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Abstract. We present a construction of all finite indecomposable involutive solutions of the Yang-
Baxter equation of multipermutational level at most 2 with abelian permutation group. As a
consequence, we obtain a formula for the number of such solutions with a fixed number of elements.
We also describe some properties of the automorphism groups in this case - in particular, we show
they are regular abelian groups.

1. Introduction

The Yang-Baxter equation is a fundamental equation occurring in integrable models in statistical
mechanics and quantum field theory [14]. Let V be a vector space. A solution of the Yang–Baxter
equation is a linear mapping r : V ⊗ V → V ⊗ V such that

(id⊗ r)(r ⊗ id)(id⊗ r) = (r ⊗ id)(id⊗ r)(r ⊗ id).

Description of all possible solutions seems to be extremely difficult and therefore there were some
simplifications introduced (see e.g. [5]).

Let X be a basis of the space V and let σ : X2 → X and τ : X2 → X be two mappings. We
say that (X,σ, τ) is a set-theoretic solution of the Yang–Baxter equation if the mapping x ⊗ y 7→
σ(x, y) ⊗ τ(x, y) extends to a solution of the Yang–Baxter equation. It means that r : X2 → X2,
where r = (σ, τ) satisfies the braid relation:

(1.1) (id× r)(r × id)(id× r) = (r × id)(id× r)(r × id).

A solution is called non-degenerate if the mappings σx := σ(x, ) and τy := τ( , y) are bijections,
for all x, y ∈ X. A solution (X,σ, τ) is involutive if r2 = idX2 . In the involutive case, the operation
τ can be expressed by means of the operation σ (see Theorem 2.2).

Convention 1.1. All solutions, we study in this paper, are set-theoretic, non-degenerate and
involutive so we will call them simply solutions.

The permutation group G(X) = 〈σx : x ∈ X〉 of a solution (X,σ, τ) is the subgroup of the sym-
metric group S(X) generated by mappings σx, with x ∈ X. The group G(X) is also called the
involutive Yang-Baxter group (IYB group) associated to the solution (X,σ, τ). A solution (X,σ, τ)
is indecomposable if the permutation group G(X) acts transitively on X.

In [7, Section 3.2] Etingof, Schedler and Soloviev introduced, for each solution (X,σ, τ), the
equivalence relation ∼ on the set X: for each x, y ∈ X

x ∼ y ⇔ σx = σy.
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They showed that the quotient set X/∼ can be again endowed with a structure of a solution. They
call such a solution the retraction of the solution (X,σ, τ) and denote it by Ret(X). One can
also define iterated retraction in the following way: Ret0(X,σ, τ) := (X,σ, τ) and Retk(X,σ, τ) :=
Ret(Retk−1(X,σ, τ)), for any natural number k > 1. A solution (X,σ, τ) is called a multipermuta-
tion solution of level m if m is the least nonnegative integer such that |Retm(X,σ, τ)| = 1. In such
case, we will also say that a solution is of a multipermutational level m.

Special properties of multipermutation solutions and their impact on the associated algebraic
objects were investigated by various authors. The particular case of multipermutation solutions of
level 2 was first studied by Gateva-Ivanova and Majid in [10, 11] and then continued by Gateva-
Ivanova in [8]. In [7, Section 3.3] some examples of enumeration of indecomposable multipermu-
tation solutions of level 2 for small sets were given. The authors based them on classification of
transitive actions of a free abelian group on sets Zn = Z/nZ. The significance of such solutions
comes from the fact that each multipermutation solution of level 2 is a generalized twisted union
of indecomposable multipermutation solutions of level 1 or 2 (see [7, Section 3.4]). In general,
the indecomposable solutions play a role of bricks in constructing other solutions so recently this
topic is of increasing interest (e.g. [18, Problem 4], [1, 2, 4, 17]). The main aim of our paper
is to present a direct construction of finite indecomposable solutions of multipermutational level
at most 2 with abelian permutation group. This is natural restriction since Cedó, Jespers and
Okniński in [3, Theorem 6.5] showed that each finite solution with an abelian permutation group is
a multipermutation solution. Moreover, in [13, Theorem 7.11] we showed that each abelian group
is a permutation group for a multipermutation solution of level 2. Nevertheless, we provide an ex-
ample of an indecomposable solution of multipermutational level 2 with non-abelian permutation
group (Example 2.6). An example of an indecomposable solution with cyclic permutation group of
multipermutational level 3 has been given recently in [2, Example 3].

Here we summarize previous work on indecomposable multipermutation solutions. In [7], with
the use of a computer program, the number of all indecomposable solutions with at most 8 elements
were found. It was also shown that (up to isomorphism) there is only one indecomposable solution
with a prime number of elements (this is a cyclic permutation solutions, i.e. a multipermutation
solution of level 1 with σx being a cycle). This result was recently used in [4] for description of
all finite primitive solutions (solutions with primitive permutation group). Obviously, they are
indecomposable and, by [4, Theorem 3.1], they have a prime number of elements. In general, a
permutation solution is indecomposable if and only if it is cyclic. In [2] a complete classification of
the indecomposable solutions of cardinality pq (with p, q not necessarily distinct prime numbers)
and an abelian permutation group was given. They are of multipermutational level at most 2. We
refer to these results in Example 3.2.

The paper is organized as follows. In Section 2 we recall basic notions and results. Section
3 contains a construction of solutions. In Section 4 we find the main result – the representation
theorem for indecomposable solutions of multipermutational level at most 2 of any finite cardinality
with an abelian permutation group (Main Theorem 4.5). This allows us to obtain a complete
formula for the number of solutions in this class (4.6). We study also the special case when the
permutation group is cyclic. In Section 5 we give some results on the automorphism groups for
finite indecomposable solutions of multipermutational level at most 2 with abelian permutation
group. We finish the paper with a discussion on the infinite case in Section 6.

2. Preliminaries

In [16] Rump introduced cycle-sets and showed that there is a one-to-one correspondence between
solutions of the Yang-Baxter equation and non-degenerate cycle sets.
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Definition 2.1. An algebra (X,α) with α : X2 → X is a cycle-set if the mappings αx := α(x, ),
for x ∈ X, are bijections and the inverse mappings α−1x satisfy the following condition for every
a, b ∈ X,

(2.1) α−1
α−1
a (b)

α−1a = α−1
α−1
b (a)

α−1b .

It is non-degenerate, if the mapping

(2.2) T : X → X; a 7→ α−1a (a),

is a bijection.

Theorem 2.2. [16, Proposition 1] (X,σ, τ) is a solution of the Yang-Baxter equation if and only
if (X,σ) is a non-degenerate cycle set. The operation τ is defined then by

τ(x, y) = τy(x) = σ−1σx(y)(x),(2.3)

for x, y ∈ X.

Rump also showed in [16, Theorem 2] that each finite cycle-set is non-degenerate (for a short
direct proof see [12, Proposition 4.7]).

By results of Gateva-Ivanova, multipermutation solutions of level 2 can be characterized in an
easy way.

Theorem 2.3. [8, Proposition 4.7] Let (X,σ, τ) be a solution and |X| ≥ 2. Then (X,σ, τ) is a
multipermutation solution of level 2 if and only if the following condition holds for every x, y, z ∈ X:

σσy(x) = σσz(x).(2.4)

Definition 2.4. A solution (X,σ, τ) is called 2-reductive, if for every x, y ∈ X

σσy(x) = σx.(2.5)

It was shown in [13] that 2-reductive solutions can be used as ground stones for constructing
multipermutation solutions of level 2.

Theorem 2.5. [13, Theorem 4.11] Let (X,σ, τ) be a 2-reductive solution and let π be a permutation
of X that satisfies

σπ(y)πσx = σπ(x)πσy,

for all x, y ∈ X. Then (X,σ′, τ ′), where σ′x = σxπ and τ ′y = π−1τπ(y) is a solution of multipermu-
tational level at most 2.

Example 2.6. Let X = Zn × {0, 1}, for some n ∈ N, and let σ(a,i)((b, j)) = (b + i, j). This
is a 2-reductive solution, according to [13, Theorem 3.6]: it is the sum of a trivial affine mesh
(Zn,Zn, ( 0 0

1 1 )).
Let now π be a permutation of X defined by π((a, i)) = (−a, 1− i). We have

σπ((a,i))πσ(b,j)(c, k) = σ(−a,1−i)π(c+ j, k) = σ(−a,1−i)(−c− j, 1− k) = (−c− j + 1− i, 1− k)

and this expression is symmetric to the exchange (a, i) ↔ (b, j). According to Theorem 2.5, the
solution (X,σ′, τ ′) is a multipermutation solution of level 2. Since σ′(a,0) = π and σ′(a,1) = σ(0,1)π,

for all a ∈ Zn, the permutation group of the solution is generated by σ(0,1) and π and it is transitive.

Moreover, we have σ−1(0,1) = π−1σ(0,1)π and therefore the permutation group is isomorphic to ZnnZ2.

Actually, every solution of multipermutational level 2 can be obtained this way from a 2-reductive
solution.
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Theorem 2.7. [13, Theorem 7.12] Let (X,σ, τ) be a multipermutation solution of level 2 and e ∈ X.
Then (X,L,R), where Lx = σxσ

−1
e and Ry = σeτσ−1

e (y), for x, y ∈ X, is a 2-reductive solution.

We call the solution (X,L,R) from Theorem 2.7 the σ−1e -isotope of (X,σ, τ). Clearly, Le = id.
Moreover, by [13, Theorem 6.12], the solution (X,L,R) satisfies the condition from Theorem 2.5:

Lσe(x)σeLy = Lσe(y)σeLx.(2.6)

A mapping ϕ : X → X ′ is a homomorphism of two solutions (X,σ, τ) and (X ′, σ′, τ ′) if, for each
x ∈ X,

ϕσx = σ′ϕ(x)ϕ.

If a finite abelian group G has a decomposition as a direct sum G =
∑t

i=1Ci, where Ci is a
cyclic group of order ni and n1|n2, n2|n3, . . ., nt−1|nt, then one says that G has invariant factors
(n1, n2, . . . , nt) see e.g. [15, Chapter 6].

Theorem 2.8. [15, Corollary 6.14] Two finite abelian groups G and H are isomorphic if and only
if they have the same invariant factors.

3. A construction of solutions

In this section we present a construction of a solution with an abelian permutation group. Recall
that Zk is a shortcut for Z/kZ; in particular Z1 is a trivial group.

Theorem 3.1. Let n1, n2 ∈ Z+ be such that n1 | n2. Let r ∈ {0, 1, . . . , n2/n1 − 1} be such that
n2 | n1r2. Then (X,σ, τ) with X = Zn1 × Zn2 and

σ(a,i)((b, j)) = (b− ar + i, j + ir − ar2 + 1)(3.1)

is an indecomposable solution of size n1n2 and multipermutational level at most 2 with the permu-
tation group G(X) isomorphic to Zn1 × Zn2.

Proof. First of all, we prove that the expression is well defined since we mix elements from Zn1 and
Zn2 in both coordinates. The addition of i in the first coordinate is well defined since n1 | n2. The
substraction of ar2 in the second coordinate is well defined as well since n1r

2 ≡ 0 (mod n2).
In the beginning, we check directly that (X,σ) is a cycle-set. Clearly each mapping σ(a,i) is

bijective and

σ−1(a,i)((b, j)) = (b+ ar − i, j − ir + ar2 − 1).

Now the left side of (2.1) is the following:

σ−1
σ−1
(a,i)

((b,j))
σ−1(a,i)((c, k)) = σ−1

(b+ar−i,j−ir+ar2−1)((c+ ar − i, k − ir + ar2 − 1)) =

(c+ar− i+ (b+ar− i)r− j+ ir−ar2 + 1, k− ir+ar2− 1− (j− ir+ar2− 1)r+ (b+ar− i)r2− 1)

= (c+ ar − i+ br − j + 1, k − ir + ar2 − jr − r + br2 − 2).

This expression is symmetric with respect to the exchange a↔ b and i↔ j and hence σ satisfies
the cycle condition (2.1). Since X is finite, we obtain that (X,σ) is a non-degenerate cycle-set and,
by Theorem 2.2, (X,σ, τ) is a solution with τ(b,j)((a, i)) = (a+ br− (j + 1), i− (j + 1)r + br2 − 1).

Furthermore,

σ(a,i)σ(b,j)((c, k)) = σ(a,i)((c− br + j, k + jr − br2 + 1)) = (c− br + j − ar + i,

k + jr − br2 + 1 + ir − ar2 + 1) = σ(b,j)((c− ar + i, k + ir − ar2 + 1)) = σ(b,j)σ(a,i)((c, k))

4



which shows that the permutation group G(X) is abelian. Moreover,

σσ(a,i)((b,j))((c, k)) = σ(b−ar+i,j+ir−ar2+1)((c, k)) = (c− (b− ar + i)r + j + ir − ar2 + 1,

k + (j + ir − ar2 + 1)r − (b− ar + i)r2 + 1) = (c− br + j + 1, k + jr + r − br2 + 1).

The end of above expression does not depend on (a, i), proving that the solution (X,σ, τ) is of
multipermutational level at most 2, by Theorem 2.3.

Now, the permutation σ(0,0) is evidently of order n2. The permutation σ(0,1)σ
−r−1
(0,0) sends (a, i)

to (a+ 1, i) and therefore it is a permutation of order n1. Furthermore,

σj(0,0)
(
σ(0,1)σ

−r−1
(0,0)

)b
((a, i)) = (a+ b, i+ j)

and therefore G(X) acts transitively on X. A transitive action of an abelian group has to be regular
and therefore the order of G(X) is n1n2. Finally, 〈σ(0,0)〉 ∩ 〈σ(0,1)σ−r−1(0,0) 〉 = {id} and therefore the

permutation group G(X) is isomorphic to Zn1 × Zn2 . �

We will denote the solution described in Theorem 3.1 by C(n1, n2, r), for n1, n2, r specified in
Theorem 3.1.

Example 3.2. We describe some solutions of the form C(n1, n2, r) for chosen n1, n2.

(1) Let n1 = 1, n2 ∈ Z+ and consider the solution (X,σ, τ) = C(1, n2, r). In this case we can
omit the first coordinate of the cartesian product Z1×Zn2 and we obtain σi(j) = j+ ir+ 1
and τj(i) = i− (j + 1)r − 1. We are interested now in two special cases:
(a) for n2 = pq, where p and q are two distinct prime numbers, r must be equal 0. Hence,

for the solution C(1, pq, 0) we have σi(j) = j + 1 and τj(i) = i− 1.
(b) if n2 = p2, for a prime p, then r = pt for some t ∈ {0, . . . , p − 1}. Since r2 ≡ 0

(mod p2), the solution C(1, p2, pt) for each such t is the following: σi(j) = j + pti + 1
and τj(i) = i− 1− pt(j + 1).

(2) Finally, if we take n1 = n2 then r = 0. In this case we obtain (X,σ, τ) = C(n1, n1, 0) with
σ(a,i)((b, j)) = (b+ i, j + 1) and τ(b,j)((a, i)) = (a− (j + 1), i− 1).

All the described solutions for primes p and q, namely C(1, pq, 0), C(1, p2, pt), for t ∈ {0, . . . , p− 1}
with pt < p2 − 1, and C(p, p, 0) are exactly the same ones as in [2, Corollary 22].

A natural question is the size of the retract.

Proposition 3.3. Let n1, n2 and r be as in Theorem 3.1. Then

|Ret(C(n1, n2, r))| = lcm

(
n1,

n2
gcd(n2, r)

)
=

{
n1 if r = 0,
lcm(rn1,n2)

r if r > 0.

Proof. Let m = lcm (n1, n2/gcd(n2, r)). By construction, m is the smallest positive integer such
that m ≡ 0 (mod n1) and rm ≡ 0 (mod n2). Moreover, since n1 | n2, we see that m is a divisor
of n2.

We first prove that, for all a, b ∈ Zn1 and i, j ∈ Zn2 , we have σ(a,i) = σ(b,i+mj+r·(b−a)):

σ(b,i+mj+r·(b−a))((c, k)) = (c− br + i+mj + r · (b− a), k + (i+mj + r · (b− a))r − br2 + 1)

= (c− ar + i+mj, k + ir − ar2 + 1 + rmj) = σ(a,i)((c, k)).

Therefore, the size of the equivalence class [(a, i)]∼ is at least |{b : b ∈ Zn1} × {mj : j ∈ Zn2}| =
n1 · n2

m . On the other hand, we prove that there are at least m equivalence classes: for each j ∈ Zn2 ,

σ(0,j)((0, 0)) = (j, jr + 1).
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Hence σ(0,i) = σ(0,j), for some j ∈ Zn2 , only if i ≡ j (mod n1) and ri ≡ rj (mod n2) which is
equivalent to i ≡ j (mod m). Therefore, there are exactly m classes of ∼ of size exactly n1n2/m.

If r = 0 then gcd(n2, r) = n2 and lcm(n1, n2/n2) = n1. If r > 0 then n2/gcd(n2, r) =
lcm(n2, r)/r. Now

lcm(n1, lcm(n2, r)/r) = lcm(rn1, lcm(n2, r))/r = lcm(rn1, n2, r)/r = lcm(rn1, n2)/r. �

Remark 3.4. Clearly, C(n1, n2, r) is a multipermutation solution of level 1 if and only if n1 = 1
and r = 0. Note that solutions of multipermutational level 1 always have a cyclic permutation
group.

It is useful to see that different choices of the parameters of the construction yield non-isomorphic
solutions. For this, we need a technical lemma.

Lemma 3.5. σn1

σ(a,i)((a,i))
= σ

(r+1)n1

(a,i) , for each (a, i) ∈ Zn1 × Zn2.

Proof. Let us denote by δ(a,i) = i− ar to simplify the formula (3.1):

σ(a,i)((b, j)) = (b+ δ(a,i), j + rδ(a,i) + 1).

In particular,
σ(a,i)((a, i)) = (a+ δ(a,i), i+ rδ(a,i) + 1),

and

σσ(a,i)((a,i))((b, j)) = σ(a+δ(a,i),i+rδ(a,i)+1)((b, j)) =

(b− r(a+ δ(a,i)) + i+ rδ(a,i) + 1, j + r(i+ rδ(a,i) + 1)− r2(a+ δ(a,i)) + 1) =

(b− ra+ i+ 1, j + ri+ r − r2a+ 1) = (b+ δ(a,i) + 1, j + r(δ(a,i) + 1) + 1).

Now notice that for any k ∈ Z+

σk(a,i)((b, j)) = (b+ kδ(a,i), j + k(rδ(a,i) + 1)),

and
σkσ(a,i)((a,i))((b, j)) = (b+ k(δ(a,i) + 1), j + k(r(δ(a,i) + 1) + 1)).

Hence, we obtain

σ
(r+1)n1

(a,i) ((b, j)) = (b+ (r + 1)n1δ(a,i), j + (r + 1)n1(rδ(a,i) + 1)) =

(b, j + rn1 + rn1δ(a,i) + n1) = (b+ n1(δ(a,i) + 1), j + n1(r(δ(a,i) + 1) + 1)) =

σn1

σ(a,i)((a,i))
((b, j)),

which finishes the proof. �

Proposition 3.6. Two finite solutions (X,σ, τ) = C(n1, n2, r) and (X ′, σ′, τ ′) = C(m1,m2, s) are
isomorphic if and only if n1 = m1, n2 = m2 and r = s.

Proof. Suppose that (X,σ, τ) ∼= (X ′, σ′, τ ′). Clearly, isomorphic solutions have isomorphic permu-
tation groups. Moreover, two finite abelian groups are isomorphic if and only if they have the same
invariant factors. Hence, n1 = m1 and n2 = m2. We just need to prove that r = s.

Let ϕ be an isomorphism from (X,σ, τ) to (X ′, σ′, τ ′). Choose (a, i) ∈ X and let (a′, i′) =
ϕ((a, i)). Then, by Lemma 3.5,

σ
(s+1)n1

(a′,i′) = σn1

σ(a′,i′)((a
′,i′)) = σn1

σϕ((a,i))(ϕ((a,i)))
= ϕσn1

σ(a,i)((a,i))
ϕ−1 = ϕσ

(r+1)n1

(a,i) ϕ−1 = σ
(r+1)n1

(a′,i′)

and both permutations are equal, for all a, i, if and only if r ≡ s (mod n2/n1). Since 0 ≤ r, s <
n2/n1, this forces r = s. �
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4. Solutions with an abelian permutation group

In this section we prove that the construction from Theorem 3.1 is a generic one, that means,
this way we obtain all the finite solutions of multipermutational level at most 2 with an abelian
permutation group. Let us start with some auxiliary observations. The first one is true for infitite
solutions too.

Proposition 4.1. Let (X,σ, τ) be an indecomposable solution of multipermutational level at most 2
with an abelian permutation group. Then

(1) the permutation group G(X) is generated by at most two elements,
(2) for all x ∈ X, σx have the same order,
(3) for each x ∈ X and i ∈ Z+, σσix(x) = σiσx(x)σ

i+1
x .

Proof. Let (X,σ, τ) be an indecomposable solution of multipermutational level at most 2 with an
abelian permutation group. Choose e ∈ X and let ρ = σe. Let (X,L,R) be the ρ−1 isotope
of (X,σ, τ). By Theorem 2.7 this solution is 2-reductive. Therefore ρ satisfies Condition (2.6),
namely

Lρ(x)ρLy = Lρ(y)ρLx.

Since all the permutations commute, we obtain

Lρ(x)Ly = Lρ(y)Lx

and, by substituting x = ρi−1(e) and y = e, we get

Lρi(e) = Lρ(e)Lρi−1(e).

Therefore, by an induction on i, upwards towards ∞ and downwards towards −∞, we get

Lρi(e) = Liρ(e),(4.1)

for all i ∈ Z. Hence

σρi(e) = Lρi(e)ρ = Liρ(e)ρ = (σρ(e)σe)
iσe,

proving (3).
Consider now any x ∈ X. The permutation group G(X) is transitive and therefore there exist

k ∈ Z and y1, . . . , yk ∈ X, such that

x = σy1σy2 · · ·σyk(e) = Ly1Ly2 · · ·Lykρ
k(e).

Then, by 2-reductivity

σx = Lxρ = LLy1Ly2 ···Lykρk(e)
ρ = Lρk(e)ρ = Lkρ(e)ρ

and therefore the permutation group is generated by ρ = σe and Lρ(e) = σσe(e)σ
−1
e , proving (1).

Now, suppose ρm = id, for some m ∈ Z+. Then we have

σmx = (Lkρ(e)ρ)m = Lρkm(e)ρ
m = Le = id

and therefore o(σx) ≤ o(σe). However, the element e was chosen arbitrarily, hence we can inter-
change the role of x and e, obtaining (2). �

As we can see, by Proposition 4.1, for each (finite) indecomposable solution of multipermutational
level at most 2 with abelian permutation group – this group is either cyclic or is generated exactly
by two generators.

Lemma 4.2. Let n1, n2 ∈ Z+ and G has invariant factors (n1, n2). Let a, b ∈ G be such that
o(a) = n2. Then n1 · b ∈ 〈n1 · a〉.
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Proof. Without loss of generality suppose G = Zn1 × Zn2 . The claim is evident for n1 = n2,
suppose hence n2 > n1. Denote a = (i, j) and b = (k, l), for some i, j, k, l ∈ Z. The order of a is n2
hence j is coprime to n2 and therefore there exists j

′ ∈ Zn2 such that jj
′ ≡ 1 (mod n2). Hence,

n1 · b = n1 · (k, l) = (0, n1l) = (0, n1jj
′
l) = j

′
l · (n1i, n1j) = n1j

′
l · (i, j) = n1j

′
l · a. �

Remark 4.3. Lemma 4.2 is not true in the infinite case, even under assumption that G is generated
by a and b.

Suppose, e.g. that G = Z3 × Z, a = (1, 3) and b = (0, 2). Then 3 · b = (0, 6) is not a multiple
of 3 · a = (0, 9).

In Section 6 we shall continue the discussion on infinite solutions but now we focus on finite ones:
we prove that these solutions have exactly the same properties as we have seen in Theorem 3.1 and
Lemma 3.5.

Theorem 4.4. Let (X,σ, τ) be a finite indecomposable solution of multipermutational level at
most 2 with an abelian permutation group. Denote |X| = n. Then

(1) there exist unique numbers n1, n2 ∈ Z+ such that n1 | n2 and n = n1 ·n2 and the permutation
group G(X) has invariant factors (n1, n2),

(2) there exists a unique number r ∈ {0, 1, . . . n2/n1 − 1}, such that
• n2 | n1r2,

• for each x ∈ X, σn1

σx(x)
= σ

(r+1)n1
x ,

(3) for each x ∈ X, define ρ = σx and λ = σρ(x)ρ
−1−r; then o(ρ) = n2, o(λ) = n1 and

G(X) = 〈λ〉 × 〈ρ〉,
(4) for each x ∈ X, σλiρj(x) = λj−irρ1+jr−ir

2
.

Proof. Let (X,σ, τ) be a finite indecomposable solution of multipermutational level at most 2 with
an abelian permutation group. According to Proposition 4.1, the permutation group G(X) is an
abelian group generated by permutations of the same order. Denote the order by n2. Actually, the
exponent of G(X) has to be n2 since G(X) is a Zn2-module. Now, G(X) is an abelian group acting
transitively on X and hence we have |X| = |G(X)| = n. This implies that there is n1 ∈ Z+ with
n = n1n2 and n1 | n2 and (1) follows from the fundamental theorem of finite abelian groups (see
e.g. [15, Theorem 6.13]).

Let e, x ∈ X and Lx = σxσ
−1
e . By the end of the proof of Proposition 4.1, the permutation group

G(X) is generated by (at most) two permutations: ρ = σe and Lρ(e) = σσe(e)σ
−1
e . The permutation

ρ is an element of order n2 and therefore, according to Lemma 4.2, there exists r ∈ Z such that
Ln1

ρ(e) = ρn1r. Actually, since o(ρ) = n2, we can take 0 ≤ r < n2/n1. Moreover, by Theorem 2.7 we

have LLx(y) = Ly, for each x, y ∈ X. Then, by (4.1)

id = Le = LLn1
ρ(e)

(e) = Lρn1r(e) = (Ln1

ρ(e))
r = (ρn1r)r = ρn1r2

from which we obtain n2 | n1r2.
Furthermore,

σn1r
e = ρn1r = Ln1

ρ(e) = σn1

σe(e)
σ−n1
e ,

which implies that σn1

σe(e)
= σ

(r+1)n1
e proving uniqueness of such r and therefore (2).

It was shown in the proof of Proposition 4.1 that there exists k ∈ Z such that, for each x ∈ X,
σx = Lkρ(e)ρ. Let λ = Lρ(e)ρ

−r. Then we have

σx = Lkρ(e)ρ = (Lρ(e)ρ
−r)kρkr+1 = λlρkr+1,

which means that G(X) = 〈ρ, λ〉 and o(λ) ≥ n1. Now

λn1 = (Lρ(e)ρ
−r)n1 = Ln1

ρ(e)ρ
−n1r = ρn1rρ−n1r = id

8



proving (3).
Suppose now x ∈ X is an arbitrary element. Then there exist i, j ∈ Z such that x = λiρj(e). By

Theorem 2.7 and (4.1) we obtain

σx = Lλiρj(e)ρ = L(Lρ(e)ρ
−r)iρj(e)ρ = Lρj−ir(e)ρ = Lj−irρ(e) ρ

= (λρr)j−irρ = λj−irρ1+r(j−ir) = λj−irρ1+jr−ir
2

which completes the proof. �

Now we are close to the main result of the paper.

Main Theorem 4.5. Each finite indecomposable solution of multipermutational level at most 2
with abelian permutation group is isomorphic to C(n1, n2, r), for some n1, n2 ∈ Z+ and 0 ≤ r <
n2/n1.

Proof. Consider a finite indecomposable solution (X,σ, τ) of multipermutational level at most 2
and with abelian permutation group. According to Theorem 4.4, there are coefficients n1, n2 and r
satisfying conditions of Theorem 3.1. We shall prove (X,σ, τ) ∼= C(n1, n2, r).

Let us choose e ∈ X and denote ρ = σe and λ = σρ(e)ρ
−r−1. We define ϕ : C(n1, n2, r)→ (X,σ, τ)

as follows:
ϕ((a, i)) = λaρi(e).

The mapping is a well defined bijection, according to Theorem 4.4 (3). Then by Theorem 4.4 (4)

ϕ(σ(a,i)(b, j)) = ϕ(b− ar + i, j + ir − ar2 + 1) = λb−ar+iρj+ir−ar
2+1(e) =

= λ−ar+iρir−ar
2+1λbρj(e) = σλaρi(e)λ

bρj(e) = σϕ((a,i))ϕ((b, j))

and therefore ϕ is an isomorphism. �

Theorem 4.6. Let n ∈ Z+ and let k be the largest integer, such that k2 divides n. Then there exist∑
d|k

k

d
indecomposable solutions with n elements and of multipermutational level at most 2 with its

permutation group abelian.

Proof. By Theorem 4.5, each finite indecomposable solution of multipermutational level at most 2
with abelian permutation group is isomorphic to C(n1, n2, r), for some n1, n2, r specified in Theorem
3.1. Then it remains to count how many solutions are there, for each factorization n = n1 ·n2 with
n1 | n2.

Let l = n/k. Clearly n1 | k | l | n2. Suppose that n, k and l are fixed and we shall count the
number of possible configurations n1, n2 and r. Whenever n1 is a divisor of k, and 0 ≤ r < n2/n1,
we have

n2 | n1r2 ⇔ n | (n1r)2 ⇔ l2 | (n1r)2 ⇔ l | n1r ⇔ l/n1 | r,
where we used that l2 is the smallest square which is a multiple of n. Hence, suitable choices for r
are elements of the set {0, l/n1, 2l/n1, · · · , (n2− l)/n1}. The cardinality of this set is n2/l which is
equal to k/n1. �

Recall, by Proposition 4.1, an abelian permutation group of a finite indecomposable solution
(X,σ, τ) of multipermutational level at most 2, is generated by at most two elements. In the case
when it is generated by only one element, i.e. the group is cyclic, by Theorem 4.4 we immediately
obtain that the solution is isomorphic to C(1, n, r), for arbitrary n ∈ Z+ and some r ∈ {0, 1, . . . , n−
1} and, for all x ∈ Z1 × Zn,

σσix(x) = σri+1
x .

The next corollary directly follows by Proposition 3.6.
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Corollary 4.7. Let (X,σ, τ) = C(1, n, r) and (X ′, σ′, τ ′) = C(1,m, s) be finite indecomposable
solutions of multipermutational level at most 2 with cyclic permutation groups. Then they are
isomorphic if and only if n = m and r = s.

The analogue of Theorem 4.6 for solutions with cyclic permutation group is the following.

Corollary 4.8. Let n ∈ N. The quantity of all indecomposable solutions of size n of multipermu-
tational level at most 2 with cyclic permutation group is equal to the largest number k, such that k2

divides n.

Proof. It is sufficient to prove that the size of the set {r : 0 ≤ r < n & n | r2} is equal to k. Let
n = k · l. Then k divides l and therefore n divides (i · l)2, for each 0 ≤ i < k, which completes the
proof. �

Example 4.9. [2, Theorem 16] Let p be a prime number. By Corollary 4.8, there are p indecom-
posable solutions of cardinality p2 of multipermutational level at most 2 with cyclic permutation
group.

Example 4.10. Let p be a prime number. By Theorem 4.6 we have∑
d|p2

p2

d
= p2 + p+ 1

indecomposable solutions with p4 elements of multipermutational level at most 2 and with abelian
permutation group; among them, exactly p2 have a cyclic permutation group, by Corollary 4.8.

For instance, for p = 2, there are 7 such solutions:

• For n1 = 1 and n2 = 16, the possible choices for r are: 0, 4, 8 or 12. Hence, we have four
solutions:
• C(1, 16, 0) = (Z16, σ, τ), with σi(j) = j + 1;
• C(1, 16, 4) = (Z16, σ, τ), with σi(j) = j + 4i+ 1;
• C(1, 16, 8) = (Z16, σ, τ), with σi(j) = j + 8i+ 1;
• C(1, 16, 12) = (Z16, σ, τ), with σi(j) = j + 12i+ 1.

In this case, all the permutation groups G(Z16) are cyclic.

• For n1 = 2 and n2 = 8, possible choices for r are 0 or 2. Hence, we have two solutions:
• C(2, 8, 0) = (Z2 × Z8, σ, τ), with σ(a,i)((b, j)) = (b+ i, j + 1);
• C(2, 8, 2) = (Z2 × Z8, σ, τ), with σ(a,i)((b, j)) = (b− 2a+ i, j + 2i− 4a+ 1).

• For n1 = n2 = 4, the only possible choice for r is 0. Hence, we have one solution:
• C(4, 4, 0) = (Z4 × Z4, σ, τ), with σ(a,i)((b, j)) = (b+ i, j + 1).

5. Automorphism group

In this section we compute some properties of the automorphism group of the constructed solu-
tions and we give some examples.

Proposition 5.1. Let (X,σ, τ) = C(n1, n2, r), for some n1, n2, r ∈ Z+, be a finite indecompos-
able solution of multipermutational level at most 2 with abelian permutation group. Then every
endomorphism of the solution (X,σ, τ) is an automorphism and the automorphism group Aut(X)
of (X,σ, τ) is a regular abelian group.

Proof. By the proof of Theorem 3.1, for (a, i), (b, j) ∈ Zn1 × Zn2 ,

σ(a,i)((b, j)) = (b− ar + i, j + ir − ar2 + 1) = (b+ δ(a,i), j + rδ(a,i) + 1),

where δ(a,i) = i− ar.
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Notice that

σk(a,i)((b, j)) = (b+ kδ(a,i), j + k(rδ(a,i) + 1))

and

σa(0,1)σ
δ(a,i)−a
(0,0) ((b, j)) = (b+ a, j + i).

Let f be an endomorphism of (X,σ, τ). Denote f((0, 0)) = (s, t). We prove that f is already
determined by s and t. Indeed,

f((0, 1)) = f(σ(0,0)(0, 0)) = σ(s,t)(s, t) = (s+ δ(s,t), t+ rδ(s,t) + 1).

For each (a, i) ∈ Zn1 × Zn2 ,

f((a, i)) = f(σa(0,1)σ
δ(a,i)−a
(0,0) ((0, 0))) = σa(s+δ(s,t),t+rδ(s,t)+1)σ

δ(a,i)−a
(s,t) ((s, t))

= σa(s+δ(s,t),t+rδ(s,t)+1)(s+ (δ(a,i) − a) · δ(s,t), t+ (δ(a,i) − a) · (rδ(s,t) + 1))

= (s+ (δ(a,i) − a) · δ(s,t) + a · (t+ rδ(s,t) + 1− (s+ δ(s,t))r),

t+ (δ(a,i) − a) · (rδ(s,t) + 1) + a · ((t+ rδ(s,t) + 1)r − (s+ δ(s,t))r
2 + 1))

= (s+ (δ(a,i) − a) · δ(s,t) + a · (δ(s,t) + 1), t+ (δ(a,i) − a) · (rδ(s,t) + 1) + a · (rδ(s,t) + r + 1))

= (s+ a+ δ(a,i)δ(s,t), t+ i+ r · δ(a,i)δ(s,t)).

Let now f(s,t) be the mapping that sends (a, i) to (s + a + δ(a,i)δ(s,t), t + i + r · δ(a,i)δ(s,t)). We
shall prove that f(s,t) is a homomorphism.

f(s,t)(σ(a,i)((b, j))) = f(s,t)((b+ δ(a,i), j + rδ(a,i) + 1))

= (s+ b+ δ(a,i) + (j + rδ(a,i) + 1− r(b+ δ(a,i)))δ(s,t),

t+ j + rδ(a,i) + 1 + r(j + rδ(a,i) + 1− r(b+ δ(a,i)))δ(s,t))

= (s+ b+ δ(a,i) + (δ(b,j) + 1)δ(s,t), t+ j + rδ(a,i) + 1 + r(δ(b,j) + 1)δ(s,t))

σf(s,t)((a,i))(f(s,t)((b, j))) = σ(s+a+δ(a,i)δ(s,t),t+i+r·δ(a,i)δ(s,t))((s+ b+ δ(b,j)δ(s,t), t+ j + r · δ(b,j)δ(s,t)))
= (s+ b+ δ(b,j)δ(s,t) + t+ i+ r · δ(a,i)δ(s,t) − r(s+ a+ δ(a,i)δ(s,t)),

t+ j + r · δ(b,j)δ(s,t) + r(t+ i+ r · δ(a,i)δ(s,t)))− r2(s+ a+ δ(a,i)δ(s,t)) + 1)

= (s+ b+ δ(b,j)δ(s,t) + δ(s,t) + δ(a,i), t+ j + r(δ(b,j)δ(s,t) + δ(s,t) + δ(a,i)) + 1).

Then we notice that

δf(s,t)((a,i)) = t+ i+ rδ(a,i)δ(s,t) − r · (s+ a+ δ(a,i)δ(s,t)) = δ(s,t) + δ(a,i).

Now we shall prove that all the endomorphisms of (X,σ, τ) commute:

f(s,t)f(u,v)((a, i)) = f(s,t)((u+ a+ δ(a,i)δ(u,v), v + i+ rδ(a,i)δ(u,v))

= (s+ u+ a+ δ(a,i)δ(u,v) + δf(u,v)((a,i))δ(s,t), t+ v + i+ rδ(a,i)δ(u,v) + rδf(u,v)((a,i))δ(s,t))

= (s+u+ a+ δ(a,i)δ(u,v) + δ(u,v)δ(s,t) + δ(a,i)δ(s,t), t+ v+ i+ r(δ(a,i)δ(u,v) + δ(u,v)δ(s,t) + δ(a,i)δ(s,t)))

and this expression is symmetric with respect to the exchange (s, t)↔ (u, v).
Finally, we observe that f−1(s,t) = f(δ2

(s,t)
−s,rδ2

(s,t)
−t). Indeed,

δ(δ2
(s,t)
−s,rδ2

(s,t)
−t) = δ(−s,−t) = −δ(s,t)

and the rest follows by substituting (u, v) by (δ2(s,t) − s, rδ
2
(s,t) − t) in the previous computation.

Hence f(s,t) is an automorphism of (X,σ, τ) and Aut(X) is an abelian transitive group.
�
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Computing the exact structure of the automorphism group is more complicated and therefore
we do not do it here. We just want to give some examples to show that this group need not be
isomorphic to the permutation group.

Example 5.2. Let p be a prime number. By Theorem 4.6 there are p+1 indecomposable solutions
with p2 elements of multipermutational level at most 2 and with abelian permutation group. If
p = 2 we have three such solutions:

• C(1, 4, 0) = (Z4, σ, τ), with σi(j) = j + 1;
• C(1, 4, 2) = (Z4, σ, τ), with σi(j) = j + 2i+ 1;
• C(2, 2, 0) = (Z2 × Z2, σ, τ), with σ(a,i)((b, j)) = (b+ i, j + 1).

For the first solution (Z4, σ, τ) = C(1, 4, 0), σ0 = σ1 = σ2 = σ3 = (0123) and the permutation
group G(Z4) = 〈(0123)〉 ∼= Z4. In this case the automorphism group Aut(Z4) is the same.

For the second solution (Z4, σ, τ) = C(1, 4, 2), we have σ0 = σ2 = (0123) and σ1 = σ3 = (3210)
and also G(Z4) = 〈(0123)〉 ∼= Z4. But now the automorphism group is

Aut(Z4) = {id, (01)(23), (02)(13), (03)(12)} ∼= Z2 × Z2.

Finally, for the third solution (Z2×Z2, σ, τ) = C(2, 2, 0): σ(0,0) = σ(1,0) = ((0, 0) (0, 1))((1, 0) (1, 1)),
σ(0,1) = σ(1,1) = ((0, 0) (1, 1))((0, 1) (1, 0)) and G(Z2 × Z2) ∼= Z2 × Z2. The automorphism group is

Aut(Z2×Z2) = {id, ((0, 0) (0, 1) (1, 0) (1, 1)), ((0, 0) (1, 0))((0, 1) (1, 1)), ((0, 0) (1, 1) (1, 0) (0, 1))} ∼= Z4.

Computations of Aut(X) simplify in the case of cyclic permutation groups.

Proposition 5.3. Let (X,σ, τ) = C(1, n, r) be a finite indecomposable solution of multipermuta-
tional level at most 2 with a cyclic permutation group. The automorphism group of (X,σ, τ) is not
cyclic if and only if n ≡ 0 (mod 4) and r ≡ 2 (mod 4).

Proof. By Proposition 5.1, the group Aut(X) is regular and abelian. Let us investigate whether
the automorphism group is cyclic.

Let fk, for k ∈ Zn, be an automorphism of C(1, n, r) with fk(0) = k. In Proposition 5.1 we

have seen that fk(i) = k + i · (rk + 1). We now prove, by an induction on j, that f jk(i) =
j(j − 1)rk2/2 + jk(ir + 1) + i. The claim is true for j = 0. Now

f jk(i) = fk(f
j−1
k (i)) = fk((j − 1)(j − 2)rk2/2 + (j − 1)k(ir + 1) + i) =

k +
(
(j − 1)(j − 2)rk2/2 + (j − 1)k(ir + 1) + i

)
(rk + 1) =

k+ (j − 1)rk2 + rki+ (j − 1)(j − 2)rk2/2 + (j − 1)k(ir+ 1) + i = j(j − 1)rk2/2 + jk(ir+ 1) + i.

Thus f rk (i) = (r− 1)r2k2/2 + rk+ i and, if r is odd, we have f rk (i) = rk+ i. In this case, by taking,
for instance, k = 1, we see that f r1 is an automorphism of order n/gcd(n, r) and therefore f1 is of
order n. The same situation happens if r is even and n is odd as we can take f r+n instead of f r.

A more complicated situation occurs when r is even and n is even as well. If k is even, we have

f
n/2
k (i) = (n/2)k + i = i. If k is odd then f

n/2
k (i) = ((n/2 − 1)rk/2 + 1)kn/2 + i. If r is divisible

by 4 then we have f
n/2
k (i) = n/2 + i and fk is an automorphism of order n. The only remaining

situation is thus n even, k even and r ≡ 2 (mod 4).
Suppose that n is divisible by 4. Then (n/2− 1) is odd and ((n/2− 1) · k · r/2 + 1) is even. We

have thus f
n/2
k (i) = i and no automorphism is of order n. On the other hand if n ≡ 2 (mod 4)

then (n/2− 1) is even and ((n/2− 1) · k · r/2 + 1) is odd. Therefore f
n/2
k (i) = n/2 + i and fk is an

automorphism of order n. �
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6. Infinite solutions

At the end we shall discuss some infinite solutions. First of all we observe that the proofs of
Theorem 3.1 and Proposition 5.1 go through even in the case n2 =∞ and r = 0.

Theorem 6.1. Let n1 ∈ Z+ ∪ {∞}. Then the set X = Zn1 × Z with σ(a,i)((b, j)) = (b + i, j + 1)
is an infinite indecomposable solution of multipermutational level at most 2 with the multiplication
group isomorphic to Zn1 × Z. Its automorphism group is a regular abelian group.

Proof. Let us go through the proofs of Theorem 3.1 and Proposition 5.1. Finiteness was assumed
in three places only: the first one was the begining of the proof of Theorem 3.1 where we checked
that the expression is well defined. This is settled here by setting r = 0.

The second place was the check that the cycle set is non-degenerate. Every finite cycle set is
non-degenerate, hence the finite case is granted for free. In the infinite case we have to check that
the mapping T : X → X defined as

T ((a, i)) = σ−1(a,i)((a, i)) = (a− i, i− 1)

is a bijection. It is easy to see that T−1((a, i)) = (a+ i+ 1, i+ 1).
The third finiteness argument is implicit in the proof of Proposition 5.1, by saying that transi-

tivity implies regularity. But here r = 0 and therefore f(s,t)((a, i)) = (s + a + it, t + i) and we see
that f(0,0) is the only automorphism with fixed points. �

Unfortunately, we do not know whether the construction of Theorem 6.1 is the only possible one
since we do not have an equivalent of Proposition 4.4 in the infinite case. In order to obtain some,
we should get past the obstacle of Lemma 4.2 not working for infinite groups.

Nevertheless, if we assume that the permutation group is cyclic then such a solution is uniquely
determined.

Proposition 6.2. There exists a unique infinite indecomposable solution of multipermutational
level at most 2 with a cyclic permutation group. Its group of automorphisms is equal to its permu-
tation group.

Proof. Let (X,σ, τ) be an infinite indecomposable solution of multipermutational level at most 2
with cyclic permutation group and let e ∈ X. According to Proposition 4.1 (1), the infinite group
is generated by σe and σσe(e), hence, according to Proposition 4.1 (2) the order of σe is infinite.

Denote ρ = σe and let (X,L,R) be the ρ−1-isotope of (X,σ, τ). Denote λ = Lρ(e) and we know
that G(X) is generated by ρ and λ.

The permutation group of (X,σ, τ) is cyclic and therefore there exist exponents l and m such
that λlρm = γ is a generator of the group. Furthemore, there exists r ∈ Z such that λ = Lρ(e) = γr.
Then, by 2-reductivity of (X,L,R),

id = Le = LLρ(e)(e) = Lγr(e) = L(λlρm)r(e) = Lρmr(e) = Lmrρ(e) = γmr
2

and therefore either m = 0 or r = 0.
Let now x ∈ X. Since (X,σ, τ) is indecomposable and G(X) is cyclic, there exists k ∈ Z, such

that x = γk(e). Now

Lx = Lγk(e) = Lλlkρmk(e) = LLlk
ρ(e)

ρmk(e) = Lρmk(e) = Lmkρ(e) = λmk = γrmk = id.

Hence σx = Lxρ = ρ, for all x ∈ X. Thus the solution is a permutation solution.
Now, let f be an automorphism of (X,σ, τ). We have

f(σx(y)) = fρ(y) and σ(f(x))(f(y)) = ρf(y)

and therefore f is a power of ρ and Aut(X) ⊆ G(X). The other inclusion is evident. �
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