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Large Numbers Factorisation

The prime number factorisation is the decomposition of a
number N to N = ∏pbi

i , for pi primes.
This problem is believed to be NP.

In RSA algorithm, the central role play two primes p and q and
N = p ·q.
N is a part of the public key.
Primes p, q are the secret key.
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Přemysl Jedlička The Quadratic Sieve



Fermat’s Factorisation
Quadratic Sieve

Introduction
Linear Algebra Phase

Large Numbers Factorisation

The prime number factorisation is the decomposition of a
number N to N = ∏pbi

i , for pi primes.
This problem is believed to be NP.

In RSA algorithm, the central role play two primes p and q and
N = p ·q.
N is a part of the public key.
Primes p, q are the secret key.

Přemysl Jedlička The Quadratic Sieve



Fermat’s Factorisation
Quadratic Sieve

Introduction
Linear Algebra Phase

Large Numbers Factorisation

The prime number factorisation is the decomposition of a
number N to N = ∏pbi

i , for pi primes.
This problem is believed to be NP.

In RSA algorithm, the central role play two primes p and q and
N = p ·q.
N is a part of the public key.
Primes p, q are the secret key.

Přemysl Jedlička The Quadratic Sieve



Fermat’s Factorisation
Quadratic Sieve

Introduction
Linear Algebra Phase

Large Numbers Factorisation

The prime number factorisation is the decomposition of a
number N to N = ∏pbi

i , for pi primes.
This problem is believed to be NP.

In RSA algorithm, the central role play two primes p and q and
N = p ·q.
N is a part of the public key.
Primes p, q are the secret key.
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Algorithms Used For Factorisation

The best classical algorithms for factorising a product of two
primes are based on the Fermat’s factorisation scheme.
Examples are:

I CFRAC (Continued Fraction Algorithm)
I Quadratic Sieve
I Number Field Sieve

The best (in theory) is quantum factorisation.
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Fermat’s Factorisation
We want to factorise a large number N. Suppose that we have
a set of equations

xi ≡ y2
i (mod N).

Let us pick up a set I of indeces such that

∏
i∈I

xi = x2.

Then we have

x2 = ∏
i∈I

xi ≡ ∏
i∈I

y2
i = y2 (mod N);

(x −y)(x +y) = kN.
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Choosing Dependencies

Each xi has a prime decomposition xi = ∏pbi j
j .

We want to find a set of indeces I , such that, for each j ,

∏
i∈I

pbi j
j

is a square, that means
∑

i∈I

bi j

is even.
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Přemysl Jedlička The Quadratic Sieve



Fermat’s Factorisation
Quadratic Sieve

Introduction
Linear Algebra Phase

Linear System over GF(2)

We want, for each j ,

∑
i∈I

bi j ≡ 0 (mod 2).

Denote by ~v the incidence vector of I. Then, for each j ,

∑ ·vi ·bi j ≡ 0 (mod 2),

which can be rewritten as

~v ·B = ~o

in the two element field GF(2).
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Přemysl Jedlička The Quadratic Sieve



Fermat’s Factorisation
Quadratic Sieve

Introduction
Linear Algebra Phase

Solving Systems over GF(2)

The matrix B is very sparse, for every row there is only
non-zero entries: the primes that are of an odd exponent in the
decomposision of xi .

Algorithms for solving huge sparse linear systems over GF(2):
I Reduced Gaussian elimination
I Block Lanczos algorithm
I Block Wiedemann algorithm
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Quadratic Sieve

Let a,b be integers and consider the polynomial

Q(x) = (ax +b)2−N.

Let take an x and denote

Q(x) = pb1
1 · · ·pbk

k .

Than we have

(ax +b)2 ≡ pb1
1 · · ·pbk

k (mod N)

and these are the relations needed for the Fermat’s
factorisation.
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Smooth Relations

Let F be a bound on primes acceptable for the factorisation. A
relation

(ax +b)2 ≡ pb1
1 · · ·pbk

k (mod N)

is called smooth is all the primes pi are smaller than F .

We collect only smooth relations.
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The Sieve

Q(x) factorisation 2 3 5 · · · p · · ·
...

Q(x) p logQ(x)− logp
Q(x +1)
Q(x +2)

...
Q(x +p) p

...
Q(x +2p) p

...
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Further Improvements

I Large prime vatiation (LPV)
I Double large prime variation (DLPV)
I Multi-polynomial quadratic sieve (MPQS)
I Self-initialization quadratic sieve (SIQS)
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An implementation

A multi-polynomial quadratic sieve was implemented in Prague

http://www.karlin.mff.cuni.cz/�krypto/mpqs.php

by M. Kechlibar, J. J. Zvánovec and P. Jedlička.
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