Identités de boucles obtenues par l'identification nucléaire

Loop Identities Obtained by Nuclear Identification

Přemysl Jedlička

Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

25 septembre 2007, Caen

イロト イポト イヨト イヨト

Quasigroups

Definition

Let (G, \cdot) be a groupoid. The mapping $L_x : a \mapsto xa$ is called the *left translation* and the mapping $R_x : a \mapsto ax$ the right translation.

Definition (Combinatorial)

A groupoid (Q, \cdot) is called a *quasigroup* if the mappings L_x and R_x are bijections for each $x \in Q$.

Definition (Universal algebraic)

The algebra $(Q, \cdot, /, \cdot)$ is called a *quasigroup* if it satisfies the following identities:

 $x \setminus (x \cdot y) = y \qquad (x \cdot y)/y = x$ $x \cdot (x \setminus y) = y \qquad (x/y) \cdot y = x$

Quasigroups

Definition

Let (G, \cdot) be a groupoid. The mapping $L_x : a \mapsto xa$ is called the *left translation* and the mapping $R_x : a \mapsto ax$ the right translation.

Definition (Combinatorial)

A groupoid (Q, \cdot) is called a *quasigroup* if the mappings L_x and R_x are bijections for each $x \in Q$.

Definition (Universal algebraic)

The algebra $(Q, \cdot, /, \cdot)$ is called a *quasigroup* if it satisfies the following identities:

 $x \setminus (x \cdot y) = y \qquad (x \cdot y)/y = x$ $x \cdot (x \setminus y) = y \qquad (x/y) \cdot y = x$

Isotopisms

Definition

Let (Q, \cdot) and (R, *) be quasigroups. An *isotopism* of Q is a triple (α, β, γ) of bijections from Q onto R, satisfying

$$\alpha(y) * \beta(z) = \gamma(yz),$$

for each y, z in Q.

\cdot 0 1 2 3 4 \cdot 0 1 2 3 4 \cdot \cdot

Isotopisms

Definition

Let (Q, \cdot) and (R, *) be quasigroups. An *isotopism* of Q is a triple (α, β, γ) of bijections from Q onto R, satisfying

$$\alpha(y) * \beta(z) = \gamma(yz),$$

for each y, z in Q.

Example														
	•	0	1	2	3	4		+	0	1	2	3	4	
	0	1	3	0	2	4	$a = (1 \ 2 \ 4 \ 9)$	0	0	1	2	3	4	
	1	4	1	3	0	2	$\alpha = (1 \ 3 \ 4 \ 2)$ $\rho = (1 \ 9 \ 4 \ 2)$	1	1	2	3	4	0	
	2	2	4	1	3	0	$p = (1 \ 2 \ 4 \ 3)$	2	2	3	4	0	1	
	3	0	2	4	1	3	$\gamma = (4\ 5\ 2\ 1\ 0)$	3	3	4	0	1	2	
	4	3	0	2	4	1		4	4	0	1	2	3	

Isotopisms

Definition

Let (Q, \cdot) and (R, *) be quasigroups. An *isotopism* of Q is a triple (α, β, γ) of bijections from Q onto R, satisfying

$$\alpha(y) * \beta(z) = \gamma(yz),$$

for each y, z in Q.

Example														
	•	0	1	2	3	4		+	0	1	2	3	4	
	0	1	3	0	2	4	$a = (1 \ 9 \ 4 \ 9)$	0	0	1	2	3	4	
	1	4	1	3	0	2	$\alpha = (1 \ 3 \ 4 \ 2)$ $\rho = (1 \ 9 \ 4 \ 2)$	1	1	2	3	4	0	
	2	2	4	1	3	0	$p = (1 \ 2 \ 4 \ 3)$	2	2	3	4	0	1	
	3	0	2	4	1	3	$\gamma = (4\ 5\ 2\ 1\ 0)$	3	3	4	0	1	2	
	4	3	0	2	4	1		4	4	0	1	2	3	

Definition

A quasigroup Q is called a *loop* if it contains the identity element.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Definition

A quasigroup Q is called a *loop* if it contains the identity element.

Example (A smallest nonassociative loop)										
		1	2	3	4	5				
-	1	1	2	3	4	5				
	2	2	1	5	3	4				
	3	3	4	1	5	2				
	4	4	5	2	1	3				
	5	5	3	4	2	1				

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Center and Nuclei

Definition

Let Q be a loop. We define:

- the *left nucleus* of a loop Q: $N_{\lambda} = \{a \in Q; a \cdot xy = ax \cdot y\};$
- the middle nucleus of Q: $N_{\mu} = \{a \in Q; x \cdot ay = xa \cdot y\};$
- the right nucleus of Q: $N_{\rho} = \{a \in Q; x \cdot ya = xy \cdot a\};$
- the nucleus of $Q: N(Q) = N_{\lambda}$ if $N_{\lambda} = N_{\mu} = N_{\rho}$.

Definition

The *center* of a loop Q is the set $Z(Q) = \{x \in N_{\lambda} \cap N_{\mu} \cap N_{\rho}; xy = yx \ \forall y \in Q\}.$

Theorem

The nucleus and the center are normal subloops.

Center and Nuclei

Definition

Let Q be a loop. We define:

- the *left nucleus* of a loop Q: $N_{\lambda} = \{a \in Q; a \cdot xy = ax \cdot y\};$
- the middle nucleus of Q: $N_{\mu} = \{a \in Q; x \cdot ay = xa \cdot y\};$
- the right nucleus of Q: $N_{\rho} = \{a \in Q; x \cdot ya = xy \cdot a\};$
- the nucleus of $Q: N(Q) = N_{\lambda}$ if $N_{\lambda} = N_{\mu} = N_{\rho}$.

Definition

The *center* of a loop Q is the set $Z(Q) = \{x \in N_{\lambda} \cap N_{\mu} \cap N_{\rho}; xy = yx \ \forall y \in Q\}.$

Theorem

The nucleus and the center are normal subloops.

Center and Nuclei

Definition

Let Q be a loop. We define:

- the *left nucleus* of a loop Q: $N_{\lambda} = \{a \in Q; a \cdot xy = ax \cdot y\};$
- the middle nucleus of Q: $N_{\mu} = \{a \in Q; x \cdot ay = xa \cdot y\};$
- the right nucleus of Q: $N_{\rho} = \{a \in Q; x \cdot ya = xy \cdot a\};$
- the nucleus of $Q: N(Q) = N_{\lambda}$ if $N_{\lambda} = N_{\mu} = N_{\rho}$.

Definition

The *center* of a loop Q is the set $Z(Q) = \{x \in N_{\lambda} \cap N_{\mu} \cap N_{\rho}; xy = yx \ \forall y \in Q\}.$

Theorem

The nucleus and the center are normal subloops.

Moufang Loops

Definition

A loop Q is called a *Moufang* loop if it satisfies one of the following identities:

 $x(y \cdot xz) = (xy \cdot x)z,$ $xy \cdot zx = (x \cdot yz)x,$ $xy \cdot zx = x(yz \cdot x),$ $y(xz \cdot x) = (yx \cdot z)x.$

- Nonzero octonions
- Octonion units, basis octonions and their inverses
- Nonzero split-octonions
- Paige loops always simple nonassociative Moufang loops
- Parker's loop

Moufang Loops

Definition

A loop Q is called a *Moufang* loop if it satisfies one of the following identities:

$$x(y \cdot xz) = (xy \cdot x)z,$$

$$xy \cdot zx = (x \cdot yz)x,$$

$$xy \cdot zx = x(yz \cdot x),$$

$$y(xz \cdot x) = (yx \cdot z)x.$$

Examples

Nonzero octonions

- Octonion units, basis octonions and their inverses
- Nonzero split-octonions
- Paige loops always simple nonassociative Moufang loops
- Parker's loop

Moufang Loops

Definition

A loop Q is called a *Moufang* loop if it satisfies one of the following identities:

$$x(y \cdot xz) = (xy \cdot x)z,$$

$$xy \cdot zx = (x \cdot yz)x,$$

$$xy \cdot zx = x(yz \cdot x),$$

$$y(xz \cdot x) = (yx \cdot z)x.$$

- Nonzero octonions
- Octonion units, basis octonions and their inverses
- Nonzero split-octonions
- Paige loops always simple nonassociative Moufang loops
- Parker's loop

Moufang Loops

Definition

A loop Q is called a *Moufang* loop if it satisfies one of the following identities:

 $x(y \cdot xz) = (xy \cdot x)z,$ $xy \cdot zx = (x \cdot yz)x,$ $xy \cdot zx = x(yz \cdot x),$ $y(xz \cdot x) = (yx \cdot z)x.$

- Nonzero octonions
- Octonion units, basis octonions and their inverses
- Nonzero split-octonions
- Paige loops always simple nonassociative Moufang loops
- Parker's loop

Moufang Loops

Definition

A loop Q is called a *Moufang* loop if it satisfies one of the following identities:

 $x(y \cdot xz) = (xy \cdot x)z,$ $xy \cdot zx = (x \cdot yz)x,$ $xy \cdot zx = x(yz \cdot x),$ $y(xz \cdot x) = (yx \cdot z)x.$

- Nonzero octonions
- Octonion units, basis octonions and their inverses
- Nonzero split-octonions
- Paige loops always simple nonassociative Moufang loops
- Parker's loop

Moufang Loops

Definition

A loop Q is called a *Moufang* loop if it satisfies one of the following identities:

 $x(y \cdot xz) = (xy \cdot x)z,$ $xy \cdot zx = (x \cdot yz)x,$ $xy \cdot zx = x(yz \cdot x),$ $y(xz \cdot x) = (yx \cdot z)x.$

- Nonzero octonions
- Octonion units, basis octonions and their inverses
- Nonzero split-octonions
- Paige loops always simple nonassociative Moufang loops
- Parker's loop

Smallest Moufang Loop

1	2	3	4	5	6	1	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\overline{5}$	$\bar{6}$
2	1	4	3	6	5	$\bar{2}$	ī	$\bar{6}$	$\overline{5}$	$\bar{4}$	$\bar{3}$
3	6	5	2	1	4	Ī	$\bar{4}$	$\overline{5}$	$\bar{6}$	ī	$\bar{2}$
4	5	6	1	2	3	$\overline{4}$	$\bar{3}$	$\bar{2}$	Ī	$\bar{5}$	$\bar{6}$
5	4	1	6	3	2	$\overline{5}$	$\bar{6}$	ī	$\bar{2}$	$\bar{3}$	$\bar{4}$
6	3	2	5	4	1	6	$\bar{5}$	$\bar{4}$	$\bar{3}$	$ar{2}$	ī
Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\overline{5}$	$\bar{6}$	1	2	3	4	5	6
$\bar{2}$	ī	$\bar{6}$	$\overline{5}$	$\bar{4}$	$\bar{3}$	2	1	4	3	6	5
$\bar{3}$	$\bar{4}$	$\overline{5}$	$\bar{6}$	ī	$\bar{2}$	3	6	5	2	1	4
$\bar{4}$	$\bar{3}$	$\bar{2}$	ī	$\bar{5}$	$\bar{6}$	4	5	6	1	2	3
$\overline{5}$	$\bar{6}$	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	5	4	1	6	3	2
6	$\bar{5}$	$\bar{4}$	$\bar{3}$	$ar{2}$	Ī	6	3	2	5	4	1

Properties of Moufang Loops

Moufang loops are

- flexible x(yx) = (xy)x
- left alternative x(xy) = (xx)y
- right alternative y(xx) = (yx)x
- diassociative (every two-generated subloop is associative)

- two-sided inverses: $x^{-1} = 1/x = x \setminus 1$
- left inverse property: $x^{-1}(xy) = y$
- right inverse property: $(yx)x^{-1} = y$
- antiautomorphic inverse property: $(xy)^{-1} = y^{-1}x^{-1}$
- Lagrange property (2003)

Properties of Moufang Loops

Moufang loops are

- flexible x(yx) = (xy)x
- left alternative x(xy) = (xx)y
- right alternative y(xx) = (yx)x
- diassociative (every two-generated subloop is associative)

- two-sided inverses: $x^{-1} = 1/x = x \setminus 1$
- left inverse property: $x^{-1}(xy) = y$
- right inverse property: $(yx)x^{-1} = y$
- antiautomorphic inverse property: $(xy)^{-1} = y^{-1}x^{-1}$
- Lagrange property (2003)

Properties of Moufang Loops

Moufang loops are

- flexible x(yx) = (xy)x
- left alternative x(xy) = (xx)y
- right alternative y(xx) = (yx)x
- diassociative (every two-generated subloop is associative)

- two-sided inverses: $x^{-1} = 1/x = x \setminus 1$
- left inverse property: $x^{-1}(xy) = y$
- right inverse property: $(yx)x^{-1} = y$
- antiautomorphic inverse property: $(xy)^{-1} = y^{-1}x^{-1}$
- Lagrange property (2003)

Properties of Moufang Loops

Moufang loops are

- flexible x(yx) = (xy)x
- left alternative x(xy) = (xx)y
- right alternative y(xx) = (yx)x
- diassociative (every two-generated subloop is associative)

They have

- two-sided inverses: $x^{-1} = 1/x = x \setminus 1$
- left inverse property: $x^{-1}(xy) = y$
- right inverse property: $(yx)x^{-1} = y$
- antiautomorphic inverse property: $(xy)^{-1} = y^{-1}x^{-1}$
- Lagrange property (2003)

Properties of Moufang Loops

Moufang loops are

- flexible x(yx) = (xy)x
- left alternative x(xy) = (xx)y
- right alternative y(xx) = (yx)x
- diassociative (every two-generated subloop is associative)

They have

- two-sided inverses: $x^{-1} = 1/x = x \setminus 1$
- left inverse property: $x^{-1}(xy) = y$
- right inverse property: $(yx)x^{-1} = y$
- antiautomorphic inverse property: $(xy)^{-1} = y^{-1}x^{-1}$
- Lagrange property (2003)

Properties of Moufang Loops

Moufang loops are

- flexible x(yx) = (xy)x
- left alternative x(xy) = (xx)y
- right alternative y(xx) = (yx)x
- diassociative (every two-generated subloop is associative)

They have

- two-sided inverses: $x^{-1} = 1/x = x \setminus 1$
- left inverse property: $x^{-1}(xy) = y$
- right inverse property: $(yx)x^{-1} = y$
- antiautomorphic inverse property: $(xy)^{-1} = y^{-1}x^{-1}$
- Lagrange property (2003)

Properties of Moufang Loops

Moufang loops are

- flexible x(yx) = (xy)x
- left alternative x(xy) = (xx)y
- right alternative y(xx) = (yx)x
- diassociative (every two-generated subloop is associative)

They have

- two-sided inverses: $x^{-1} = 1/x = x \setminus 1$
- left inverse property: $x^{-1}(xy) = y$
- right inverse property: $(yx)x^{-1} = y$
- antiautomorphic inverse property: $(xy)^{-1} = y^{-1}x^{-1}$
- Lagrange property (2003)

Properties of Moufang Loops

Moufang loops are

- flexible x(yx) = (xy)x
- left alternative x(xy) = (xx)y
- right alternative y(xx) = (yx)x
- diassociative (every two-generated subloop is associative)

- two-sided inverses: $x^{-1} = 1/x = x \setminus 1$
- left inverse property: $x^{-1}(xy) = y$
- right inverse property: $(yx)x^{-1} = y$
- antiautomorphic inverse property: $(xy)^{-1} = y^{-1}x^{-1}$
- Lagrange property (2003)

Properties of Moufang Loops

Moufang loops are

- flexible x(yx) = (xy)x
- left alternative x(xy) = (xx)y
- right alternative y(xx) = (yx)x
- diassociative (every two-generated subloop is associative)

- two-sided inverses: $x^{-1} = 1/x = x \setminus 1$
- left inverse property: $x^{-1}(xy) = y$
- right inverse property: $(yx)x^{-1} = y$
- antiautomorphic inverse property: $(xy)^{-1} = y^{-1}x^{-1}$
- Lagrange property (2003)

Definition

A loop *Q* is called a *(left)* Bol loop, if it satisfies $x(y \cdot xz) = (x \cdot yx)z$.

Example

Let *A* and *B* be positively definite Hermitian matrices. There exist unique *P*, a positive definite Hermitian matrix and *U*, a unitary matrix, such that AB = PU. The set of positively definite Hermite matrices with A * B = P is a Bol loop.

Example

Einstein's velocity addition formula

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Definition

A loop *Q* is called a *(left)* Bol loop, if it satisfies $x(y \cdot xz) = (x \cdot yx)z$.

Example

Let *A* and *B* be positively definite Hermitian matrices. There exist unique *P*, a positive definite Hermitian matrix and *U*, a unitary matrix, such that AB = PU. The set of positively definite Hermite matrices with A * B = P is a Bol loop.

Example

Einstein's velocity addition formula

Definition

A loop *Q* is called a *(left)* Bol loop, if it satisfies $x(y \cdot xz) = (x \cdot yx)z$.

Example

Let *A* and *B* be positively definite Hermitian matrices. There exist unique *P*, a positive definite Hermitian matrix and *U*, a unitary matrix, such that AB = PU. The set of positively definite Hermite matrices with A * B = P is a Bol loop.

Example

Einstein's velocity addition formula

Extra Loops

Definition

A loop is said to be extra if it satisfies one of these identities:

- $xy \cdot xz = x(yx \cdot z)$,
- $x(y \cdot zx) = (xy \cdot z)x$,

•
$$yx \cdot zx = (y \cdot xz)x$$
.

Examples

- 16-element loop of octonion generators and their inverses
- 16-element loop of split-octonion generators and their inverses

Theorem

Extra loops are Moufang loops with $x^2 \in N(Q)$ for each x in Q.

Extra Loops

Definition

A loop is said to be extra if it satisfies one of these identities:

- $xy \cdot xz = x(yx \cdot z)$,
- $x(y \cdot zx) = (xy \cdot z)x$,

•
$$yx \cdot zx = (y \cdot xz)x$$
.

Examples

- 16-element loop of octonion generators and their inverses
- 16-element loop of split-octonion generators and their inverses

Theorem

Extra loops are Moufang loops with $x^2 \in N(Q)$ for each x in Q.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Extra Loops

Definition

A loop is said to be extra if it satisfies one of these identities:

- $xy \cdot xz = x(yx \cdot z)$,
- $x(y \cdot zx) = (xy \cdot z)x$,

•
$$yx \cdot zx = (y \cdot xz)x$$
.

Examples

- 16-element loop of octonion generators and their inverses
- 16-element loop of split-octonion generators and their inverses

Theorem

Extra loops are Moufang loops with $x^2 \in N(Q)$ for each x in Q.

Conjugacy Closed Loops

Definition

A loop Q is *left conjugacy closed* if, for each x, y in Q there exists a in Q such that

$$L_x L_y L_x^{-1} = L_a.$$

Observation

Necessarily a = xy/x and LCC is defined by $x(y \cdot xz) = (xy/x) \cdot z$.

Conjugacy Closed Loops

Definition

A loop Q is *left conjugacy closed* if, for each x, y in Q there exists a in Q such that

$$L_x L_y L_x^{-1} = L_a.$$

Observation

Necessarily a = xy/x and LCC is defined by $x(y \cdot xz) = (xy/x) \cdot z$.

Conjugacy Closed Loops

Definition

A loop Q is *left conjugacy closed* if, for each x, y in Q there exists a in Q such that

$$L_x L_y L_x^{-1} = L_a.$$

Observation

Necessarily a = xy/x and LCC is defined by $x(y \cdot xz) = (xy/x) \cdot z$.
Moufang Loops Through Autotopisms

Let us consider the identity

$$xy \cdot zx = x(yz \cdot x).$$

It can be rewritten as

$$L_x(y) \cdot R_x(z) = L_x R_x(yz)$$

Observation

A loop Q satisfies the Moufang identity if and only if the triple $(L_x, R_x, L_x R_x)$ is an autotopism of Q, for each x in Q.

Moufang Loops Through Autotopisms

Let us consider the identity

$$xy \cdot zx = x(yz \cdot x).$$

It can be rewritten as

$$L_x(y) \cdot R_x(z) = L_x R_x(yz)$$

Observation

A loop Q satisfies the Moufang identity if and only if the triple $(L_x, R_x, L_x R_x)$ is an autotopism of Q, for each x in Q.

Moufang Loops Through Autotopisms

Let us consider the identity

$$xy \cdot zx = x(yz \cdot x).$$

It can be rewritten as

$$L_x(y) \cdot R_x(z) = L_x R_x(yz)$$

Observation

A loop Q satisfies the Moufang identity if and only if the triple $(L_x, R_x, L_x R_x)$ is an autotopism of Q, for each x in Q.

Nuclei Through Autotopisms

The right nucleus of Q is the set $N_{\rho} = \{a \in Q; x \cdot ya = xy \cdot a\}.$

An element α lies in the right nucleus if and only if

 $x \cdot R_a(y) = R_a(xy).$

Observation

- $a \in N_{\rho} \Leftrightarrow (\mathrm{id}, R_a, R_a)$ is an autotopism of Q.
- $a \in N_{\lambda} \Leftrightarrow (L_a, \mathrm{id}, L_a)$ is an autotopism of Q.
- $a \in N_{\mu} \Leftrightarrow (R_a^{-1}, L_a, \mathrm{id})$ is an autotopism of Q.

ション 小田 マイビン トロー ひゃく

Nuclei Through Autotopisms

The right nucleus of Q is the set $N_{\rho} = \{a \in Q; x \cdot ya = xy \cdot a\}$. An element a lies in the right nucleus if and only if

$$x \cdot R_a(y) = R_a(xy).$$

Observation• $a \in N_{\rho} \Leftrightarrow (\mathrm{id}, R_a, R_a)$ is an autotopism of Q.• $a \in N_{\lambda} \Leftrightarrow (L_a, \mathrm{id}, L_a)$ is an autotopism of Q.• $a \in N_{\mu} \Leftrightarrow (R_a^{-1}, L_a, \mathrm{id})$ is an autotopism of Q.

ション 小田 マイビン トロー ひゃく

Nuclei Through Autotopisms

The right nucleus of Q is the set $N_{\rho} = \{a \in Q; x \cdot ya = xy \cdot a\}$. An element a lies in the right nucleus if and only if

$$x \cdot R_a(y) = R_a(xy).$$

Observation

- $a \in N_{\rho} \Leftrightarrow (\mathrm{id}, R_a, R_a)$ is an autotopism of Q.
- $a \in N_{\lambda} \Leftrightarrow (L_a, \mathrm{id}, L_a)$ is an autotopism of Q.
- $a \in N_{\mu} \Leftrightarrow (R_a^{-1}, L_a, \mathrm{id})$ is an autotopism of Q.

ション 小田 マイビン トロー ひゃく

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identification

$$\underbrace{(L_x, \mathrm{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(\mathrm{id}, R_x, R_x)}_{x \in N_\rho} = \underbrace{(L_x, R_x, L_x R_x)}_{\text{Moufang}}.$$

Proposition

In a Moufang loop the left and the right nuclei coincide.

$$\underbrace{(L_x, \operatorname{id}, L_x)}_{x \in N_\lambda} \cdot \underbrace{(R_x^{-1}, L_x, \operatorname{id})^{-1}}_{x \in N_\mu} = (L_x R_x, L_x^{-1}, L_x).$$

 $(x \cdot yx) \cdot (x \setminus z) = x \cdot yz$ substituting $z \mapsto xz$ gives $(x \cdot yx) \cdot z = x \cdot (y \cdot xz)$

Proposition

Nuclear Identities

nuclei	autotopism	law	loop
$\lambda \cdot \mu$	$(L_x R_x^{-1}, L_x, L_x)$	$xy \cdot xz = x(yx \cdot z)$	left extra
$\lambda \cdot \mu^{-1}$	$(L_x R_x, L_x^{-1}, L_x)$	$(x \cdot yx)z = x(y \cdot xz)$	left Bol
$\lambda \cdot ho$	$(L_x, R_x, L_x R_x)$	$xy \cdot zx = (x \cdot yz)x$	middle Moufang 1
$\lambda \cdot ho^{-1}$	$(L_x, R_x^{-1}, L_x R_x^{-1})$	$x \backslash (xy \cdot z) = (y \cdot zx)/x$	Buchsteiner
$\lambda^{-1} \cdot \rho$	$(L_x^{-1}, R_x, L_x^{-1}R_x)$	$x(y \cdot zx) = (xy \cdot z)x$	middle extra
$\mu \cdot \lambda$	$(R_x^{-1}L_x, L_x, L_x)$	$((xy)/x)z = x \cdot y(x \setminus z)$	LCC
$\mu^{-1} \cdot \lambda$	$(R_x L_x, L_x^{-1}, L_x)$	$(xy \cdot x)z = x(y \cdot xz)$	left Moufang
$\mu \cdot \rho$	$(R_x^{-1}, L_x R_x, R_x)$	$y(x \cdot zx) = (yx \cdot z)x$	right Moufang
$\mu^{-1} \cdot \rho$	$(R_x, L_x^{-1}R_x, R_x)$	$y(x \setminus (zx)) = (y/x)z \cdot x$	RCC
$ ho\cdot\lambda$	$(L_x, R_x, R_x L_x)$	$xy \cdot zx = x(yz \cdot x)$	middle Moufang 2
$ ho \cdot \mu$	$(R_x^{-1}, R_x L_x, R_x)$	$y(xz \cdot x) = (yx \cdot z)x$	right Bol
$ ho^{-1}\cdot\mu$	$(R_x, R_x L_x^{-1}, R_x)$	$yx \cdot zx = (y \cdot xz)x$	right extra

Nuclear Identities

nuclei	autotopism	law	loop
$\lambda \cdot \mu$	$(L_x R_x^{-1}, L_x, L_x)$	$xy \cdot xz = x(yx \cdot z)$	left extra
$\lambda \cdot \mu^{-1}$	$(L_x R_x, L_x^{-1}, L_x)$	$(x \cdot yx)z = x(y \cdot xz)$	left Bol
$\lambda \cdot ho$	$(L_x, R_x, L_x R_x)$	$xy \cdot zx = (x \cdot yz)x$	middle Moufang 1
$\lambda \cdot ho^{-1}$	$(L_x, R_x^{-1}, L_x R_x^{-1})$	$x \backslash (xy \cdot z) = (y \cdot zx)/x$	Buchsteiner
$\lambda^{-1} \cdot \rho$	$(L_x^{-1}, R_x, L_x^{-1}R_x)$	$x(y \cdot zx) = (xy \cdot z)x$	middle extra
$\mu \cdot \lambda$	$(R_x^{-1}L_x, L_x, L_x)$	$((xy)/x)z = x \cdot y(x \setminus z)$	LCC
$\mu^{-1} \cdot \lambda$	$(R_x L_x, L_x^{-1}, L_x)$	$(xy \cdot x)z = x(y \cdot xz)$	left Moufang
$\mu \cdot ho$	$(R_x^{-1}, L_x R_x, R_x)$	$y(x \cdot zx) = (yx \cdot z)x$	right Moufang
$\mu^{-1} \cdot \rho$	$(R_x, L_x^{-1}R_x, R_x)$	$y(x \setminus (zx)) = (y/x)z \cdot x$	RCC
$ ho\cdot\lambda$	$(L_x, R_x, R_x L_x)$	$xy \cdot zx = x(yz \cdot x)$	middle Moufang 2
$ ho \cdot \mu$	$(R_x^{-1}, R_x L_x, R_x)$	$y(xz \cdot x) = (yx \cdot z)x$	right Bol
$ ho^{-1}\cdot\mu$	$(R_x, R_x L_x^{-1}, R_x)$	$yx \cdot zx = (y \cdot xz)x$	right extra

I-shifts of Automorphisms

Definition

Denote $I: x \mapsto x \setminus 1$ and $J: x \mapsto 1/x$. Let (α, β, γ) be an autotopism. The triple $(J\gamma I, \alpha, J\beta I)$ is called the *I*-shift of the autotopism.

Observation

The *I*-shift of $(L_x R_x^{-1}, L_x, L_x)$ is $(JL_x I, L_x R_x^{-1}, JL_x I)$ which looks similar to $(R_x^{-1}, L_x R_x^{-1}, R_x^{-1})$.

Definition

We say that a loop Q has the weak inverse property if $JL_xI = R_x^{-1}$.

・ロト・西ト・ヨト・ヨー うへぐ

I-shifts of Automorphisms

Definition

Denote $I: x \mapsto x \setminus 1$ and $J: x \mapsto 1/x$. Let (α, β, γ) be an autotopism. The triple $(J\gamma I, \alpha, J\beta I)$ is called the *I*-shift of the autotopism.

Observation

The *I*-shift of $(L_x R_x^{-1}, L_x, L_x)$ is $(JL_x I, L_x R_x^{-1}, JL_x I)$ which looks similar to $(R_x^{-1}, L_x R_x^{-1}, R_x^{-1})$.

Definition

We say that a loop Q has the weak inverse property if $JL_xI = R_x^{-1}$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

I-shifts of Automorphisms

Definition

Denote $I: x \mapsto x \setminus 1$ and $J: x \mapsto 1/x$. Let (α, β, γ) be an autotopism. The triple $(J\gamma I, \alpha, J\beta I)$ is called the *I*-shift of the autotopism.

Observation

The *I*-shift of $(L_x R_x^{-1}, L_x, L_x)$ is $(JL_x I, L_x R_x^{-1}, JL_x I)$ which looks similar to $(R_x^{-1}, L_x R_x^{-1}, R_x^{-1})$.

Definition

We say that a loop Q has the weak inverse property if $JL_xI = R_x^{-1}$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

I-shifts of Automorphisms

Definition

Denote $I: x \mapsto x \setminus 1$ and $J: x \mapsto 1/x$. Let (α, β, γ) be an autotopism. The triple $(J\gamma I, \alpha, J\beta I)$ is called the *I*-shift of the autotopism.

Observation

The *I*-shift of
$$(L_x R_x^{-1}, L_x, L_x)$$
 is $(JL_x I, L_x R_x^{-1}, JL_x I)$
which looks similar to $(R_x^{-1}, L_x R_x^{-1}, R_x^{-1})$.

Definition

We say that a loop Q has the weak inverse property if $JL_xI = R_x^{-1}$.

Lemma

In a weak inverse property loop, an I-shift of an autotopism is an autotopism.

Observation

The *I*-shift of $(R_x, R_x L_x^{-1}, R_x)$ is $(JR_x I, R_x, JR_x L_x^{-1}I)$. Under the weak investe property and the assumption I = J we obtain $(L_x^{-1}, R_x, L_x^{-1}R_x)$.

Observation

Lemma

In a weak inverse property loop, an I-shift of an autotopism is an autotopism.

Observation

The *I*-shift of $(R_x, R_x L_x^{-1}, R_x)$ is $(JR_x I, R_x, JR_x L_x^{-1}I)$.

Under the weak inverse property and the assumption I = J we obtain $(L_x^{-1}, R_x, L_x^{-1}R_x)$.

Observation

Lemma

In a weak inverse property loop, an I-shift of an autotopism is an autotopism.

Observation

The *I*-shift of $(R_x, R_x L_x^{-1}, R_x)$ is $(JR_x I, R_x, JR_x L_x^{-1}I)$. Under the weak inverse property and the assumption I = J we obtain $(L_x^{-1}, R_x, L_x^{-1}R_x)$.

Observation

Lemma

In a weak inverse property loop, an I-shift of an autotopism is an autotopism.

Observation

The *I*-shift of $(R_x, R_x L_x^{-1}, R_x)$ is $(JR_x I, R_x, JR_x L_x^{-1}I)$. Under the weak inverse property and the assumption I = J we obtain $(L_x^{-1}, R_x, L_x^{-1}R_x)$.

Observation

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- Ieft Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using I-shifts, under the WIP and the condition I = J.

_emma

All extra loop identities imply the weak inverse property with I = J.

Corollary

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- left Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using I-shifts, under the WIP and the condition I = J.

_emma

All extra loop identities imply the weak inverse property with I = J.

Corollary

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- left Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using I-shifts, under the WIP and the condition I = J.

_emma

All extra loop identities imply the weak inverse property with I = J.

Corollary

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- left Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using I-shifts, under the WIP and the condition I = J.

_emma

All extra loop identities imply the weak inverse property with I = J.

Corollary

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- left Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using *I*-shifts, under the WIP and the condition I = J.

Lemma

All extra loop identities imply the weak inverse property with I = J.

Corollary

Proposition

The nuclear identities fall into four classes:

- left extra, right extra, middle extra
- left Moufang, right Bol, middle Moufang 2
- left Bol, right Moufang, middle Moufang 1
- LCC, RCC, Buchsteiner

where identities within a class can be obtained one from another using *I*-shifts, under the WIP and the condition I = J.

Lemma

All extra loop identities imply the weak inverse property with I = J.

Corollary

CC and Buchsteiner Loops are Extra

Definition (loop identities)

- flexibility: $x \cdot yx = xy \cdot x$,
- right alternativity: $x \cdot xy = x^2y$,
- right inverse property: $y/x = y(x \setminus 1)$.

_emma

For a quasigroup Q, the following are equivalent:

- Q is extra
- Q is flexible LCC

- *Q* is flexible RCC
- Q is flexible Buchsteiner

Proof.

 $(L_x R_x^{-1}, L_x, L_x)(R_x^{-1}L_x, L_x, L_x)^{-1} = (L_x R_x^{-1}L_x^{-1}R_x, \text{id}, \text{id})$

The last is an autotopism $\Leftrightarrow Q$ is flexible.

CC and Buchsteiner Loops are Extra

Definition (loop identities)

- flexibility: $x \cdot yx = xy \cdot x$,
- right alternativity: $x \cdot xy = x^2y$,
- right inverse property: $y/x = y(x \setminus 1)$.

Lemma

For a quasigroup Q, the following are equivalent:

- Q is extra Q is flexible RCC
- Q is flexible LCC

• Q is flexible Buchsteiner

Proof.

 $(L_x R_x^{-1}, L_x, L_x)(R_x^{-1}L_x, L_x, L_x)^{-1} = (L_x R_x^{-1}L_x^{-1}R_x, \text{id}, \text{id})$

The last is an autotopism $\Leftrightarrow Q$ is flexible.

CC and Buchsteiner Loops are Extra

Definition (loop identities)

- flexibility: $x \cdot yx = xy \cdot x$,
- right alternativity: $x \cdot xy = x^2y$,
- right inverse property: $y/x = y(x \setminus 1)$.

Lemma

For a quasigroup Q, the following are equivalent:

- Q is extra Q is flexible RCC
- Q is flexible LCC

• Q is flexible Buchsteiner

Proof.

$$(L_x R_x^{-1}, L_x, L_x)(R_x^{-1}L_x, L_x, L_x)^{-1} = (L_x R_x^{-1}L_x^{-1}R_x, \text{id}, \text{id})$$

The last is an autotopism $\Leftrightarrow Q$ is flexible.

CC and Buchsteiner Loops are Extra

Definition (loop identities)

- flexibility: $x \cdot yx = xy \cdot x$,
- right alternativity: $x \cdot xy = x^2y$,
- right inverse property: $y/x = y(x \setminus 1)$.

Lemma

For a quasigroup Q, the following are equivalent:

- Q is extra • Q is flexible RCC
- Q is flexible LCC

- Q is flexible Buchsteiner

Proof.

$$(L_x R_x^{-1}, L_x, L_x)(R_x^{-1}L_x, L_x, L_x)^{-1} = (L_x R_x^{-1}L_x^{-1}R_x, \text{id}, \text{id})$$

The last is an autotopism $\Leftrightarrow Q$ is flexible.

Loop Identities Obtained by Nuclear Identification

Intersection of Nuclear Identities

Further properties

Lemma

Let Q be a Buchsteiner loop. Then Q is

flexible \Leftrightarrow left altern. \Leftrightarrow right altern. \Leftrightarrow LIP \Leftrightarrow RIP \Leftrightarrow extra

_emma

Let Q be a left Bol loop (or LCC loop). Then Q is

flexible \Leftrightarrow right alternative \Leftrightarrow RIP

Corollary

Moufang loops are exactly left and right Bol loops.

Loop Identities Obtained by Nuclear Identification

Intersection of Nuclear Identities

Further properties

Lemma

Let Q be a Buchsteiner loop. Then Q is

flexible \Leftrightarrow left altern. \Leftrightarrow right altern. \Leftrightarrow LIP \Leftrightarrow RIP \Leftrightarrow extra

Lemma

Let Q be a left Bol loop (or LCC loop). Then Q is

flexible \Leftrightarrow right alternative \Leftrightarrow RIP

Corollary

Moufang loops are exactly left and right Bol loops.

Loop Identities Obtained by Nuclear Identification

Intersection of Nuclear Identities

Further properties

Lemma

Let Q be a Buchsteiner loop. Then Q is

flexible \Leftrightarrow left altern. \Leftrightarrow right altern. \Leftrightarrow LIP \Leftrightarrow RIP \Leftrightarrow extra

Lemma

Let Q be a left Bol loop (or LCC loop). Then Q is

flexible \Leftrightarrow right alternative \Leftrightarrow RIP

Corollary

Moufang loops are exactly left and right Bol loops.

Extra Loops Are Moufang CC Loops

Lemma

Extra loops are Moufang loops

Proof.

$$(L_x^{-1}, R_x, L_x^{-1}R_x)(L_x R_x^{-1}, L_x, L_x)(\text{id}, \text{id}, L_x^{-1}R_x^{-1}L_x R_x)$$

= $(R_x^{-1}, R_x L_x, R_x)$

Corollary

Extra loops are exactly conjugacy closed Moufang loops.

Definition

Left Bol LCC loop is called (left) Burn loop.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで
Extra Loops Are Moufang CC Loops

Lemma

Extra loops are Moufang loops

Proof.

$$(L_x^{-1}, R_x, L_x^{-1}R_x)(L_x R_x^{-1}, L_x, L_x)(\text{id}, \text{id}, L_x^{-1}R_x^{-1}L_x R_x)$$

= $(R_x^{-1}, R_x L_x, R_x)$

Corollary

Extra loops are exactly conjugacy closed Moufang loops.

Definition

Left Bol LCC loop is called (left) Burn loop.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

ж

Extra Loops Are Moufang CC Loops

Lemma

Extra loops are Moufang loops

Proof.

$$\begin{aligned} (L_x^{-1}, R_x, L_x^{-1} R_x) (L_x R_x^{-1}, L_x, L_x) (\mathrm{id}, \mathrm{id}, L_x^{-1} R_x^{-1} L_x R_x) \\ &= (R_x^{-1}, R_x L_x, R_x) \quad \Box \end{aligned}$$

Corollary

Extra loops are exactly conjugacy closed Moufang loops.

Definition

Left Bol LCC loop is called *(left) Burn* loop.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Extra Loops Are Moufang CC Loops

Lemma

Extra loops are Moufang loops

Proof.

$$(L_x^{-1}, R_x, L_x^{-1}R_x)(L_x R_x^{-1}, L_x, L_x)(\text{id}, \text{id}, L_x^{-1} R_x^{-1}L_x R_x)$$

= $(R_x^{-1}, R_x L_x, R_x)$

Corollary

Extra loops are exactly conjugacy closed Moufang loops.

Definition

Left Bol LCC loop is called (left) Burn loop.

Buchsteiner CC Loops

Proposition

Let Q be a CC loop. Then Q is a Buchsteiner loop if and only if $x^2 \in N(Q)$, for each $x \in Q$.

Definition

A conjugacy closed loop Q with $x^2 \in N(Q)$, for each $x \in Q$, is called *Boolean CC* loop.

Proposition

A Buchsteiner loop is LCC if and only if it is RCC.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Buchsteiner CC Loops

Proposition

Let Q be a CC loop. Then Q is a Buchsteiner loop if and only if $x^2 \in N(Q)$, for each $x \in Q$.

Definition

A conjugacy closed loop Q with $x^2 \in N(Q)$, for each $x \in Q$, is called *Boolean CC* loop.

Proposition

A Buchsteiner loop is LCC if and only if it is RCC.

ション 小田 マイビット ビックタン

Buchsteiner CC Loops

Proposition

Let Q be a CC loop. Then Q is a Buchsteiner loop if and only if $x^2 \in N(Q)$, for each $x \in Q$.

Definition

A conjugacy closed loop Q with $x^2 \in N(Q)$, for each $x \in Q$, is called *Boolean CC* loop.

Proposition

A Buchsteiner loop is LCC if and only if it is RCC.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Intersection Semilattice of Nuclear Varieties

