Left Distributive Left Idempotent Groupoids

Přemysl Jedlička

Department of Mathematics
Technical Faculty
Czech University of Agriculture, Prague
25 April 2006, Warsaw

Left Distributive Idempotent Groupoids

Definition

left distributivity idempotency

$$
\begin{aligned}
x \cdot(y \cdot z) & =(x \cdot y) \cdot(x \cdot z) \\
x & =x \cdot x
\end{aligned}
$$

Example

Let (G, \cdot) be a group. We define on G an LDI operation:

Left Distributive Idempotent Groupoids

Definition

left distributivity idempotency

$$
\begin{aligned}
x \cdot(y \cdot z) & =(x \cdot y) \cdot(x \cdot z) \\
x & =x \cdot x
\end{aligned}
$$

Example

Let (G, \cdot) be a group. We define on G an LDI operation:

$$
x * y=x y x^{-1}
$$

Word Problem

Definition
Word problem for an algebra A :
To decide whether two terms represent the same element in A
Problem

- The word problem of free LDI groupoids is still open

Word Problem

Definition

Word problem for an algebra A :
To decide whether two terms represent the same element in A

Problem

- The word problem of free LDI groupoids is still open
- The word problem of free LD groupoids solved by Patrick Dehornoy

Word Problem

Definition

Word problem for an algebra A :
To decide whether two terms represent the same element in A

Problem

- The word problem of free LDI groupoids is still open
- The word problem of free LD groupoids solved by Patrick Dehornoy

Solution of the Word Problem of LD

Steps of Dehornoy's solution of the word problem of free LD grupoids

(1) Construction of the geometry monoid and the geometry groupDescrintion of their presentations
(3) Solution of the word problem of the geometry group

4 Solution of the word problem for the free monogenerated LD groupoid
(5) Solution of the word problem for the free LD groupoid with more generators

Solution of the Word Problem of LD

Steps of Dehornoy's solution of the word problem of free LD grupoids
(1) Construction of the geometry monoid and the geometry group
(2) Description of their presentations
(3) Solution of the word problem of the geometry group
(4) Solution of the word problem for the free monogenerated LD groupoid
(5) Solution of the word problem for the free LD groupoid with more generators

Solution of the Word Problem of LD

Steps of Dehornoy's solution of the word problem of free LD grupoids
(1) Construction of the geometry monoid and the geometry group
(2) Description of their presentations
(3) Solution of the word problem of the geometry group
(9) Solution of the word problem for the free monogenerated LD groupoid
(5) Solution of the word problem for the free LD groupoid with more generators

Solution of the Word Problem of LD

Steps of Dehornoy's solution of the word problem of free LD grupoids
(1) Construction of the geometry monoid and the geometry group
(2) Description of their presentations
(3) Solution of the word problem of the geometry group
(4) Solution of the word problem for the free monogenerated LD groupoid
(5) Solution of the word problem for the free LD groupoid with more generators

Solution of the Word Problem of LD

Steps of Dehornoy's solution of the word problem of free LD grupoids
(1) Construction of the geometry monoid and the geometry group
(2) Description of their presentations
(3) Solution of the word problem of the geometry group
(4) Solution of the word problem for the free monogenerated LD groupoid
(5) Solution of the word problem for the free LD groupoid with more generators

Solution of the Word Problem of LD

Steps of Dehornoy's solution of the word problem of free LD grupoids
(1) Construction of the geometry monoid and the geometry group
(2) Description of their presentations
(3) Solution of the word problem of the geometry group
4. Solution of the word problem for the free monogenerated LD groupoid
(5) Solution of the word problem for the free LD groupoid with more generators

Geometry Monoid and Geometry Group

Geometric Operators

Geometry Monoid and Geometry Group

Geometric Operators

Definitions of Geometry Monoids and Geometry Groups

Definitions

The geometry monoid of LD is the monoid generated by all $L D_{\alpha}$ and $\mathrm{LD}_{\alpha}^{-1}$.
The geometry monoid of LDI is the monoid generated by all $\mathrm{LD}_{\alpha}, \mathrm{I}_{\alpha}, \mathrm{LD}_{\alpha}^{-1}$ and I_{α}^{-1}.

Definitions

The geometry group of LD is the geometry monoid of LD quotioned by $\mathrm{LD}_{\alpha} \circ \mathrm{LD}_{\alpha}^{-1}=\mathrm{LD}_{\alpha}^{-1} \circ \mathrm{LD} \mathrm{D}_{\alpha}=\mathrm{id}$.
The geometry group of LDI is the geometry monoid of LDI quotioned by $\mathrm{LD}_{\alpha} \circ \mathrm{LD}_{\alpha}^{-1}=\mathrm{LD}_{\alpha}^{-1} \circ \mathrm{LD} \mathrm{D}_{\alpha}=\mathrm{I}_{\alpha} \circ \mathrm{I}_{\alpha}^{-1}=\mathrm{I}_{\alpha}^{-1} \circ \mathrm{I}_{\alpha}=\mathrm{id}$.

Definitions of Geometry Monoids and Geometry Groups

Definitions

The geometry monoid of LD is the monoid generated by all $L D_{\alpha}$ and $\mathrm{LD}_{\alpha}^{-1}$.
The geometry monoid of LDI is the monoid generated by all $\mathrm{LD}_{\alpha}, \mathrm{I}_{\alpha}, \mathrm{LD}_{\alpha}^{-1}$ and I_{α}^{-1}.

Definitions

The geometry group of LD is the geometry monoid of LD quotioned by $\mathrm{LD}_{\alpha} \circ \mathrm{LD}_{\alpha}^{-1}=\mathrm{LD}_{\alpha}^{-1} \circ \mathrm{LD}{ }_{\alpha}=$ id.
The geometry group of LDI is the geometry monoid of LDI quotioned by $\mathrm{LD}_{\alpha} \circ \mathrm{LD}_{\alpha}^{-1}=\mathrm{LD}_{\alpha}^{-1} \circ \mathrm{LD}_{\alpha}=\mathrm{I}_{\alpha} \circ \mathrm{I}_{\alpha}^{-1}=\mathrm{I}_{\alpha}^{-1} \circ \mathrm{I}_{\alpha}=\mathrm{id}$.

Example of a Relation in the Geometry Monoid

$$
\mathrm{I}_{\alpha} \bullet \mathrm{LD}_{\alpha}^{-1}=\mathrm{I}_{\alpha 1}
$$

Unconvenient Relations in the LDI Geometry Monoid

Different possibilities how to encode the expansion $t \rightarrow(t \cdot t) \cdot(t \cdot t)$ at an address α :

$$
I_{\alpha} \bullet I_{\alpha}=I_{\alpha} \bullet I_{\alpha 0} \bullet I_{\alpha 1}=\left.I_{\alpha} \bullet I_{\alpha 1} \bullet\right|_{\alpha 0}=I_{\alpha} \bullet I_{\alpha 1} \bullet L D_{\alpha}
$$

In the group we have

Unconvenient Relations in the LDI Geometry Monoid

Different possibilities how to encode the expansion $t \rightarrow(t \cdot t) \cdot(t \cdot t)$ at an address α :

$$
I_{\alpha} \bullet I_{\alpha}=I_{\alpha} \bullet I_{\alpha 0} \bullet I_{\alpha 1}=I_{\alpha} \bullet I_{\alpha 1} \bullet I_{\alpha 0}=I_{\alpha} \bullet I_{\alpha 1} \bullet L D_{\alpha}
$$

In the group we have

Unconvenient Relations in the LDI Geometry Monoid

Different possibilities how to encode the expansion $t \rightarrow(t \cdot t) \cdot(t \cdot t)$ at an address α :

$$
\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 0} \bullet \mathrm{I}_{\alpha 1}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 1} \bullet \mathrm{I}_{\alpha 0}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 1} \bullet L D_{\alpha}
$$

In the group we have

Unconvenient Relations in the LDI Geometry Monoid

Different possibilities how to encode the expansion $t \rightarrow(t \cdot t) \cdot(t \cdot t)$ at an address α :

$$
\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 0} \bullet \mathrm{I}_{\alpha 1}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 1} \bullet \mathrm{I}_{\alpha 0}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 1} \bullet L D_{\alpha}
$$

In the group we have

Unconvenient Relations in the LDI Geometry Monoid

Different possibilities how to encode the expansion $t \rightarrow(t \cdot t) \cdot(t \cdot t)$ at an address α :

$$
\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 0} \bullet \mathrm{I}_{\alpha 1}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 1} \bullet \mathrm{I}_{\alpha 0}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 1} \bullet L D_{\alpha}
$$

In the group we have

$$
I_{\alpha}=I_{\alpha 0} \bullet I_{\alpha 1}=I_{\alpha 1} \bullet I_{\alpha 0}
$$

Unconvenient Relations in the LDI Geometry Monoid

Different possibilities how to encode the expansion $t \rightarrow(t \cdot t) \cdot(t \cdot t)$ at an address α :

$$
\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 0} \bullet \mathrm{I}_{\alpha 1}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 1} \bullet \mathrm{I}_{\alpha 0}=\mathrm{I}_{\alpha} \bullet \mathrm{I}_{\alpha 1} \bullet L D_{\alpha}
$$

In the group we have

$$
\mathrm{I}_{\alpha}=\mathrm{I}_{\alpha 0} \bullet \mathrm{I}_{\alpha 1}=\mathrm{I}_{\alpha 1} \bullet \mathrm{I}_{\alpha 0} \quad \mathrm{I}_{\alpha 0}=L D_{\alpha}
$$

Left Distributive Left Idempotent Groupoids

Definition

$$
\begin{aligned}
\text { left distributivity } & x \cdot(y \cdot z) & =(x \cdot y) \cdot(x \cdot z) \\
\text { left idempotency } & x \cdot y & =(x \cdot x) \cdot y
\end{aligned}
$$

Examples

- Left distributive idempotent groupoids

Left Distributive Left Idempotent Groupoids

Definition

$$
\begin{aligned}
\text { left distributivity } & x \cdot(y \cdot z) & =(x \cdot y) \cdot(x \cdot z) \\
\text { left idempotency } & x \cdot y & =(x \cdot x) \cdot y
\end{aligned}
$$

Examples

- Left distributive idempotent groupoids
- Right constant groupoids (satisfying $x \cdot z=y \cdot z$) - Left divisible left distributive groupoids

Left Distributive Left Idempotent Groupoids

Definition

$$
\begin{aligned}
\text { left distributivity } & x \cdot(y \cdot z) & =(x \cdot y) \cdot(x \cdot z) \\
\text { left idempotency } & x \cdot y & =(x \cdot x) \cdot y
\end{aligned}
$$

Examples

- Left distributive idempotent groupoids
- Right constant groupoids (satisfying $x \cdot z=y \cdot z$)

- Left divisible left distributive groupoids

Left Distributive Left Idempotent Groupoids

Definition

$$
\begin{aligned}
\text { left distributivity } & x \cdot(y \cdot z) & =(x \cdot y) \cdot(x \cdot z) \\
\text { left idempotency } & x \cdot y & =(x \cdot x) \cdot y
\end{aligned}
$$

Examples

- Left distributive idempotent groupoids
- Right constant groupoids (satisfying $x \cdot z=y \cdot z$)
- Left divisible left distributive groupoids

Relation Between LDI and LDLI

Definition

The right height of a term is the length of its rightmost branch.

```
Theorem
Two terms are LDLI-equivalent if and only if they are
LDI-equivalent and they have the same right height.
```


Open Question

Relation Between LDI and LDLI

Definition

The right height of a term is the length of its rightmost branch.

Theorem

Two terms are LDLI-equivalent if and only if they are LDI-equivalent and they have the same right height.

Open Question

Relation Between LDI and LDLI

Definition

The right height of a term is the length of its rightmost branch.

Open Question

Are two terms LDLI-equivalent if they are LDI-equivalent and they have the same right height?

Relation Between LDI and LDLI

Definition

The right height of a term is the length of its rightmost branch.

Open Question

Are two terms LDLI-equivalent if they are LDI-equivalent and they have the same right height?

Open Question

$\mathscr{V}_{L D L I}=\mathscr{V}_{L D I} \vee \mathscr{V}_{R C}$?

Geometry Monoid of LDLI

Presentation of the Syntactical Monoid of LDLI

Operators in the geometry monoid of LDLI satisfy

$$
\begin{aligned}
\mathrm{LD}_{\gamma 0 \alpha} \cdot \mathrm{LD}_{\gamma 1 \beta} & =\mathrm{LD}_{\gamma 1 \beta} \cdot \mathrm{LD}_{\gamma 0 \alpha} & \mathrm{LD}_{\gamma} \cdot \mathrm{LD}_{\gamma 1} \cdot \mathrm{LD}_{\gamma} & =\mathrm{LD}_{\gamma 1} \cdot \mathrm{LD}_{\gamma} \cdot \mathrm{LD}_{\gamma 1} \cdot \mathrm{LD}_{\gamma 0} \\
\mathrm{I}_{\gamma 0 \alpha} \cdot \mathrm{LD}_{\gamma 1 \beta} & =\mathrm{LD}_{\gamma 1 \beta} \cdot \mathrm{I}_{\gamma 0 \alpha} & \mathrm{I}_{\gamma \alpha} \cdot \mathrm{I}_{\gamma} & =\mathrm{I}_{\gamma} \cdot \mathrm{I}_{\gamma 0 \alpha} \cdot \mathrm{I}_{\gamma 1 \alpha} \\
\mathrm{LD}_{\gamma 0 \alpha} \cdot \mathrm{I}_{\gamma 1 \beta} & =\mathrm{I}_{\gamma 1 \beta} \cdot \mathrm{LD}_{\gamma 0 \alpha} & \mathrm{LD}_{\gamma \alpha} \cdot \mathrm{I}_{\gamma} & =\mathrm{I}_{\gamma} \cdot \mathrm{LD}_{\gamma 0 \alpha} \cdot \mathrm{LD}_{\gamma 1 \alpha} \\
\mathrm{I}_{\gamma 0 \alpha} \cdot \mathrm{I}_{\gamma 1 \beta} & =\mathrm{I}_{\gamma 1 \beta} \cdot \mathrm{I}_{\gamma 0 \alpha} & \mathrm{I}_{\gamma 0 \alpha} \cdot \mathrm{LD}_{\gamma} & =\mathrm{LD}_{\gamma} \cdot \mathrm{I}_{\gamma 00 \alpha} \cdot \mathrm{I}_{\gamma 10 \alpha} \\
\mathrm{LD}_{\gamma 0 \alpha} \cdot \mathrm{LD}_{\gamma} & =\mathrm{LD}_{\gamma} \cdot \mathrm{LD}_{\gamma 00 \alpha} \cdot \mathrm{LD}_{\gamma 10 \alpha} & \mathrm{I}_{\gamma 10 \alpha} \cdot \mathrm{LD}_{\gamma} & =\mathrm{LD}_{\gamma} \cdot \mathrm{I}_{\gamma 01 \alpha} \\
\mathrm{LD}_{\gamma 10 \alpha} \cdot \mathrm{LD}_{\gamma} & =\mathrm{LD}_{\gamma} \cdot \mathrm{LD}_{\gamma 01 \alpha} & \mathrm{LD}_{\gamma} \cdot \mathrm{I}_{\gamma 0} & =\mathrm{I}_{\gamma 10} \cdot \mathrm{LD}_{\gamma} \cdot \mathrm{LD}_{\gamma 0} \\
\mathrm{LD}_{\gamma 11 \alpha} \cdot \mathrm{LD}_{\gamma} & =\mathrm{LD}_{\gamma} \cdot \mathrm{LD}_{\gamma 11 \alpha} & \mathrm{I}_{\gamma 11 \alpha} \cdot \mathrm{LD}_{\gamma} & =\mathrm{LD}_{\gamma} \cdot \mathrm{I}_{\gamma 11 \alpha}
\end{aligned}
$$

Complemented Presentation

Definition

A presentation of a monoid is called complemented if
(i) for each pair of different letters x, y there exist at most one relation $x u=y v$;
(ii) for each letter x there exist no relation $x u=x v$.

Fact
 The syntactical monoid of LDLI has a complemented presentation.

Fact
Manoids with complemented presentations can be studied using the word revesing method.

Complemented Presentation

Definition

A presentation of a monoid is called complemented if
(i) for each pair of different letters x, y there exist at most one relation $x u=y v$;
(ii) for each letter x there exist no relation $x u=x v$.

Fact

The syntactical monoid of LDLI has a complemented presentation.

Fact
 Monoids with complemented presentations can be studied using the word revesing method.

Complemented Presentation

Definition

A presentation of a monoid is called complemented if
(i) for each pair of different letters x, y there exist at most one relation $x u=y v$;
(ii) for each letter x there exist no relation $x u=x v$.

Fact

The syntactical monoid of LDLI has a complemented presentation.

Fact

Monoids with complemented presentations can be studied using the word revesing method.

Properties of the Syntactical Monoid of LDLI

The syntactical monoid of LDLI has following properties:

- Every two elements have the least common right multiple
- Every two elements have the greatest common left divisor
- The monoid is left cancellative
- The monoid has a decidable word problem
- The monoid does not embed into the geometry monoid of LDLI

Properties of the Syntactical Monoid of LDLI

The syntactical monoid of LDLI has following properties:

- Every two elements have the least common right multiple
- Every two elements have the greatest common left divisor
- The monoid is left cancellative
- The monoid has a decidable word problem
- The monoid does not embed into the geometry monoid of LDLI

Properties of the Syntactical Monoid of LDLI

The syntactical monoid of LDLI has following properties:

- Every two elements have the least common right multiple
- Every two elements have the greatest common left divisor
- The monoid is left cancellative
- The monoid has a decidable word problem
- The monoid does not embed into the geometry monoid of LDLI

Properties of the Syntactical Monoid of LDLI

The syntactical monoid of LDLI has following properties:

- Every two elements have the least common right multiple
- Every two elements have the greatest common left divisor
- The monoid is left cancellative
- The monoid has a decidable word problem
- The monoid does not embed into the geometry monoid of LDLI

Properties of the Syntactical Monoid of LDLI

The syntactical monoid of LDLI has following properties:

- Every two elements have the least common right multiple
- Every two elements have the greatest common left divisor
- The monoid is left cancellative
- The monoid has a decidable word problem
- The monoid does not embed into the geometry monoid of LDLI

Further Questions

Open Question
 Is the syntactical monoid right cancellative?
 Does the syntactical monoid embed into its group of fractions?

Open Question
 Is there some mapping from the terms to the syntactic group that preserves (somehow) the LDLI equivalence?

Open Question
Does there exist an integer n such that the word problem for all free LDLI groupoids can be intepreted in the free n-generated LDLI groupoid?

Further Questions

Open Question

Is the syntactical monoid right cancellative?
Does the syntactical monoid embed into its group of fractions?

Open Question

Is there some mapping from the terms to the syntactic group that preserves (somehow) the LDLI equivalence?

Further Questions

Open Question

Is the syntactical monoid right cancellative?
Does the syntactical monoid embed into its group of fractions?

Open Question

Is there some mapping from the terms to the syntactic group that preserves (somehow) the LDLI equivalence?

Open Question

Does there exist an integer n such that the word problem for all free LDLI groupoids can be intepreted in the free n-generated LDLI groupoid?

History of LDLI

left (self)distributivity

$$
\begin{aligned}
x \cdot(y \cdot z) & =(x \cdot y) \cdot(x \cdot z) \\
x \cdot y & =(x \cdot x) \cdot y
\end{aligned}
$$

left (pseudo)idempotency
This combination was first (and only) studied by T. Kepka and P. Němec (1998 resp. 2001). They used it to study finite simple LD groupoids and left distributive left quasigroups.

History of LDLI

left (self)distributivity
left (pseudo)idempotency

$$
\begin{aligned}
x \cdot(y \cdot z) & =(x \cdot y) \cdot(x \cdot z) \\
x \cdot y & =(x \cdot x) \cdot y
\end{aligned}
$$

This combination was first (and only) studied by T. Kepka and P. Němec (1998 resp. 2001). They used it to study finite simple LD groupoids and left distributive left quasigroups.

Left Cancellative LDLI Groupoids

Theorem (T. Kepka, P. Němec; P. Dehornoy)
Every left cancellative left idempotent left distributive groupoid embeds into a left distributive left quasigroup of the same cardinality.

Corolary

Left Cancellative LDLI Groupoids

Theorem (T. Kepka, P. Němec; P. Dehornoy)
Every left cancellative left idempotent left distributive groupoid embeds into a left distributive left quasigroup of the same cardinality.

Corollary
$\mathscr{V}_{\text {LCLDLI }}=\mathscr{V}_{\text {LDLQ }}$.

Equality of Varieties

Theorem (D. Larue; D. Stanovský)

The following varieties coincide:

- left cancellative LDI groupoids
- left divisible LDI groupoids
- LDI left quasigroups
- groups with conjugation

Open Question

The following varieties coincide:

- left cancellative LDLI groupoids
- left divisible LD groupoids
- LD left quasigroups
\square (a, k) $(b, n)=(a b a$

Equality of Varieties

Theorem (D. Larue; D. Stanovsky)

The following varieties coincide:

- left cancellative LDI groupoids
- left divisible LDI groupoids
- LDI left quasigroups
- groups with conjugation

Open Question

The following varieties coincide:

- left cancellative LDLI groupoids
- left divisible LD groupoids
- LD left quasigroups
- $G \times \mathbb{Z} ;(a, k) \cdot(b, n)=\left(a b a^{-1}, n+1\right)$

Idempotent congruence

Definition

For a groupoid G, the smallest equivalence satisfying $(a, a \cdot a) \in i p_{G}$, for all $a \in G$, is denoted $i p_{G}$.

> Proposition
> For an LDLI groupoid G, the equivalence $i p_{G}$ is a congruence, the factor $G / i p_{G}$ is an LDI groupoid and each congruence class is a connected right constant groupoid.

Idempotent congruence

Definition

For a groupoid G, the smallest equivalence satisfying $(a, a \cdot a) \in i p_{G}$, for all $a \in G$, is denoted $i p_{G}$.

Proposition

For an LDLI groupoid G, the equivalence ip_{G} is a congruence, the factor $G / i p_{G}$ is an LDI groupoid and each congruence class is a connected right constant groupoid.

Right Constant Groupoids

A disconnected right constant groupoid

Construction of LDLI Groupoids

Proposition

There exists a construction of each LDLI groupoid from an LDI groupoid and a set of connected right constant groupoids.

Open Question
Is every congruence class of $i p_{G}$ in the free LCLD groupoid a left cancellative RC groupoid?

Construction of LDLI Groupoids

Proposition

There exists a construction of each LDLI groupoid from an LDI groupoid and a set of connected right constant groupoids.

Open Question

Is every congruence class of $i p_{G}$ in the free LCLD groupoid a left cancellative RC groupoid?

The End of the Presentation

Thank you for your attention

