
Loop Identities Obtained by Nuclear Identification 1 / 23

Identités de boucles obtenues par l’identification nucléaire

Loop Identities Obtained by Nuclear Identification
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First definitions

Quasigroups

Definition
Let (G, ·) be a groupoid. The mapping Lx : a 7→ xa is called the left
translation and the mapping Rx : a 7→ ax the right translation.

Definition (Combinatorial)

A groupoid (Q, ·) is called a quasigroup if the mappings Lx and Rx
are bijections for each x ∈ Q.

Definition (Universal algebraic)

The algebra (Q, ·, /, \) is called a quasigroup if it satisfies the
following identities:

x\(x · y) = y (x · y)/y = x
x · (x\y) = y (x/y) · y = x
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First definitions

Isotopisms

Definition
Let (Q, ·) and (R, ∗) be quasigroups. An isotopism of Q is a triple
(α, β, γ) of bijections from Q onto R, satisfying

α(y) ∗ β(z) = γ(yz),

for each y, z in Q.

Example

· 0 1 2 3 4
0 1 3 0 2 4
1 4 1 3 0 2
2 2 4 1 3 0
3 0 2 4 1 3
4 3 0 2 4 1

α = (1 3 4 2)
β = (1 2 4 3)
γ = (4 3 2 1 0)

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3
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First definitions

Loops

Definition
A quasigroup Q is called a loop if it contains the identity element.

Example (A smallest nonassociative loop)

1 2 3 4 5
1 1 2 3 4 5
2 2 1 5 3 4
3 3 4 1 5 2
4 4 5 2 1 3
5 5 3 4 2 1
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First definitions

Center and Nuclei

Definition
Let Q be a loop. We define:

the left nucleus of a loop Q: Nλ = {a ∈ Q; a · xy = ax · y};
the middle nucleus of Q: Nµ = {a ∈ Q; x · ay = xa · y};
the right nucleus of Q: Nρ = {a ∈ Q; x · ya = xy · a};
the nucleus of Q: N(Q) = Nλ if Nλ = Nµ = Nρ.

Definition
The center of a loop Q is the set
Z(Q) = {x ∈ Nλ ∩Nµ ∩Nρ; xy = yx ∀y ∈ Q}.

Theorem
The nucleus and the center are normal subloops.
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Examples of Loops

Moufang Loops

Definition
A loop Q is called a Moufang loop if it satisfies one of the following
identities:

x(y · xz) = (xy · x)z,
xy · zx = (x · yz)x,
xy · zx = x(yz · x),

y(xz · x) = (yx · z)x.

Examples
Nonzero octonions

Octonion units, basis octonions and their inverses

Nonzero split-octonions

Paige loops – always simple nonassociative Moufang loops

Parker’s loop
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Examples of Loops

Smallest Moufang Loop

1 2 3 4 5 6 1̄ 2̄ 3̄ 4̄ 5̄ 6̄
2 1 4 3 6 5 2̄ 1̄ 6̄ 5̄ 4̄ 3̄
3 6 5 2 1 4 3̄ 4̄ 5̄ 6̄ 1̄ 2̄
4 5 6 1 2 3 4̄ 3̄ 2̄ 1̄ 5̄ 6̄
5 4 1 6 3 2 5̄ 6̄ 1̄ 2̄ 3̄ 4̄
6 3 2 5 4 1 6̄ 5̄ 4̄ 3̄ 2̄ 1̄
1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 1 2 3 4 5 6
2̄ 1̄ 6̄ 5̄ 4̄ 3̄ 2 1 4 3 6 5
3̄ 4̄ 5̄ 6̄ 1̄ 2̄ 3 6 5 2 1 4
4̄ 3̄ 2̄ 1̄ 5̄ 6̄ 4 5 6 1 2 3
5̄ 6̄ 1̄ 2̄ 3̄ 4̄ 5 4 1 6 3 2
6̄ 5̄ 4̄ 3̄ 2̄ 1̄ 6 3 2 5 4 1
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Examples of Loops

Properties of Moufang Loops

Moufang loops are

flexible x(yx) = (xy)x
left alternative x(xy) = (xx)y
right alternative y(xx) = (yx)x
diassociative (every two-generated subloop is associative)

They have

two-sided inverses: x−1 = 1/x = x\1
left inverse property: x−1(xy) = y
right inverse property: (yx)x−1 = y
antiautomorphic inverse property: (xy)−1 = y−1x−1

Lagrange property (2003)
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Examples of Loops

Bol loops

Definition
A loop Q is called a (left) Bol loop, if it satisfies x(y · xz) = (x · yx)z.

Example

Let A and B be positively definite Hermitian matrices. There exist
unique P, a positive definite Hermitian matrix and U, a unitary
matrix, such that AB = PU. The set of positively definite Hermite
matrices with A ∗ B = P is a Bol loop.

Example

Einstein’s velocity addition formula
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Examples of Loops

Extra Loops

Definition
A loop is said to be extra if it satisfies one of these identities:

xy · xz = x(yx · z),

x(y · zx) = (xy · z)x,

yx · zx = (y · xz)x.

Examples

16-element loop of octonion generators and their inverses

16-element loop of split-octonion generators and their
inverses

Theorem

Extra loops are Moufang loops with x2 ∈ N(Q) for each x in Q.
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Examples of Loops

Conjugacy Closed Loops

Definition
A loop Q is left conjugacy closed if, for each x, y in Q there exists a
in Q such that

LxLyL−1
x = La.

Observation
Necessarily a = xy/x and LCC is defined by x(y · xz) = (xy/x) · z.

Example

1 2 3 1̄ 2̄ 3̄
2 3 1 3̄ 1̄ 2̄
3 1 2 2̄ 3̄ 1̄
1̄ 2̄ 3̄ 2 3 1
2̄ 3̄ 1̄ 1 2 3
3̄ 1̄ 2̄ 3 1 2
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Nuclear Identification by Autotopisms

Moufang Loops Through Autotopisms

Let us consider the identity

xy · zx = x(yz · x).

It can be rewritten as

Lx(y) ·Rx(z) = LxRx(yz)

Observation
A loop Q satisfies the Moufang identity if and only if the triple
(Lx,Rx,LxRx) is an autotopism of Q, for each x in Q.
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Nuclear Identification by Autotopisms

Nuclei Through Autotopisms

The right nucleus of Q is the set Nρ = {a ∈ Q; x · ya = xy · a}.
An element a lies in the right nucleus if and only if

x ·Ra(y) = Ra(xy).

Observation
a ∈ Nρ ⇔ (id,Ra,Ra) is an autotopism of Q.

a ∈ Nλ ⇔ (La, id,La) is an autotopism of Q.

a ∈ Nµ ⇔ (R−1
a ,La, id) is an autotopism of Q.
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Nuclear Identification by Autotopisms

Nuclear Identification

(Lx, id,Lx)︸       ︷︷       ︸
x ∈ Nλ

· (id,Rx,Rx)︸        ︷︷        ︸
x ∈ Nρ

= (Lx,Rx,LxRx)︸            ︷︷            ︸
Moufang

.

Proposition

In a Moufang loop the left and the right nuclei coincide.

(Lx, id,Lx)︸       ︷︷       ︸
x ∈ Nλ

· (R−1
x ,Lx, id)−1︸             ︷︷             ︸
x ∈ Nµ

= (LxRx,L−1
x ,Lx).

(x ·yx) · (x\z) = x ·yz substituting z 7→ xz gives (x ·yx) · z = x · (y ·xz)

Proposition

In a left Bol loop the left and the middle nuclei coincide.
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Nuclear Identities
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ρ · µ (R−1

x ,RxLx,Rx) y(xz · x) = (yx · z)x right Bol
ρ−1 · µ (Rx,RxL−1

x ,Rx) yx · zx = (y · xz)x right extra
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WIP Loops

I-shifts of Automorphisms

Definition
Denote I : x 7→ x\1 and J : x 7→ 1/x. Let (α, β, γ) be an
autotopism. The triple (JγI, α,JβI) is called the I-shift of the
autotopism.

Observation

The I-shift of (LxR−1
x ,Lx,Lx) is (JLxI,LxR−1

x ,JLxI)
which looks similar to (R−1

x ,LxR−1
x ,R−1

x ).

Definition

We say that a loop Q has the weak inverse property if JLxI = R−1
x .
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WIP Loops

More I-shifts

Lemma
In a weak inverse property loop, an I-shift of an autotopism is an
autotopism.

Observation

The I-shift of (Rx,RxL−1
x ,Rx) is (JRxI,Rx,JRxL−1

x I).
Under the weak inverse property and the assumption I = J we
obtain (L−1

x ,Rx,L−1
x Rx).

Observation

The I-shift of (L−1
x ,Rx,L−1

x Rx) is (JL−1
x RxI,L−1

x ,JRxI).
Under the weak inverse property and the assumption I = J we
obtain (RxL−1

x ,L−1
x ,L−1

x ).
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WIP Loops

Classes of Equivalence

Proposition

The nuclear identities fall into four classes:

left extra, right extra, middle extra

left Moufang, right Bol, middle Moufang 2

left Bol, right Moufang, middle Moufang 1

LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another
using I-shifts, under the WIP and the condition I = J.

Lemma
All extra loop identities imply the weak inverse property with I = J.

Corollary

In the variety of loops, all the extra laws are equivalent.
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Intersection of Nuclear Identities

CC and Buchsteiner Loops are Extra

Definition (loop identities)

flexibility: x · yx = xy · x,

right alternativity: x · xy = x2y,

right inverse property: y/x = y(x\1).

Lemma
For a quasigroup Q, the following are equivalent:

Q is extra

Q is flexible LCC

Q is flexible RCC

Q is flexible Buchsteiner

Proof.

(LxR−1
x ,Lx,Lx)(R−1

x Lx,Lx,Lx)−1 = (LxR−1
x L−1

x Rx, id, id)

The last is an autotopism⇔ Q is flexible. �
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Intersection of Nuclear Identities

Further properties

Lemma
Let Q be a Buchsteiner loop. Then Q is

flexible⇔ left altern.⇔ right altern.⇔ LIP⇔ RIP⇔ extra

Lemma
Let Q be a left Bol loop (or LCC loop). Then Q is

flexible⇔ right alternative⇔ RIP

Corollary

Moufang loops are exactly left and right Bol loops.
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Intersection of Nuclear Identities

Extra Loops Are Moufang CC Loops

Lemma
Extra loops are Moufang loops

Proof.

(L−1
x ,Rx,L−1

x Rx)(LxR−1
x ,Lx,Lx)(id, id,L−1

x R−1
x LxRx)

= (R−1
x ,RxLx,Rx) �

Corollary

Extra loops are exactly conjugacy closed Moufang loops.

Definition
Left Bol LCC loop is called (left) Burn loop.
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Intersection of Nuclear Identities

Buchsteiner CC Loops

Proposition

Let Q be a CC loop. Then Q is a Buchsteiner loop if and only if
x2 ∈ N(Q), for each x ∈ Q.

Definition

A conjugacy closed loop Q with x2 ∈ N(Q), for each x ∈ Q, is
called Boolean CC loop.

Proposition

A Buchsteiner loop is LCC if and only if it is RCC.
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Intersection of Nuclear Identities

Intersection Semilattice of Nuclear Varieties

boolCC

extra

LCC

BuchLBurn

RCC

RBurn

Moufang

RBol

CC

LBol
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