
ON COMMUTATIVE LOOPS OF ORDER pq WITH

METACYCLIC INNER MAPPING GROUP AND TRIVIAL

CENTER

P�EMYSL JEDLI�KA

Abstract. Using a construction of commutative loops with metacyclic in-
ner mapping group and trivial center described by A. Drápal, we enumerate
presumably all such loops of order pq, for p and q primes.

Let Q be a set with a binary operation ∗. We denote by La and Ra the mappings
x 7→ ax and x 7→ xa respectively. We say that Q is a quasigroup if every La as well
as every Ra is a bijection. We say that a quasigroup Q is a loop, if there exists an
element, usually denoted by 1, such that L1 = R1 = idQ.

The group generated by all the bijections La and Ra is called the multiplication
group ofQ. The subgroup of it that consists of those bijections that �x the element 1
is called the inner mapping group and is denoted by Inn(Q). The subset of Q
consisting of all the �xed points of Inn(Q) is called the center of Q and is denoted
by Z(Q).

Ale² Drápal decided to classify all the loops with metacyclic inner mapping
groups and trivial center. They seem to fall into six types and he is convinced
that the classi�cation is complete. If it is true, the proof will be published in an
article that has not been written yet. Among those six constructions, there is only
one [1] yielding commutative loops. This construction was then analyzed by Denis
Simon and the author [2], giving a better description in a speci�c case, the case of
automorphic loops.

Here we continue the study and we focus on generic loops. There are di�erent
cases that are tractable under di�erent conditions. Nevertheless, all the consider-
ations can be applied on Zp, giving us presumably complete enumeration of com-
mutative loops of order pq with a metacyclic inner mapping group and a trivial
center:

Theorem. Let q be an odd prime and p a prime. The number of centerless loops
of order p · q that arise from Drápal's construction is, up to isomorphism,

• q − 2 if p = 2;
• (q − p+ 2)/2 if p is an odd divisor of q + 1;
• (q − p+ 1)/2 if p is an even divisor of q + 1 and p > 2;
• (q − p)/2 if p is an odd divisor of q − 1;
• (q − p− 1)/2 if p is an even divisor of q − 1 and p > 2;
• 0 otherwise.

The article is organized as follows: Section 1 introduces Drápal's construction
and recalls what we know about it from previous studies. Other sections deal with
speci�c cases. Section 2 brings the easiest case: case p = 2. For other p's, there
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is a quadratic polynomial constructed; in Section 3 we analyse what happens if
the polynomial has only one root and in Section 4 we study the most complicated
case�two di�erent roots of the polynomial.
Acknowledgement: The research was aided with the package Loops [3] of the

computer program GAP.

1. Drápal's construction

In this section we introduce the main topic of our paper, the construction of
loops given by Ale² Drápal in [1]. These loops were constructed so that their inner
mapping groups are metacyclic and their centers are trivial. We present here the
de�nition as well as the most important results of [2] where the construction was
analyzed.

The entire construction is based on a speci�c mapping, called a 0-bijective map-
ping; and in fact it was these mappings that were analyzed in [2] rather than the
loops themselves. It shall be similar in this article.

De�nition. Let R be a commutative ring and let f be a partial mapping R→ R.
We shall say that f is 0-bijective if

(1) f i(0) is de�ned for each i ≥ 1;
(2) for each i ≥ 1 there exists a unique y ∈ R such that f i(y) is de�ned and

equal to 0�we denote this element f−i(0); and
(3) f(0) ∈ R∗.

We say that a 0-bijective partial mapping f is of 0-order k, if k is the smallest
positive integer such that fk(0) = 0. We say that it is of 0-order ∞ if fk(0) 6= 0
for all k.

Only some 0-bijections are used in the construction: those of the form f(x) =
(sx + 1)/(tx + 1), for some elements s and t in R, with s − t invertible. We shall
denote these mappings fs,t. They serve for the following construction:

Theorem 1 (Drápal [1]). Let M be a faithful module over a commutative ring R
and let fs,t : R→ R, for some s, t ∈ R with s− t ∈ R∗, be a 0-bijective mapping of
0-order k. Then we can de�ne a commutative loop Q on the set M ×Zk as follows:

(a, i) · (b, j) =
(

a+ b

1 + tf i(0)f j(0)
, i+ j

)
.

The loop is denoted M [s, t]. Its inner mapping group is the semidirect product
tM o G, where G =

〈
1 + tf i(0)f j(0)

〉
≤ R∗. Its center is trivial if and only if

t ∈ R∗.

Example. Let M be a module over a commutative ring R where 2 is invertible. Let
s = 1 and t = −3. Then it is easy to see that f3

1,−3(0) = 0 and hence M [1,−3] is a
loop de�ned on the set M × Z3.

It is crucial to understand which numbers can be possibly obtained as 0-orders
of fs,t, given a ring R. For a ring Zn, this was nearly solved in [2]:

Proposition 2 (Jedli£ka, Simon [2]). Let n = pr11 · p
r2
2 · · · prm

m be the prime factor-
ization of a positive number and let k > 1 be an integer. Then there exist s and
t ∈ Zn such that fs,t is a 0-bijection from Zn to Zn of 0-order k only if there exist
k1, . . . , km and ε1, . . . , εm satisfying the three conditions:

• εi ∈ {−1, 0, 1}, ki = k′ip
ei , where k′i | (pi+εi) and ei < ri, for all 1 ≤ i ≤ m;

• if εi = 0 and pi > 3, for some i, then ki = pri
i ;

• the least common multiple of k1, . . . , km is k.
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It is possible to show that the necessary conditions are su�cient too; the authors
of [2] just did not bother to prove the other direction. The reason for this is that
this result was a byproduct in fact. The main goal of [2] was to investigate the
case s = 1. It turned out that many results did not depend on the choice of s, for
instance the preceding necessary condition on k. However, deeper understanding
was much easier assuming s = 1 only and this was the aim of the article.

In this article we do not prove the su�ciency either�it would require to copy
more results from [2] into this paper and we do not need it for our purpose actually;
the aim of this paper is to study the loops of order pq only that arise from Drápal's
construction.

In this article, we are able to say more about the generic case, i.e. the case s 6= 1.
However, this understanding is not good enough to give a nice explicit formula (as
we had it in the case s = 1 in [2]) but it is su�cient to guess how many loops are
there up to isomorphism. For this we need the following isomorphism criterion:

Proposition 3 (Drápal [1]). Let R be a commutative ring, let s, t ∈ R∗ be such
that the mapping f : x 7→ (sx + 1)/(tx + 1) is a 0-bijection of a 0-order k. For
any s̄, t̄ ∈ R∗, there exists an isomorphism between R[s, t] and R[s̄, t̄] if there
exists 1 ≤ r < k, r ∈ Z∗k such that d = fr(k), t̄ = td2 and s̄ = 1 + ds − d. This
condition is su�cient and necessary, if (R,+) is a cyclic group.

The natural limitation of the theorem is that it can give us the exact answer
about isomorphism classes only if the base structure is a ring with a cyclic addition.
This is the main reason why we restrain our focus to the loops of order pq. In some
other cases we can obtain a parial result too but usually we have a one-sided bound
only.

2. Case k = 2

We focus �rst on the easy case: when k = 2. This case is speci�c and has to be
dealt with separately.

Lemma 4. A mapping fs,t is of 0-order 2 if only if s = −1 and t+ 1 ∈ R∗.

Proof. Easily fs,t(0) = 1 and f2
s,t(0) = s+1

t+1 . �

This gives us immediately the number of loops that can be obtained up to iso-
morphism for nearly any ring. Here we pronounce the statement for Zn only but
other rings could be dealt the same way if we understand their structure.

Proposition 5. Let R = Zn, n = pe11 · · · p
e`

` . Then there exist
∏

(pi − 2)pei−1

non-isomorphic centerless loops of order 2n given by Theorem 1.

Proof. We have seen in Lemma 4 that fs,t is of 0-order 2 if and only if s = −1
and t + 1 ∈ R∗. Moreover, the loop so obtained has a trivial center if and only
if t ∈ R∗. We want to measure the size of the set {t ∈ R∗; t+ 1 ∈ R∗}. If n = pe,
for p a prime, then the set consists of all the elements that are congruent neither
to 0 nor to −1 modulo p; there are (p − 2)pe−1 such numbers in Zpe . If n is a
product then we use the chinese remainder theorem to obtain the formula.

According to Proposition 3, given s and t in R∗, we obtain all isomorphic loops
through d = frs,t(0), s̄ = 1 + ds− s and t̄ = td2, where 1 ≤ r < k. Since here k = 2,
the only choice is r = 1 and d = 1. Hence each loop is isomorphic only to itself. �

3. Case k > 2, discriminant zero

In the following two sections we investigate the generic case, k ≥ 3. These
sections depend heavily on the results of [2]. We studied there the matrix ( s 1

t 1 ).
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Its characteristic polynomial is Ps,t = x2− (s+ 1)x+ s− t, with roots λ and µ, not
necessarily distinct. Since s− t is invertible, both roots must be invertible.

We work with the discriminant of the polynomial, which is a technique that works
only if 2 is an invertible element. This is not a major obstacle in our main goal:
styding loops over Zp for p prime. It is easy to see directly that no non-associative
construction can be obtained over Z2.

In this section we focus on the case λ = µ, that means t = −
(
s−1

2

)2
. This case

was, for �elds, already well described in [2].

Proposition 6 ([2]). Let K be a �eld of characteristic p 6= 2. Assume t = −
(
s−1

2

)2
and s 6= −1. Then fs,t is a 0-bijection if and only if s = 1 or s does not belong to
the prime �eld. In that case, the 0-order of fs,t is p.

The pair s = 1 and t = 0 gives a group. Hence, if we work in a q-element �eld,
with q = pn, there are exactly q − p choices of s yielding a non-associative loop.
We would like to know, how many loops are obtained, up to isomorphism. Here,
proposition 3 can give an upper bound only. But �rst we need the following remark:

Lemma 7. Let R be a commutative ring and let s − 1 /∈ R∗. Then the mapping
d 7→ 1 + ds− d is an injective mapping from R to R.

Proof. 1 + ds− d = 1 + d′s− d′ if and only if d(s− 1) = d′(s− 1). �

Corollary 8. Let K be a �eld, s ∈ K r {0, 1}, t ∈ K∗ such that x 7→ sx+1
tx+1 is

of 0-order k. Then K[s, t] is isomorphic to at least ϕ(k) loops of type K[s̄, t̄], for
some s̄, t̄ ∈ K∗. Moreover, if (K,+) is a cyclic group then K[s, t] is isomorphic to
exactly ϕ(k) such loops.

Proof. The elements dr = fr(0), 1 ≤ r < k, r ∈ Z∗k are pairwise di�erent non-zero
elements from K. Hence the elements sr = 1 + drs − dr are pairwise di�erent,
according to Lemma 7, and therefore, according to Proposition 3, R[s, t] is iso-
morphic to at least ϕ(k) loops, namely R[sr, tr], with tr = td2

r. The rest follows
immediately. �

Proposition 9. If K = Fpn , p > 2, then there exist at most pn−p
p−1 non-associative

loops of order pn+1, obtained via Theorem 1.

Proof. A mapping fs,t can be a 0-bijection of a 0-order p only if t = −
(
s−1

2

)2
: it

was proved in [2] and it will be repeated in the next section. Therefore, according
to Proposition 6, there are pn−p choices of s and t giving raise to a non-associative
loop of order pn+1.

Using Corollary 8, we see that each loop is isomorphic to at least p − 1 loops
(including itself) hence there are at most (pn− p)/(p− 1) isomorphism classes. �

In practice, there are less isomorphism classes than the bound computed. The
reason for that is that not every automorphism of (K,+) is a �eld automorphism.

4. Case k > 2, discriminant nonzero

In this section, we investigate the case λ 6= µ, enumerating the loops so obtained.
The main result is obtained just for �elds Fp, for p a prime because otherwise the
situation is much more complicated. First we recapitulate the results obtained in [2]

Lemma 10 ([2]). Let s, t be in R such that fs,t is of 0-order k > 2. Denote ζ = λ/µ.
Then the following holds:
(i) ζ is a k-th primitive root of unity;
(ii) the element ζ either belongs to R or it is a norm one element lying in a quadratic
extension of R;
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(iii) t = (ζ−s)(ζs−1)
(ζ+1)2 ;

(iv) f is,t(0) = λi−µi

λi(1−µ)−µi(1−λ) .

If R happens to be a �nite �eld Fq then there are two possibilities: either ζ lies
in Fq and this is equivalent to k | (q − 1); or ζ lies in Fq2 and N(ζ) = 1: it is not
di�cult to see (and it was better explained in [2]) that this situation is equivalent
to k | (q + 1).

In order to understand the necessary and su�cient conditions for fs,t being a
0-bijection of a 0-order k, we need to rewrite f is,t in terms of the element ζ.

Lemma 11. Let s, t, λ, µ and ζ be as in the previous lemma. Then
(i) λ = s+1

ζ+1 · ζ, µ = s+1
ζ+1 ;

(ii) f is,t(0) = (ζi−1)(ζ+1)
ζi(ζ−s)−(1−ζs) .

Proof. (i) Clearly λ+µ = s+ 1 and λµ = ζ(s+1)2

(ζ+1)2 = sζ2+2sζ+s−sζ2+s2ζ+ζ−s
(ζ+1)2 = s− t.

(ii) We evaluate

f is,t(0) =
λi − µi

λi(1− µ)− µi(1− λ)
=

(
s+1
ζ+1

)i
(ζi − 1)(

s+1
ζ+1

)i (
ζi(1− s+1

ζ+1 )− (1− s+1
ζ+1ζ)

)
=

ζi − 1
(ζ + 1)−1 (ζi(ζ + 1− s− 1)− (ζ + 1− ζs− ζ))

=
(ζi − 1)(ζ + 1)

ζi(ζ − s)− (1− ζs)
.

�

It is clearer now when fs,t is of 0-order k. One of the conditions is that the
nominator of f is,t(0) is zero if and only if k divides i. This is clearly equivalent to ζ
being a k-th primitive root of unity. The second condition is that the denominator
is always invertible. This condition is more di�cult to describe but if we focus our
attention on �elds only, things become clearer since there is just one non-invertible
element.

Corollary 12. Let K be a �eld of characteristic di�erent from 2. Let s 6= −1,
s − t ∈ K∗ and t 6= −( s+1

2 )2. Let λ and µ be the roots of Ps,t. Then fs,t is of
0-order k if and only if
� ζ = λ/µ is a primitive k-th root of unity and

�
1− ζs
ζ − s

/∈ 〈ζ〉.

Proof. The �rst condition was already stated in Proposition 10. The second condi-
tion comes from Lemma 11 (ii): the denominator must be invertible hence non-zero

in a �eld. Therefore ζi(ζ−s) 6= (1−ζs) and 1−ζs
ζ−s 6= ζi for any i ∈ Z. The necessity

and su�ciency of the conditions is then evident. �

This corollary explains why we restrain our focus on �elds only. Now, as we have
said above, there are two cases: if the discriminant of Ps,t is a square in K then ζ
lies in K; otherwise ζ lies in a quadratic extension and is of norm 1. Nevertheless,
both cases can be treated simultaneously. We denote by O = {x ∈ K̄; [K(x) :
K] ≤ 2 & N(x) = 1} (in other words, O shall be the set of all possible ζ's if the
discriminant is not a square, enriched by 1 and −1).
Lemma 13. Let K be a �eld of characteristic di�erent from 2.
(i) Suppose ζ ∈ K∗. The mapping ψ : s 7→ 1− ζs

ζ − s
is a bijection Kr{ζ, ζ−1,−1} →

K r {0, 1, ζ}.
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(ii) Suppose ζ ∈ O. The mapping ψ : s 7→ 1− ζs
ζ − s

is a bijection K r {−1} →

O r {1, ζ}.

Proof. (i) The mapping ψ is clearly invertible with ζ not belonging neither to the
domain of ψ nor to the domain of ψ−1. Hence ψ is a bijection of K r {ζ}. The
elements −1 and ζ−1 are taken out from the domain on purpose, with ψ(−1) = 1
and ψ(ζ−1) = 0.

(ii) The mapping ψ is an injective mapping from K to K̄. First we prove that
1−ζs
ζ−s = ζ · ζ

−1−s
ζ−s belongs to O: element ζ is of norm one hence ζ and ζ−1 are

conjugated and therefore ζ+ζ−1 ∈ K. Now (ζ−1−s)·(ζ−s) = 1+s2−s(ζ+ζ−1) ∈ K
and (ζ−1 − s) + (ζ − s) = (ζ + ζ−1)− 2s ∈ K, proving that ζ − s and ζ−1 − s are
conjugated and therefore having the same norm. Hence ζ · ζ

−1−s
ζ−s is of norm one

and lies in O.
As in (i), ζ is not in the image of ψ since the inverse mapping is ψ−1 : x 7→ 1−ζx

ζ−x .

At last, we want to prove that the fraction is in K. Indeed,

1− ζx
ζ − x

=
(1− ζx)(ζ−1 − x−1)
(ζ − x)(ζ−1 − x−1)

=
(ζ + ζ−1)− (x+ x−1)

2− (ζ−1x+ ζx−1)

which lies in K since (ζ, ζ−1), (x, x−1) and (ζ−1x, ζx−1) are conjugated pairs.
Hence ψ is onto. �

First we want to know, how many choices of the parameters s and t give raise
to a non-associative loop of order k · q, based on a �eld Fq. We are not interested
in the case t = 0 since the loop so obtained is a group.

Proposition 14. Let K = Fq, with q odd, and let us denote by q̄ either q − 1
or q+ 1. Then, for each k ≥ 3 dividing q̄, there exist exactly ϕ(k) · q̄−k2 choices of s
and t such that t 6= 0 and fs,t is of order k.

Proof. We know that s 6= −1 from Section 2, since then k = 2. We know that t 6=
−
(
s−1

2

)2
from Section 3 since then k divides q and not q̄. Hence the polynomial Ps,t

has two di�erent roots λ and µ.
There exist exactly ϕ(k) choices of ζ, primitive k-th root of unity in K. How-

ever, if we �x s then ζ and ζ−1 give the same value of t, using the formula from
Proposition 10. On the other hand, the values of s and t identify ζ uniquelly, up
to the λ ↔ µ symmetry. Hence, for each s 6= −1, there is a 2-to-1 correspondence
between the values of ζ and t. And therefore, there are ϕ(k)/2 choices of t such
that the �rst condition of Corollary 12 is ful�lled (for a more detailed reasoning
see [2]). As a conclusion, there are ϕ(k) · (q − 1)/2 choices of s and t that satisfy
the �rst condition of Corollary 12.

We �x ζ and we count the following: the inverse image of 〈ζ〉 under the mapping
ψ from Lemma 13 (that ψ that corresponds to our choice of ζ) has size k− 2 since
the group generated by ζ has k elements. These values of s that belong to ψ−1(〈ζ〉)
do not satisfy the second condition of Corollary 12. Values s = ζ and s = ζ−1 (in
the case ζ ∈ K) are not taken either since these are those two giving t = 0. But
any other choice, that means any s ∈ Kr{ψ−1(〈ζ〉), ζ, ζ−1,−1}, together with the
appropriate t, satis�es the second condition of Corollary 12 and gives a 0-bijection
of 0-order k. If k divides q − 1, the size of this set is q − (k − 2)− 3 = q − k − 1, if
k divides q + 1, the size of the set is q − (k − 2)− 1 = q − k + 1.

Taken together, there are ϕ(k) · (q̄ − k) choices of ζ and s that satisfy both
conditions of Corollary 12 and hence ϕ(k) · (q̄ − k)/2 choices of t and s. �

Proposition 15. Let K = Fq, with q odd, and let q̄ be either q + 1 or q − 1.
Let k > 2 be a divisor of q̄. Then there exist at most d(q̄ − k)/2e non-isomorphic
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loops of order kq obtained as K[s, t] for some s, t ∈ K∗. The number is attained if
q is a prime.

Proof. We have to split the proof in two parts: s = 1 and s 6= 1. If k is odd then
there exist exactly ϕ(k)/2 choices of t such that the loop K[1, t] is of order kq. All
these loops are isomorphic (see [2]). If k is even then there exists no loop K[1, t] of
an even order (see [2]).

Now, according to Propositions 14 and the �rst part of the proof, there are

ϕ(k)
2
· (q̄ − k) if k is even,

ϕ(k)
2
· (q̄ − k − 1) if k is odd,

choices of numbers s 6= 1 and t 6= 0, such that Zq[s, t] is of order kq. This number
can be written as ϕ(k) · b q̄−k2 c. We also notice that s = 0 leads to 1−ζs

ζ−s ∈ 〈ζ〉 and
hence all the choices satisfy s 6= 0 as well.

Now, according to Corollary 8, the size of each isomorphism class is at most ϕ(k)
(respectively exactly ϕ(k) if q is a prime). Hence there are at most (respectively

exactly) b q̄−k2 c isomorphism classes for s 6= 1.
If we add the case s = 1, we obtain the number d q̄−k2 e. �

5. Summary

Our goal was to enumerate the number of loops of order pq. Here is the conclusion

Theorem 16. Let q be an odd prime and k > 1. The number of centerless loops
based on Zq of order k · q that arise from the construction of Theorem 1 is,

• q − 2 if k = 2;
• (q − k + 2)/2 if k is an odd divisor of q + 1;
• (q − k + 1)/2 if k is an even divisor of q + 1 and k > 2;
• (q − k)/2 if k is an odd divisor of q − 1;
• (q − k − 1)/2 if k is an even divisor of q − 1 and k > 2;
• 0 otherwise.

Proof. The case k = 2 was discussed in Proposition 5. Proposition 9 gave no non-
associative loop based on Zq hence the last possibility is Section 4. According to
Lemma 10, there is either k | q − 1 or k | q + 1. Proposition 15 states that the
number of loops is then is d(q̄ − k)/2e. �

This proposition slightly di�ers from the one announced in the introduction. But
it is more general only: the 0-order of a 0-bijection cannot exceed the size of the
ring and hence loops of order pq with p ≤ q must be constructed by a 0-bijection
of the 0-order p on a commutative ring of q elements. Hence the proposition from
the introduction is an immediate consequence.
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