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Geometry operators

Definitions
An address is a word on {0,1} that encodes a position of a subterm in
a term (0 stands for left and 1 stands for right).
If α is an address than the operator Aα is a partial mapping that sends
a term with a subterm of form (t1 · t2) · t3 at the address α to the term
with t1 · (t2 · t3) at the address α if such a subterm exists.

Aα

A−1
α
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Geometry Monoids and Geometry groups

Definitions
The geometry monoid of the associativity is the monoid generated by
the partial mappings Aα and A−1

α , for all α ∈ {0,1}∗.
The geometry group of the associativity is the geometry monoid of the
associativity quotioned by the relations Aα ◦A−1

α = A−1
α ◦Aα = id,

for all α ∈ {0,1}∗.

Definition
The positive geometry monoid of the associativity is the monoid
generated by the partial mappings Aα , for all α ∈ {0,1}∗.
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Relations in the positive geometry monoid

Fact
For all addresses α, β , γ, one has

Aα1γ ◦Aα0β = Aα0β ◦Aα1γ

Aα ◦Aα00β = Aα0β ◦Aα

Aα ◦Aα01β = Aα10β ◦Aα

Aα ◦Aα1β = Aα11β ◦Aα

Aα ◦Aα = Aα1 ◦Aα ◦Aα0
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Přemysl Jedlička (CUA Prague) Geometry Monoids and Geometry Groups SSAOS 06, Radějov 4 / 11
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MacLane’s penthagon

Aα

Aα0

Aα

Aα1

Aα
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Syntactical Monoid

Definition
The syntactical monoid of the associativity is the monoid with the
presentation 〈

{0,1}∗; α1γ ·α0β = α0β ·α1γ

α ·α00β = α0β ·α
α ·α01β = α11β ·α

α ·α = α1 ·α ·α0
〉
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Properties of the Syntactical Monoid

Theorem
The syntactical monoid of the associativity has the following
properties:

it is left and right cancellative;
the left divisibility forms a lattice;
the right divisibility forms a lattice;
it embeds into its group of fractions;
its word problem is solvable (and hence also the word problem of
the group of fractions);
it is isomorphic to the positive geometry monoid of the
associativity.
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Properties of the Syntactical Monoid

Theorem
The syntactical monoid of the associativity has the following
properties:

it is left and right cancellative;
the left divisibility forms a lattice;
the right divisibility forms a lattice;
it embeds into its group of fractions;
its word problem is solvable (and hence also the word problem of
the group of fractions);
it is isomorphic to the positive geometry monoid of the
associativity.
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Examples of known geometry groups and monoids

Examples
Associativity – Thompson group F
Associativity and commutativity – Thompson group V
Left distributivity x ·yz = xy ·xz (P. Dehornoy)
Central doubling x ·yz = xy ·yz (P. Dehornoy)
Left distributivity and left idempotency xy = xx ·y (P. Jedlička)
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Idempotent operators

Iα

I−1
α

Iα ◦ Iα = Iα0 ◦ Iα1 ◦ Iα = Iα1 ◦ Iα0 ◦ Iα
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Presentation of the Syntactical Monoid of LDLI

LDγ0α · LDγ1β = LDγ1β · LDγ0α

Iγ0α · LDγ1β = LDγ1β · Iγ0α

LDγ0α · Iγ1β = Iγ1β · LDγ0α

Iγ0α · Iγ1β = Iγ1β · Iγ0α

LDγ0α · LDγ = LDγ · LDγ00α · LDγ10α

LDγ10α · LDγ = LDγ · LDγ01α

LDγ11α · LDγ = LDγ · LDγ11α

LDγ · LDγ1 · LDγ = LDγ1 · LDγ · LDγ1 · LDγ0

Iγα · Iγ = Iγ · Iγ0α · Iγ1α

LDγα · Iγ = Iγ · LDγ0α · LDγ1α

Iγ0α · LDγ = LDγ · Iγ00α · Iγ10α

Iγ10α · LDγ = LDγ · Iγ01α

LDγ · Iγ0 = Iγ10 · LDγ · LDγ0

Iγ11α · LDγ = LDγ · Iγ11α

Přemysl Jedlička (CUA Prague) Geometry Monoids and Geometry Groups SSAOS 06, Radějov 10 / 11
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