdot x)z,$   $xy \cdot zx = (x \cdot yz)x,$   $xy \cdot zx = x(yz \cdot x),$  $y(xz \cdot x) = (yx \cdot z)x.$ 

The third identity can be rewritten as

$$L_x(y) \cdot R_x(z) = L_x R_x(yz)$$

## Observation

A loop Q is a Moufang loop if and only if the triple  $(L_x, R_x, L_xR_x)$  is an autotopism of Q, for each x in Q.

# Nuclei Through Autotopisms

## Definition

The *left nucleus* of a loop Q is the set  $N_{\lambda} = \{a \in Q; a \cdot xy = ax \cdot y\}$ . The *middle nucleus* of Q is the set  $N_{\mu} = \{a \in Q; x \cdot ay = xa \cdot y\}$ . The *right nucleus* of Q is the set  $N_{\rho} = \{a \in Q; x \cdot ya = xy \cdot a\}$ .

An element *a* lies in the right nucleus if and only if

$$x \cdot R_a(y) = R_a(xy).$$

## Observation

- $a \in N_{\rho} \Leftrightarrow (\mathrm{id}, R_a, R_a)$  is an autotopism of Q.
- $a \in N_{\lambda} \Leftrightarrow (L_a, \mathrm{id}, L_a)$  is an autotopism of Q.
- $a \in N_{\mu} \Leftrightarrow (R_a^{-1}, L_a, \mathrm{id})$  is an autotopism of Q.

## Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

### Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$  substituting  $z \mapsto xz$  gives  $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$ 

#### Proposition

In a left Bol loop the left and the middle nuclei coincide.

## Loop Laws Induced by the Nuclear Identifications

| nuclei                    | autotopism                      | law                                          | loop        |
|---------------------------|---------------------------------|----------------------------------------------|-------------|
| $\lambda \cdot \mu$       | $(L_x R_x^{-1}, L_x, L_x)$      | $xy \cdot xz = x(yx \cdot z)$                | extra       |
| $\lambda \cdot \mu^{-1}$  | $(L_x R_x, L_x^{-1}, L_x)$      | $(x \cdot yx)z = x(y \cdot xz)$              | left Bol    |
| $\lambda \cdot  ho$       | $(L_x, R_x, L_x R_x)$           | $xy \cdot zx = (x \cdot yz)x$                | Moufang     |
| $\lambda \cdot  ho^{-1}$  | $(L_x, R_x^{-1}, L_x R_x^{-1})$ | $x \backslash (xy \cdot z) = (y \cdot zx)/x$ | Buchsteiner |
| $\lambda^{-1} \cdot \rho$ | $(L_x^{-1}, R_x, L_x^{-1}R_x)$  | $x(y \cdot zx) = (xy \cdot z)x$              | extra       |
| $\mu \cdot \lambda$       | $(R_x^{-1}L_x, L_x, L_x)$       | $((xy)/x)z = x \cdot y(x \setminus z)$       | LCC         |
| $\mu \cdot \lambda^{-1}$  | $(R_x L_x, L_x^{-1}, L_x)$      | $(xy \cdot x)z = x(y \cdot xz)$              | Moufang     |
| $\mu \cdot  ho$           | $(R_x^{-1}, L_x R_x, R_x)$      | $y(x \cdot zx) = (yx \cdot z)x$              | Moufang     |
| $\mu^{-1} \cdot  ho$      | $(R_x, L_x^{-1}R_x, R_x)$       | $y(x \setminus (zx)) = (y/x)z \cdot x$       | RCC         |
| $ ho\cdot\lambda$         | $(L_x, R_x, R_x L_x)$           | $xy \cdot zx = x(yz \cdot x)$                | Moufang     |
| $ ho \cdot \mu$           | $(R_x^{-1}, R_x L_x, R_x)$      | $y(xz \cdot x) = (yx \cdot z)x$              | right Bol   |
| $ ho^{-1}\cdot\mu$        | $(R_x, R_x L_x^{-1}, R_x)$      | $xy \cdot xz = x(yx \cdot z)$                | extra       |



## Definition

Denote  $I: x \mapsto x \setminus 1$  and  $J: x \mapsto 1/x$ . We say that a loop Q has the weak inverse property if  $L_x^{-1} = IR_xJ$ .

## Definition

Let  $(\alpha, \beta, \gamma)$  be an autotopism. The triple  $(J\gamma I, \alpha, J\beta I)$  is called the *I*-shift of the autotopism.

### Lemma

In a weak inverse property loop, an *I*-shift of an autotopism is an autotopism.

WIP Loops

# I-shift Cycles of Autotopisms

## Proposition

The loop laws obtained by the nuclear identification come in four cycles:

• 
$$(L_x R_x^{-1}, L_x, L_x), (L_x^{-1}, R_x, L_x^{-1} R_x), (R_x, R_x L_x^{-1}, R_x)$$
  
— extra, extra, extra

• 
$$(R_x L_x, L_x^{-1}, L_x), (R_x, R_x L_x^{-1}, R_x), (R_x^{-1}, R_x L_x, R_x)$$
  
— Moufang, right Bol, Moufang

• 
$$(L_x R_x, L_x^{-1}, L_x), (R_x, L_x^{-1} R_x, R_x), (L_x, R_x^{-1}, L_x R_x^{-1})$$
  
— left Bol, Moufang, Moufang

• 
$$(R_x L_x, L_x^{-1}, L_x), (L_x, R_x, R_x L_x), (L_x^{-1}, R_x, L_x^{-1} R_x) - LCC, RCC, Buchsteiner$$

Some of these are valid only under the assumption I = J.

WIP Loops

# Equivalence of Laws

### Lemma

All extra loop identities imply weak inverse property with I = J.

## Proposition

In the variety of loops, all the extra laws are equivalent.

## Theorem

Let Q be a weak inverse loop. Then the following conditions are equivalent:

- Q is left conjugacy closed,
- Q is right conjugacy closed,
- Q is a Buchsteiner loop.





Piroska Csörgő, Aleš Drápal, Michael Kinyon Buchsteiner loops submitted

Aleš Drápal, Přemysl Jedlička

On loop identities that can be obtained by a nuclear identification

submitted