
NILPOTENCY IN AUTOMORPHIC LOOPS OF PRIME POWER ORDER
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Abstract. A loop is automorphic if its inner mappings are automorphisms. Using so-
called associated operations, we show that every commutative automorphic loop of odd
prime power order is centrally nilpotent. Starting with anisotropic planes in the vector
space of 2×2 matrices over the field of prime order p, we construct a family of automorphic
loops of order p3 with trivial center.

1. Introduction

A classical result of group theory is that p-groups are (centrally) nilpotent. The analogous
result does not hold for loops.

The first difficulty is with the concept of a p-loop. For a prime p, a finite group has order
a power of p if and only if each of its elements has order a power of p, so p-groups can be
defined in two equivalent ways. Not so for loops, where the order of an element might not
be well defined, and even if it is, the two natural p-loop concepts might not be equivalent.

However, there exist several varieties of loops where the analogy with group theory is
complete. For instance, a Moufang loop has order a power of p if and only if each of its
elements has order a power of p, and, moreover, every Moufang p-loop is nilpotent [7, 8].

We showed in [10, Thm. 7.1] that a finite commutative automorphic loop has order a
power of p if and only if each of its elements has order a power of p. The same is true for
automorphic loops, by [13], provided that p is odd; the case p = 2 remains open.

In this paper we study nilpotency in automorphic loops of prime power order. We prove:

Theorem 1.1. Let p be an odd prime and let Q be a finite commutative automorphic p-loop.
Then Q is centrally nilpotent.

Since there is a (unique) commutative automorphic loop of order 23 with trivial center,
cf. [9], Theorem 1.1 is best possible in the variety of commutative automorphic loops. (The
situation for p = 2 is indeed complicated in commutative automorphic loops. By [9, Prop.
6.1], if a nonassociative finite simple commutative automorphic loop exists, it has exponent
two. We now know that no nonassociative finite simple commutative automorphic loop of
order less than 212 exists [11].)

In fact, Theorem 1.1 is best possible even in the variety of automorphic loops, because
for every prime p we construct here a family of automorphic loops of order p3 with trivial
center.
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1.1. Background. A loop (Q, ·) is a set Q with a binary operation · such that (i) for
each x ∈ Q, the left translation Lx : Q → Q; y 7→ yLx = xy and the right translation
Rx : Q → Q; y 7→ yRx = yx are bijections, and (ii) there exists 1 ∈ Q satisfying 1·x = x·1 = x
for all x ∈ Q.

The left and right translations generate the multiplication group MltQ = ⟨Lx, Rx | x ∈ Q⟩.
The inner mapping group InnQ = (MltQ)1 is the stabilizer of 1 ∈ Q. Standard references
for the theory of loops are [1, 2, 18].

A loop Q is automorphic (or sometimes just an A-loop) if every inner mapping of Q is an
automorphism of Q, that is, InnQ ≤ AutQ.

The study of automorphic loops was initiated by Bruck and Paige [3]. They obtained
many basic results, not the least of which is that automorphic loops are power-associative,
that is, for all x and all integers m,n, xmxn = xm+n. In power-associative loops, the order
of an element may be defined unambiguously.

For commutative automorphic loops, there now exists a detailed structure theory [9], as
well as constructions and small order classification results [10].

Informally, the center Z(Q) of a loop Q is the set of all elements of Q which commute
and associate with all other elements. It can be characterized as Z(Q) = Fix(Inn(Q)), the
set of fixed points of the inner mapping group. (See §2 for the more traditional definition.)

The center is a normal subloop of Q, that is, Z(Q)φ = Z(Q) for every φ ∈ InnQ. Define
Z0(Q) = {1}, and Zi+1(Q), i ≥ 0, as the preimage of Z(Q/Zi(Q)) under the canonical
projection. This defines the upper central series

1 ≤ Z1(Q) ≤ Z2(Q) ≤ · · · ≤ Zn(Q) ≤ · · · ≤ Q

of Q. If for some n we have Zn−1(Q) < Zn(Q) = Q then Q is said to be (centrally) nilpotent
of class n.

1.2. Summary. The proof of our main result, Theorem 1.1, is based on a construction
from [9]. On each commutative automorphic loop (Q, ·) which is uniquely 2-divisible (i.e.,
the squaring map x 7→ x · x is a permutation), there exists a second loop operation ◦ such
that (Q, ◦) is a Bruck loop (see §3), and such that powers of elements in (Q, ·) coincide with
those in (Q, ◦).

Glauberman [6] showed that for each odd prime p a finite Bruck p-loop is centrally nilpo-
tent. Theorem 1.1 will therefore follow immediately from this and from the following result:

Theorem 1.2. Let (Q, ·) be a uniquely 2-divisible commutative automorphic loop with asso-
ciated Bruck loop (Q, ◦). Then Zn(Q, ◦) = Zn(Q, ·) for every n ≥ 0.

After reviewing preliminary results in §2, we discuss the associated Bruck loop in §3 and
prove Theorem 1.2 in §4.

In §5, we use anisotropic planes in the vector space of 2×2 matrices over GF (p) to obtain
automorphic loops of order p3 with trivial center. We obtain one such loop for p = 2 (this
turns out to be the unique commutative automorphic loop of order 23 with trivial center),
two such loops for p = 3, three such loops for p ≥ 5, and at least one (conjecturally, three)
such loop for every prime p ≥ 7

Finally, we pose open problems in §6.
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2. Preliminaries

In a loop (Q, ·), there are various subsets of interest:

• the left nucleus Nλ(Q) = {a ∈ Q | ax · y = a · xy, ∀x, y ∈ Q}
• the middle nucleus Nµ(Q) = {a ∈ Q |xa · y = x · ay, ∀x, y ∈ Q}
• the right nucleus Nρ(Q) = {a ∈ Q |xy · a = x · ya, ∀x, y ∈ Q}
• the nucleus N(Q) = Nλ(Q) ∩Nµ(Q) ∩Nρ(Q)
• the commutant C(Q) = {a ∈ Q | ax = xa, ∀x ∈ Q}
• the center Z(Q) = N(Q) ∩ C(Q) .

The commutant is not necessarily a subloop, but the nuclei are.

Proposition 2.1. [3] In an automorphic loop (Q, ·), Nλ(Q) = Nρ(Q) ≤ Nµ(Q). If, in
addition, (Q, ·) is commutative, Z(Q) = Nλ(Q).

We will also need the following (well known) characterization of C(Q) ∩Nρ(Q):

Lemma 2.2. Let (Q, ·) be a loop. Then a ∈ C(Q) ∩Nρ(Q) if and only if LaLx = LxLa for
all x ∈ Q.

Proof. If a ∈ C(Q) ∩ Nρ(Q), then for all x, y ∈ Q, a · xy = xy · a = x · ya = x · ay, that
is, LaLx = LxLa. Conversely, if LaLx = LxLa holds, then applying both sides to 1 gives
xa = ax, i.e., a ∈ C(Q), and then xy · a = a · xy = x · ay = x · ya, i.e., a ∈ Nρ(Q). �

The inner mapping group Inn(Q) of a loop Q has a standard set of generators

Lx,y = LxLyL
−1
yx , Rx,y = RxRyR

−1
xy , Tx = LxR

−1
x ,

for x, y ∈ Q. The property of being an automorphic loop can therefore be expressed
equationally by demanding that the permutations Lx,y, Rx,y, Tx are homomorphisms. In
particular, if Q is a commutative loop then Q is automorphic if and only if

(uv)Lx,y = uLx,y · vLx,y

for every x, y, u, v.
In addition, we can conclude that (commutative) automorphic loops form a variety in the

sense of universal algebra, and are therefore closed under subloops, products, and homomor-
phic images.

We will generally compute with translations whenever possible, but it will sometimes be
convenient to work directly with the loop operations. Besides the loop multiplication, we
also have the left division operation \ : Q×Q → Q which satisfies

x\(xy) = x(x\y) = y .

The division permutations Dx : Q → Q defined by yDx = y\x are also quite useful, as is the
inversion permutation J : Q → Q defined by xJ = xD1 = x−1.

If Q is a commutative automorphic loop then for all x, y ∈ Q we have

xLy,x = x, (2.1)

Ly,xLx−1 = Lx−1Ly,x, (2.2)

yLy,x = ((xy)\x)−1, (2.3)

Lx−1,y−1 = Lx,y, (2.4)

Dx2 = DxJDx, (2.5)
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where the first two equalities follow from [9, Lem. 2.3], (2.3) from [9, Lem 2.5], (2.4) is an
immediate consequence of [9, Lem. 2.7], and (2.5) is [9, Lem. 2.8]. In addition, commutative
automorphic loops satisfy the automorphic inverse property

(xy)−1 = x−1y−1 and (x\y)−1 = x−1\y−1, (2.6)

by [9, Lem. 2.6].
Finally, as in [9], in a commutative automorphic loop (Q, ·), it will be convenient to

introduce the permutations

Px = LxL
−1
x−1 = L−1

x−1Lx,

where the second equality follows from [9, Lem. 2.3].

Lemma 2.3. For all x, y in a commutative automorphic loop (Q, ·)

(x−1)Pxy = xy2, (2.7)

x · xPy = (xy)2. (2.8)

Proof. Equation (2.7) is from [9, Lem 3.2]. Replacing x with x−1 and y with xy in (2.7)
yields xPx−1·xy = x−1(xy)2 and xPx−1·xy = xLx,x−1Px−1·xy = xLx,x−1PyLx,x−1 . Now, for every

automorphism φ of Q we have xφPyφ = (yφ)−1\(yφxφ) = (y−1\(yx))φ = xPyφ. Thus
x−1(xy)2 = xLx,x−1PyLx,x−1 = xPyLx,x−1 . Canceling x−1 on both sides, we obtain (2.8). �

3. The associated Bruck loop

A loop (Q, ◦) is said to be a (left) Bol loop if it satisfies the identity

(x ◦ (y ◦ x)) ◦ z = x ◦ (y ◦ (x ◦ z)) . (3.1)

A Bol loop is a Bruck loop if it also satisfies the automorphic inverse property (x ◦ y)−1 =
x−1 ◦ y−1. (Bruck loops are also known as K-loops or gyrocommutative gyrogroups.)

The following construction is the reason for considering Bruck loops in this paper. Let
(Q, ·) be a uniquely 2-divisible commutative automorphic loop. Define a new operation ◦ on
Q by

x ◦ y := [x−1\(xy2)]1/2 = [(y2)Px]
1/2 .

By [9, Lem. 3.5], (Q, ◦) is a Bruck loop, and powers in (Q, ◦) coincide with powers in (Q, ·).
Since we will work with translations in both (Q, ·) and (Q, ◦), we will denote left transla-

tions in (Q, ◦) by L◦
x. For instance, we can express the fact that every Bol loop (Q, ◦) is left

power alternative by

(L◦
x)

n = L◦
xn (3.2)

for all integers n.

Proposition 3.1. [12, Thm. 5.10] Let (Q, ◦) be a Bol loop. Then Nλ(Q, ◦) = Nµ(Q, ◦). If,
in addition, (Q, ◦) is a Bruck loop, then Nλ(Q, ◦) = Z(Q, ◦).

In the uniquely 2-divisible case, we can say more about the center.

Lemma 3.2. Let (Q, ◦) be a uniquely 2-divisible Bol loop. Then Z(Q, ◦) = C(Q, ◦) ∩
Nρ(Q, ◦).
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Proof. One inclusion is obvious. For the other, suppose a ∈ C(Q, ◦)∩Nρ(Q, ◦). Then for all
x, y ∈ Q,

(x2 ◦ a) ◦ y (3.2)
= (x ◦ (x ◦ a)) ◦ y = (x ◦ (a ◦ x)) ◦ y

(3.1)
= x ◦ (a ◦ (x ◦ y)) = x ◦ (x ◦ (a ◦ y))

(3.2)
= x2 ◦ (a ◦ y) ,

where we used a ∈ C(Q, ◦) in the second equality and Lemma 2.2 in the fourth. Since
squaring is a permutation, we may replace x2 with x to get (x ◦ a) ◦ y = x ◦ (a ◦ y) for all
x, y ∈ Q. Thus a ∈ Nµ(Q, ◦) = Nλ(Q, ◦) (Proposition 3.1), and so a ∈ Z(Q, ◦). �
Lemma 3.3. Let (Q, ·) be a uniquely 2-divisible commutative automorphic loop with associ-
ated Bruck loop (Q, ◦). Then a ∈ Z(Q, ◦) if and only if, for all x ∈ Q,

PaPx = PxPa . (3.3)

Proof. By Lemmas 2.2 and 3.2, a ∈ Z(Q, ◦) if and only if the identity a ◦ (x ◦ y) = x ◦ (a ◦ y)
holds for all x, y ∈ Q. This can be written as [(y2)PxPa]

1/2 = [(y2)PaPx]
1/2. Squaring both

sides and using unique 2-divisibility to replace y2 with y, we have (y)PxPa = (y)PaPx for all
x, y ∈ Q. �

4. Proofs of the Main Results

Throughout this section, let (Q, ·) be a uniquely 2-divisible, commutative automorphic
loop with associated Bruck loop (Q, ◦).

Lemma 4.1. If a ∈ Z(Q, ◦), then for all x ∈ Q,

xLa\x,a = xLa\x−1,a . (4.1)

Proof. First,

x−2 = x−2L−1
a−1La−1 = a−1Dx−2La−1

(2.6)
= aDx2JLa−1

(2.5)
= aDxJDxJLa−1

(2.6)
= aDxDx−1La−1 = (x−1)L−1

a\xLa−1 .

Thus we compute

(x−2)La\x,a = (x−1)L−1
a\xLa−1La\x,a

(2.2)
= (x−1)L−1

a\xLa\x,aLa−1

= (x−1)LaL
−1
x La−1 = aLx−1L−1

x La−1 (4.2)

= aPx−1La−1 ,

Since a−1 ∈ Z(Q, ◦), we may also apply (4.2) with a−1 in place of a, and will do so in the
next calculation. Now

aPx−1La−1 = aPx−1Pa−1La
(3.3)
= aPa−1Px−1La

= a−1Px−1La
(4.2)
= (x−2)La−1\x,a−1

(2.6)
= (x−2)L(a\x−1)−1,a−1

(2.4)
= (x−2)La\x−1,a ,
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where we used a−1 ∈ Z(Q, ◦) in the second equality.
Putting this together with (4.2), we have (x−2)La\x,a = (x−2)La\x−1,a for all x ∈ Q. Since

inner mappings are automorphisms, this implies (xLa\x,a)
−2 = (xLa\x−1,a)

−2. Taking inverses
and square roots, we have the desired result. �

Lemma 4.2. If a ∈ Z(Q, ◦), then for all x ∈ Q,

(a\x)La\x−1,a = (x\a)−1, (4.3)

x−1 · xPa = a2. (4.4)

Proof. We compute

(a\x)La\x−1,a = a\(xLa\x−1,a)
(4.1)
= a\(xLa\x,a)

(2.1)
= (a\x)La\x,a

(2.3)
= (x\a)−1 ,

where we used La\x−1,a ∈ Aut(Q) in the first equality and La\x,a ∈ Aut(Q) in the third
equality.

To show (4.4), we compute

x−1 · xPa = (x−1)La−1\(ax) = (x−1)La−1\(ax)La−1L−1
axLaxL

−1
a−1

= (a\(ax))−1La−1\(ax),a−1LaxL
−1
a−1

(2.6)
= (a−1\(ax)−1)La−1\(ax),a−1LaxL

−1
a−1

(4.3)
= ((ax)−1\a−1)−1LaxL

−1
a−1

(2.6)
= ((ax)\a)LaxL

−1
a−1

= aL−1
a−1 = a2 .

Note that in the fifth equality, we are applying (4.3) with a−1 in place of a and (ax)−1 in
place of x. �

Lemma 4.3. If a ∈ Z(Q, ◦), then La = L◦
a, and for all integers n

Ln
a = Lan . (4.5)

Proof. For x ∈ Q, we compute

(a ◦ x)2 = (x ◦ a)2 = (a2)Px
(4.4)
= xPaLx−1Px = x · xPa

(2.8)
= (ax)2 .

Taking square roots, we have a ◦ x = ax, as desired. Then Ln
a = (L◦

a)
n (3.2)

= L◦
an = Lan . �

Lemma 4.4. If a ∈ Z(Q, ◦), then for all x ∈ Q,

Pxa = PxPa . (4.6)

Proof. For each y ∈ Q,

yPxa = yPax = [ax ◦ y1/2]2 = [(a ◦ x) ◦ y1/2]2 = [a ◦ (x ◦ y1/2)]2 = yPxPa ,

using Lemma 4.3 in the third equality and a ∈ Z(Q, ◦) in the fourth. �

Lemma 4.5. If a ∈ Z(Q, ◦), then a2 ∈ Z(Q, ·).
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Proof. We compute

La2Lx
(4.5)
= L2

aLx = LaLa,xLxa

(2.4)
= LaLa−1,x−1Lxa = LaLa−1Lx−1L−1

x−1a−1Lxa

(4.5)
= Lx−1L−1

x−1a−1Lxa
(2.6)
= Lx−1L−1

(xa)−1Lxa

= Lx−1Pxa
(4.6)
= Lx−1PxPa

= LxLaL
−1
a−1

(4.5)
= LxL

2
a

(4.5)
= LxLa2 .

By Lemma 2.2, it follows that a2 ∈ Nρ(Q, ·), and Nρ(Q, ·) = Z(Q, ·) by Proposition 2.1. �
Lemma 4.6. Let (Q, ·) be a uniquely 2-divisible commutative automorphic loop with associ-
ated Bruck loop (Q, ◦). Then Z(Q, ◦) ⊂ Z(Q, ·).

Proof. Assume that a ∈ Z(Q, ◦). Then a2 ∈ Z(Q, ·) by Lemma 4.5, and thus (aLx,y)
2 =

a2Lx,y = a2 for every x, y ∈ Q. Taking square roots yields aLx,y = a, that is, a ∈ Z(Q, ·). �
Now we prove Theorem 1.2, that is, we show that the upper central series of (Q, ·) and

(Q, ◦) coincide.

Proof of Theorem 1.2. Since each Zn(Q) is the preimage of Z(Q/Zn−1(Q)) under the canon-
ical projection, it follows by induction that it suffices to show Z(Q, ◦) = Z(Q, ·). One
inclusion is Lemma 4.6. For the other, suppose a ∈ Z(Q, ·). Then PaPx = LaL

−1
a−1LxL

−1
x−1 =

LxL
−1
x−1LaL

−1
a−1 = PxPa, and so a ∈ Z(Q, ◦) by Lemma 3.3. �

Proof of Theorem 1.1. For an odd prime p, let Q be a commutative automorphic p-loop with
associated Bruck loop (Q, ◦). By [6], (Q, ◦) is centrally nilpotent of class, say, n. By Theorem
1.2, Q is also centrally nilpotent of class n. �

5. From anisotropic planes to automorphic p-loops with trivial nucleus

We proved in [10] that a commutative automorphic loop of order p, 2p, 4p, p2, 2p2 or 4p2

is an abelian group. For every prime p there exist nonassociative commutative automorphic
loops of order p3. These loops have been classified up to isomorphism in [4], where the
announced Theorem 1.1 has been used to guarantee nilpotency for p odd.

Without commutativity, we do not even know whether automorphic loops of order p2 are
associative! Nevertheless we show here that the situation is much more complicated than in
the commutative case already for loops of order p3. Namely, using anisotropic planes in the
vector space M(2, p) of 2 × 2 matrices over GF (p), we construct a family of automorphic
loops of order p3 with trivial center.

5.1. Anisotropic planes. Let F be a field and M(2, F ) the vector space of 2× 2 matrices
over F . The determinant

det : M(2, F ) → F, det

(
a1 a2
a3 a4

)
= a1a4 − a2a3

is a quadratic form.
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Recall that a subspace W of M(2, F ) is anisotropic if det(A) ̸= 0 for every 0 ̸= A ∈ W .
An anisotropic subspace of dimension two is called an anisotropic plane.

If FC ⊕ FD is an anisotropic plane in M(2, F ) then C−1(FC ⊕ FD) is also anisotropic,
and hence, while looking for anisotropic planes, it suffices to consider subspaces FI ⊕ FA,
where I is the identity matrix and A ∈ GL(2, F ).

Lemma 5.1. With A ∈ M(2, F ), the subspace FI ⊕ FA is an anisotropic plane if and only
if the characteristic polynomial det(A− λI) = λ2 − tr(A)λ+ det(A) has no roots in F .

Proof. The subspace FI ⊕ FA is anisotropic if and only if det(λI + µA) ̸= 0 for every λ, µ
such that (λ, µ) ̸= (0, 0), or, equivalently, if and only if det(A − λI) ̸= 0 for every λ. We
have det(A− λI) = λ2 − tr(A)λ+ det(A). �

If F is algebraically closed, the characteristic polynomial of Lemma 5.1 will have roots
and hence there are no anisotropic planes in M(2, F ). But it is easy to construct anisotropic
planes in M(2,R), for instance, by making sure that the discriminant tr(A)2 − 4 det(A)
is negative. We are now going to show that there are anisotropic planes (with additional
properties) over every finite prime field.

A nonzero element a ∈ GF (p) is a quadratic residue if a = b2 for some b ∈ GF (p). A
nonzero element a ∈ GF (p) that is not a quadratic residue is a quadratic nonresidue.

To guarantee existence of certain anisotropic planes we will need Lemma 5.3, which can
easily be proved from the following strong results of Perron [16, Thms. 1 and 3] concerning
additive properties of the set of quadratic residues:

Theorem 5.2. [16] Let p be a prime, Np the set of quadratic nonresidues, and Rp = {a ∈
GF (p); a is a quadratic residue or a = 0}.

(i) If p = 4k − 1 and a ̸= 0 then |(Rp + a) ∩Rp| = k = |(Rp + a) ∩Np|.
(ii) If p = 4k + 1 and a ̸= 0 then |(Rp + a) ∩Rp| = k + 1, |(Rp + a) ∩Np| = k.

Lemma 5.3. For every prime p ≥ 7 and every a ̸= 0 there are λ ̸= 0 and µ ̸= 0 such that
λ2 + a is a quadratic residue and µ2 + a is quadratic nonresidue.

Proof. We will use Theorem 5.2 without reference. Let p = 4k± 1. If k ≥ 3 then |(Rp+ a)∩
Rp| ≥ 3, so there is λ ̸= 0 such that 0 ̸= λ2 + a ∈ Rp. If k ≥ 2 then |(Rp + a)∩Np| ≥ 2, and
since 0 ̸∈ Np, there is λ ̸= 0 such that λ2 + a ∈ Np. �
Lemma 5.4. Let p be a prime and F = GF (p).

(i) There is A ∈ GL(2, p) such that tr(A) = 0 and FI ⊕FA is anisotropic if and only if
p ̸= 2.

(ii) There is A ∈ GL(2, p) such that tr(A) ̸= 0, det(A) is a quadratic residue modulo p
and FI ⊕ FA is anisotropic if and only if p ̸= 3.

(iii) There is A ∈ GL(2, p) such that tr(A) ̸= 0, det(A) is a quadratic nonresidue modulo
p and FI ⊕ FA is anisotropic if and only if p ̸= 2.

Proof. (i): If p ≥ 3, let a be a quadratic nonresidue and let

A =

(
0 1
a 0

)
.

Then tr(A) = 0 and det(A − λI) = λ2 + det(A) = λ2 − a has no roots, so FI ⊕ FA is
anisotropic by Lemma 5.1.
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If p = 2, the only elements A ∈ GL(2, p) with tr(A) = 0 are(
0 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
.

Then det(A+ I) = 0, so FI ⊕ FA is not anisotropic by Lemma 5.1.
(ii) and (iii): Let p ≥ 3 and let a and A be as above. For λ ̸= 0 let

Bλ = A− λI =

(
−λ 1
a −λ

)
.

Then FI ⊕ FBλ = FI ⊕ FA is anisotropic, tr(Bλ) = −2λ ̸= 0, and det(Bλ) = λ2 − a. If
p ≥ 7, Lemma 5.3 implies that there are λ ̸= 0 and µ ̸= 0 such that det(Bλ) is a quadratic
residue and det(Bµ) is a quadratic nonresidue. If p = 5, the two matrices

C =

(
1 1
2 1

)
, D =

(
1 1
3 1

)
are of the form Bλ with a suitable choice of a quadratic nonresidue a and a nonzero scalar
λ. Moreover, tr(C) = tr(D) ̸= 0, det(C) = 4 is a quadratic residue and det(D) = 3 is a
quadratic nonresidue. If p = 3, the matrix C is again of the form Bλ for a suitable a and λ,
tr(C) ̸= 0 and det(C) = 2 is a quadratic nonresidue.

Let p = 3 and assume that E satisfies tr(E) ̸= 0, det(E) is a quadratic residue. Then
det(E) = 1, and det(E − λI) is either λ2 + λ+ 1 (with root λ = 1) or λ2 − λ+ 1 (with root
λ = −1), so FI ⊕ FE is not anisotropic by Lemma 5.1.

Finally assume that p = 2. Since every nonzero element of GF (2) is a quadratic residue,
we have (iii). On the other hand, (

0 1
1 1

)
satisfies the conditions of (ii). �

5.2. Automorphic loops of order p3 with trivial nucleus. Let A ∈ GL(2, p) be such
that FI ⊕ FA is an anisotropic plane. Define a binary operation on F × (F × F ) by

(a, x) · (b, y) = (a+ b, x(I + bA) + y(I − aA)) (5.1)

and call the resulting groupoid Q(A). Since

Ua = I + aA

is invertible for every a ∈ F , we see that Q(A) is a loop (see Remark 5.8), and in fact,
straightforward calculation shows that

(b, y)L−1
(a,x) = (b− a, (y − xUb−a)U

−1
−a ) ,

(b, y)R−1
(a,x) = (b− a, (y − xUa−b)U

−1
a ) .

Lemma 5.5. Let F = GF (p). Let A ∈ GL(2, p) be such that FI ⊕ FA is an anisotropic
plane in M(2, p). For each z ∈ F × F and each C ∈ GL(2, p) satisfying CA = AC, define
φz,C : F × (F × F ) → F × (F × F ) by

(a, x)φz,C = (a, az + xC) .

Then φz,C is an automorphism of Q(A).
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Proof. We compute

(a, x)φz,C · (b, y)φz,C = (a, az + xC) · (b, bz + yC)

= (a+ b, (az + xC)Ub + (bz + yC)U−a)

= (a+ b, (a+ b)z + xCUb + yCU−a + abzA− abzA)

= (a+ b, (a+ b)z + (xUb + yU−a)C)

= [(a, x) · (b, y)]φz,C ,

where we have used CA = AC in the fourth equality. Since φz,C is clearly a bijection, we
have the desired result. �

Proposition 5.6. Let F = GF (p). Let A ∈ GL(2, p) be such that FI⊕FA is an anisotropic
plane in M(2, p). Then the loop Q = Q(A) is an automorphic loop of order p3 and exponent
p with Nµ(Q) = {(0, x) |x ∈ F × F} ∼= F × F and Nλ(Q) = Nρ(Q) = 1. In particular,
N(Q) = Z(Q) = 1 and so Q is not centrally nilpotent. In addition, if p = 2 then C(Q) = Q,
while if p > 2, then C(Q) = 1.

Proof. Easy calculations show that the standard generators of the inner mapping group of
Q(A) are

(b, y)T(a,x) = (b, (x(U−b − Ub) + yUa)U
−1
−a ) ,

(c, z)R(a,x),(b,y) = (c, (zUaUb + y(U−c−a − U−cU−a))U
−1
a+b) , (5.2)

(c, z)L(a,x),(b,y) = (c, (zU−aU−b + y(Uc+a − UcUa))U
−1
−a−b) .

Since U−b − Ub = −2bA and Uc+a − UcUa = U−c−a − U−cU−a = −caA2, we find that each of
these generators is of the form φu,C for an appropriate u ∈ F ×F , C ∈ GL(2, p) commuting
with A. Specifically, we have

T(a,x) = φu,C where u = −2xAU−1
−a and C = UaU

−1
−a ,

R(a,x),(b,y) = φu,C where u = −ayA2U−1
a+b and C = UaUbU

−1
a+b ,

L(a,x),(b,y) = φu,C where u = −ayA2U−1
−a−b and C = U−aU−bU

−1
−a−b .

By Lemma 5.5, it follows that Q(A) is automorphic.
An easy induction shows that powers in Q(A) and in F × (F × F ) coincide, so Q(A) has

exponent p.
Suppose that (a, x) ∈ Nµ(Q). Then (c, z)R(a,x),(y,b) = (c, z) for every (c, z), (b, y). Thus

(zUbUa+y(U−c−a−U−cU−a))U
−1
a+b = z for every (c, z), (b, y). With z = 0, we have y(U−c−a−

U−cU−a) = −cayA2 = 0 for every y, hence caA2 = 0 for every c, and a = 0 follows. On the
other hand, clearly (0, x) ∈ Nµ(Q) for every x. We have thus shown Nµ(Q) = {(0, x) | x ∈
F × F} ∼= F × F .

Suppose that (c, z) ∈ Nλ(Q). Then (c, z)R(a,x),(y,b) = (c, z) for every (a, x), (b, y). Thus
(zUbUa + y(U−c−a − U−cU−a))U

−1
a+b = z for every (a, x), (b, y). With y = 0, we deduce that

zUa+b = zUaUb, or abzA2 = 0 for every a, b. In particular, zA2 = 0, and z = 0 follows.
Then y(U−c−a − U−cU−a) = −cayA2 = 0 for every y, hence caA2 = 0 for every a, and c = 0
follows. We have proved that Nλ(Q) = 1, and since Q(A) is automorphic, Nρ(Q) = 1 as well
by Proposition 2.1.
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If p = 2, then since Ua = U−a, it follows that Q is commutative. Now assume that p > 2
and let (a, x) ∈ C(Q). Then x(Ub − U−b) = y(Ua − U−a), that is, 2bxA = 2ayA for every
(b, y) ∈ Q. With b = 0 we deduce that 2ayA = 0 for every y, thus 0 = 2aA, or a = 0. Then
2bxA = 0, and with b = 1 we deduce 2xA = 0, or x = 0. We have proved that C(Q) = 1. �
Remark 5.7. The construction Q(A) works for every real anisotropic plane RI ⊕ RA and
results in an automorphic loop on R3 with trivial center. We believe that this is the first
time a smooth nonassociative automorphic loop has been constructed.

Remark 5.8. The groupoid Q(A) is an automorphic loop as long as I + aA is invertible for
every a ∈ F , which is a weaker condition than having FI ⊕ FA an anisotropic plane, as
witnessed by A = 0, for instance.

Let us assume that A ∈ M(2, F ) is such that I + aA is invertible for every a ̸= 0 but
FI⊕FA is not anisotropic. Then det(A) = 0 and det(A−λI) = λ2− tr(A)λ = λ(λ− tr(A))
has no nonzero solutions. Hence tr(A) = 0, and there are u ∈ F and 0 ̸= v ∈ F such that

A =

(
u v

−u2

v
−u

)
or A =

(
u −u2

v
v −u

)
. (5.3)

In particular, A2 = 0. The loop Q = Q(A) is still an automorphic loop by the argument
given in the proof of Proposition 5.6, and we claim that it is a group. Indeed, we have
(c, z) ∈ Nλ(Q) = N(Q) if and only if (c, z) = (c, z)R(a,x),(b,y) for every (a, x), (b, y), that is,
by (5.2),

z = (zUaUb + y(U−c−a − U−cU−a))U
−1
a+b (5.4)

for every (a, x), (b, y). As Ub+a − UbUa = −baA2 = 0 for every a, b, we see that equation
(5.4) holds, (c, z) ∈ N(Q), and Q is a group.

6. Open problems

Problem 6.1. Are the following two statements equivalent for a finite automorphic loop Q?

(i) Q has order a power of 2.
(ii) Every element of Q has order a power of 2.

Problem 6.2. Let p be a prime. Are all automorphic loops of order p2 associative?

Problem 6.3. Let p be a prime. Is there an automorphic loop of order a power of p and
with trivial middle nucleus?

Problem 6.4. Let p be a prime. Are there automorphic loops of order p3 that are not
centrally nilpotent and that are not constructed by Proposition 5.6?

Conjecture 6.5. Let p be a prime and F = GF (p). Call an element A ∈ GL(2, p) of type
1 if tr(A) = 0, of type 2 if tr(A) ̸= 0 and det(A) is a quadratic residue, and of type 3 if
tr(A) ̸= 0 and det(A) is a quadratic nonresidue.

Let A, B ∈ GL(2, p) be such that FI ⊕ FA and FI ⊕ FB are anisotropic planes. Then
the loops Q(A), Q(B) constructed by (5.1) are isomorphic if and only if they are of the same
type.

We have verified Conjecture 6.5 computationally for p ≤ 5. Taking advantage of Lemma
5.4, we can therefore conclude:
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If p = 2, there is one isomorphism type of loops Q(A) obtained from the matrix(
0 1
1 1

)
of type 2. This is the unique commutative automorphic loop of order 8 that is not centrally
nilpotent, constructed already in [10]. If p = 3, there are two isomorphism types of loops
Q(A), corresponding to (

0 1
2 0

)
,

(
0 1
1 1

)
of types 1 and 3, respectively. If p = 5, there are three isomorphism types. If Conjecture
6.5 is valid for a prime p > 5, then there are three isomorphism types of loops Q(A) for that
prime p, according to Lemma 5.4.
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13


