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Abstract. We investigate the following classes of the left distributive grou-
poids: left distributive left quasigroups, left divisible left distributive groupoids

and left cancellative left idempotent left distributive groupoids and we conjec-

ture that they are described by the same equational theories. More precisely,
we translate the problem into the existence problem of a given groupoid.

Many groupoids that satisfy the left distributivity

(LD) x · (y · z) = (x · y) · (x · z)

satisfy the idempotency

(I) x · x = x

too. An example of such a left distributive idempotent (LDI) groupoid is a group G
with the conjugacy, i.e. the operation xˆy = yxy−1. It was an open question for a
long time whether groupoids of group conjugacy (GC) generate all the variety LDI
or if there exists an equation that holds in GC and not in LDI. This question was
solved independently by D. Larue [7] and A. Drápal, T. Kepka and R. Muśılek [3].
Moreover, Larue showed the following characterisation:

Theorem. (Larue) The following varieties coincide:

• the variety generated by GC;
• the variety generated by the left cancellative LDI groupoids;
• the variety generated by the left divisible LDI groupoids;
• the variety generated by the LDI left quasigroups (i.e. left cancellative left

divisible LDI groupoids).

Does an analogous characterisation hold without the idempotecy? It is easy to
see (cf. Corollary 1.2) that all left divisible left distributive (LDLD) groupoids
satisfy the following identity:

(LI) (x · x) · y = x · y

called the left idempotency. It would be therefore tempting to replace the idempo-
tency in Larue’s theorem by the left idempotency. Indeed, T. Kepka and P. Němec
proved in [6] that every left cancellative left distributive left idempotent (LCLDLI)
groupoid embeds into a left distributive left quasigroup (LDLQ). Moreover, P. De-
hornoy showed in [2] that the variety of LDLQ is generated by groups with the
half-conjugacy, that means an operation (a, x)ˆ(b, y) = (axa−1b, y), where a, b ∈ G
and x, y ∈ X ⊆ G.

In order to have a complete analogy of Larue’s theorem, it remains to prove
that the variety LDLD is the same as LDLQ=LCLDLI. And this is the aim of the

Date: September 29, 2011, Version: 1.0 β.
2000 Mathematics Subject Classification. 20N02 Sets with a single binary operation.
Key words and phrases. left distributivity, left idempotency, variety.
The research was supported by the Grant Agency of the Czech Republic, grant no.

201/07/P015.

1
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article. Although we do not prove the intended inclusion, we give some evidence
and we show an easy to understand sufficient condition for this to hold.

1. Some evidence

In the begining we study the histrocally first discovered identity which holds in
GC and not in LDI. It is easy to show that it holds in LCLDLI too and we show
that it holds in LDLD as well, giving an evidence to the inclusion LDLD⊆ LCLDLI.

We work with non-associative algebras and therefore many parentheses are for-
mally needed. Nevertheless, when working with LD groupoids, it is common to
spare them. We write xy · z instead of (x · y) · z and omitted parentheses mean
branching to the right, i.e. xyz = x · yz.

Lemma 1.1. Let G be an LDLD groupoid. Let us denote by a\b an element
satisfying a · a\b = b. Then, for each a, b, c ∈ G,

(1) ab · c = a · b · a\c

Proof. ab · c = ab · (a · a\c) = a · b · a\c. �

Corollary 1.2. Every left divisible left distributive groupoid is left idempotent.

Proof. xx · y = x · (x · x\y) = xy �

The shortest pair of terms, that are equivalent in GC and not in LDI, is (ab ·b)ac
and (ab) · (ba · c). Larue [7] proved that they are equal in LCLDLI (we denote it

by
LCLDLI
= ); actually, the proof does not mention the left idempotency; nevertheless,

every idempotency used in the proof is a left one. And now it turns out that they
are equivalent in LDLD too.

Proposition 1.3. Let G be an LDLD groupoid. Then, for every a, b, c ∈ G,

(2) (ab · b)ac = (ab) · (ba · c)

Proof. (ab · b)ac = (a · b · a\b)ac (Lemma 1.1)

= a(b · a\b)c (LD)

= a · b · a\b · b\c (Lemma 1.1)

= (ab) · a · a\b · b\c (LD)

= (ab) · (a · a\b) · a · b\c (LD)

= (ab) · b · a · b\c definition

= (ab) · (ba · c) (Lemma 1.1) �

Larue [7] found an infinite family of identities that hold in the group conjugacy
and not in LDI. And they hold in LDLD as well; in fact, the proof in [7] did not use
the idempotency, just the distributivity and (ab · b)ac = (ab) · (ba · c) and therefore
it remains valid in the non-idempotent case too.

2. Equality of varieties

In this section we try to prove that the variety generated by the LCLDLI co-
incides with the variety generated by the LDLD. As we already mentioned in the
introduction, one inclusion is already known and we would like to prove that, when-
ever an identity holds in every LCLDLI groupoid then it holds in every LDLD
groupoid too.

First we measure how far is an LD groupoid from being left cancellative.

Lemma 2.1 (Kepka). [5] Let G be an LD groupoid. The relation ∼ defined by
a ∼ b ⇔ x1x2 · · ·xna = x1x2 · · ·xnb, for some x1, . . . , xn in G, is the smallest
congruence on G such that G/∼ is left cancellative.
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We will try to follow the same argumentation as Larue used when proving the
similar theorem for LDI; we just replace every occurence of the idempotency in his
proof by the left idempotency. However, there is a small glitch that we are not able
to overcome in the moment and we need an additional condition.

Conjecture 2.2. Let G be an LDLD groupoid. Then the mapping a 7→ a2 is onto.

What does it mean? In every left divisible groupoid the equation ax = a has a
solution. The conjecture states how does a solution look like. If we denote by

√
a

an inverse image of the squaring mapping then

a = (
√
a)2 = (

√
a)2 ·

√
a = a ·

√
a.

It turns out that the conjecture is necessary for Larue’s proof to hold in the case
of LDLI. Of course, in the case of idempotent groupoids, squaring is trivially onto.

Lemma 2.3. Suppose that Conjecture 2.2 holds. For any generators g1, . . . , gm
from Xn and words u, v from Tn, the equality gm · · · g1u

LDLI
= gm · · · g1v implies

u
LDLD
= v.

Proof. Suppose that we have gm · · · g1u
LDLI
= gm · · · g1v for some generators g1, . . . , gm

from Xn and words u, v in Tn. Let G be an LDLD groupoid. The words u
and v are words in variables x1, . . . , xn, which can be written as u(x1, . . . , xn),
respectively v(x1, . . . , xn). Let us take a1, . . . , an in G arbitrary. We want to show
u(a1, . . . , an) = v(a1, . . . , an).

Each gi belongs to Xn and hence we can write it as some xj . Denote gi = xσ(i).
We claim by induction that, for each 0 ≤ i ≤ m, there exist b1, . . . , bi from G such
that

u(a1, . . . , an) = bσ(i)bσ(i−1) · · · bσ(1)u(b1, . . . , bn),

v(a1, . . . , an) = bσ(i)bσ(i−1) · · · bσ(1)v(b1, . . . , bn).

The result is vaccuously true for i = 0. Suppose now that all such bk exist for
some i and let us prove the result for i + 1. For each 1 ≤ k ≤ n we put b′k to be
an element satisfying bσ(i+1)b

′
k = bk, such elements exist due to the left divisibility.

Moreover, we want b′σ(i+1)
2

= bσ(i+1), which is guaranteed by Conjecture 2.2. Now

u(a1, a2, . . . , an) = bσ(i)bσ(i−1) · · · bσ(1)u(b1, . . . , bn)

= bσ(i+1)b
′
σ(i) · bσ(i+1)b

′
σ(i−1) · · · bσ(i+1)b

′
σ(1) · u(b1, . . . , bn)

= bσ(i+1) · b′σ(i)b
′
σ(i−1) · · · b

′
σ(1) · u(b1, . . . , bn)

= b′σ(i+1)
2 · b′σ(i)b

′
σ(i−1) · · · b

′
σ(1) · u(b1, . . . , bn)

= b′σ(i+1)b
′
σ(i)b

′
σ(i−1) · · · b

′
σ(1) · u(b1, . . . , bn)

and similarly for v, which finishes the induction.
Now,

u(a1, . . . , an) = bσ(m)bσ(m−1) · · · bσ(1) · u(b1, . . . , bn)

= (xσ(m)xσ(m−1) · · ·xσ(1) · u)(b1, . . . , bn) = gmgm−1 · · · g1u(b1, . . . , bn)

and similarly for v. Since gmgm−1 · · · g1u
LDLI
= gmgm−1 · · · g1v, we get u(a1, . . . , an) =

v(a1, . . . , an) as desired. �

Proposition 2.4 (D. Larue). [7] For any words w1, . . . , wk ∈ Tn there exist integers
m, l, generators g1, . . . , gm and terms p1, . . . , pl such that

gm · · · g2g1u
LD
= pl · · · p1wk · · ·w1u

for any u ∈ Tn.
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Proposition 2.5. If conjecture 2.2 holds then, for any terms u, v ∈ Tn, u
LCLDLI
= v

implies u
LDLD
= v.

Proof. Suppose u
LCLDLI
= v. According to Lemma 2.1, there exist terms w1, . . . , wk

such that wk · · ·w1u
LDLI
= wk · · ·w1v.

According to Proposition 2.4, there exist generators g1, . . . , gm and terms p1, . . . , pl
such that gm · · · g1

LD
= pl · · · p1wk · · ·w1z for all z. Now

gm · · · g1u
LD
= pl · · · p1wk · · ·w1u

LDLI
= pl · · · p1wk · · ·w1v

LD
= gm · · · g1v

and we apply Lemma 2.3. �

3. Coda

The crucial point of the article is Conjecture 2.2; nothing guarantees that it is
true, perhaps there exists a counterexample. To better find some, we express the
conjecture in a different way, using the structure of LDLI groupoids. The most
important structural rôle is played by an equivalence called ipG.

Proposition 3.1. [4] Let G be an LDLI groupoid. We define ipG to be the smallest
equivalence on G containing the pairs (a, a2). Then

• For all a, b, c in G, if (a, b) ∈ ipG then ac = bc.
• ipG is a congruence of G with its classes being subgroupoids of G.

Proposition 3.2. Let G be an LDLI groupoid. The following conditions are equiv-
alent:

(i) The mapping a 7→ a2 is onto.
(ii) For each a in G, there exists an element x in G, satisfying a · x = a and

(a, x) ∈ ipG.
(iii) Every class of ipG is a left divisible groupoid.

Proof. (i)⇒(ii): Already proven below Conjecture 2.2.
(ii)⇒(i): Let x be an element satifying ax = a and (a, x) ∈ ipG. According to
Proposition 3.1, we have xx = ax.
(ii)⇒(iii): Let b and c be ipG-equivalent elements in G. We want to find an element
x within the same congruence class, satisfying bx = c. But there exists x, satistying
cx = c and (c, x) ∈ ipG. And, according to Proposition 3.1, we have cx = bx.
(iii)⇒(ii): Evident. �

This narrows the possibilities where to look for a possible counterexample for
Conjecture 2.2; a popular means how to find a counterexample is to look for one
using an automated model builder. This is impossible here since model builders
can handle finite objects only.

Corollary 3.3. Every finite LDLD groupoid satisfies Conjecture 2.2.

Proof. Let G be a finite left divisible LDLI groupoid. Finite left divisible groupoids
are left cancellative. Left cancellativity carries to subgroupoids. Hence every class
of ipG is finite left cancellative and thus left divisible. Therefore, according to
Proposition 3.2, the groupoid G satisfies Conjecture 2.2. �

How to disprove the conjecture, if it were wrong? It would be, perhaps, necessary
to find some identities that hold in LCLDLI and not in LDLD. There is, actually,
a new family of identities, that hold in GC and do not hold in LDI: they were
discovered by J. Barboriková [1]. So far, we do not know, whether they bring
anything to our study of LDLI groupoids.
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