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PŘEMYSL JEDLIČKA

Abstract. We present a construction of a family of involutory latin quandles, a family that con-
tains all non-Alexander involutory latin quandles of order pq, for p < q odd primes. Such quandles
exist if and only if p divides q2 − 1.

1. Introduction

Involutory quandles appear naturally in several areas of mathematics and therefore they were
given different names, such as kei, symmetric spaces or right symmetric right distributive idempo-
tent right quasigroups; see [13] for a survey on involutory quandles. Actually, in geometry or in
topology, the quandles we study are often latin; we refer to [14] for a guide on latin quandles.

The best understood class of quandles are Alexander quandles and all the smallest examples of
quandles are actually Alexander. For instance, the smallest non-Alexander involutory latin quandle
is of order 15. It is not difficult to describe this quandle using an ad-hoc formula but what about
other involutory latin quandles of a semiprime order?

It is well known, already for a long time [12, 7, 9], that there is a one-to-one correspondence
between involutory latin quandles and 2-divisible Bruck loops, see Theorem 3.1. Finite 2-divisible
Bruck loops are some generalizations of abelian groups of odd orders and share many properties with
groups of odd orders. For instance, they are solvable and, in the case of p-loops, even nilpotent [1].
It is therefore possible to construct all these loops using cohomology, like in [15].

Considering Bruck loops of order pq, the first researchers who constructed some of them were
Niederreiter and Robinson [10], using a recursive construction. It has been conjectured for a long
time that their loops are the only Bruck loops of order pq but all attempts to prove it failed until
the work of Kinyon, Nagy and Vojtěchovský [8]. We summarize here their result as Theorem 4.1
and we easily conclude:

Theorem 1.1. Let p < q be two odd primes. Then there exists unique, up to isomorphism,
involutory latin Alexander quandle of order pq. There exists a non-Alexander involutory latin
quandle of order pq if and only if p divides q2 − 1. Such a quandle is unique, up to isomorphism.

One thing is to know that a quandle exists and another thing is to give a formula how to
construct it. To do this, we use yet another algebraic structure – commutative automorphic loops;
being commutative and having a nice structural behavior, they seem to be easier to construct than
Bruck loops [3]. And it was proved in [2] that, given a commutative automorphic loop of an odd
order, we can construct a Bruck loop of it. This is not not a one-to-one correspondence [15] but
it does not matter here. Some commutative automorphic loops of order pq were constructed in [5]
and they give our Bruck loops of order pq.

This paper contains very few new results, it is rather a synthesis of different results from different
papers. In Section 2 we give necessary definitions and fundamental properties of the objects we
are working with. In Section 3 we present the correspondence between involutory latin quandles
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and 2-divisible Bruck loops. And in Section 4 we write down the formula how to construct the
involutory latin quandles of order pq.

2. Preliminaries

Definition 2.1. A groupoid (G, ∗) is uniquely 2-divisible if the mapping x 7→ x ∗ x is a bijection.

Example 2.2. Every idempotent groupoid, that means groupoid satisfying x ∗ x = x, is uniquely
2-divisible. A finite group G is uniquely 2-divisible if and only if the order of G is odd.

Definition 2.3. Let G be a groupoid with an operation ∗. We define the left translation Lx as the
mapping a 7→ x∗a and the right translation Rx as the mapping a 7→ a∗x. We say that the groupoid
G is a left (respectively right) quasigroup if the left translations (respectively right translations) are
permutations.

If G is a left (respectively right) quasigroup then we write x \ y for L−1x (y), respectively y/x for
R−1x (y). We define the left (respectively right) multiplication group of G as the permutation group
generated by translations, i.e.

LMlt(G) = 〈Lx; x ∈ G〉, RMlt(G) = 〈Rx; x ∈ G〉.

Definition 2.4. A quandle is a right quasigroup that satisfies

x ∗ x = x (idempotency) and (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) (right distributivity).

A quandle is called involutory if it satisfies (x ∗ y) ∗ y = x. A quandle is called latin, if it is a left
quasigroup as well.

Example 2.5. Let A be an abelian group and let f be an automorphism of A. An operation on A
defined as

x ∗ y = f(x− y) + y

forms a quandle. Such a quandle is called an Alexander quandle. This quandle is involutory if and
only if f is involutory. In particular, if f = −id, that means x∗y = 2y−x, then such an involutory
quandle is called the core of the group A.

An Alexander quandle is latin if and only if id − f is an automorphism. It is not difficult to
show that an Alexander quandle is latin and involutory if and only if it is the core of a uniquely
2-divisible abelian group.

Definition 2.6. Let Q be a quandle and let e ∈ Q. The displacement group of Q is the group

Dis(Q) = 〈RxR−1y ; x, y ∈ Q〉 = 〈RxR−1e ; x ∈ Q〉.

Example 2.7. Let Q be an Alexander quandle obtained from an abelian group A and an auto-
morphism f . Then RxR

−1
0 (z) = Rx(f−1(z)) = z − f(x) + x. Therefore, as an abstract group,

Dis(Q) ∼= Im(id− f). If Q is involutory, it is well known that RMlt(Q) ∼= Dis(Q) o Z2.

Definition 2.8. A loop is a left and right quasigroup with a neutral element. A loop is called
power associative if every mono-generated subloop is a group.

If we work in a general loop (Q,+), then 3 · x is not well defined since x+ (x+ x) 6= (x+ x) + x.
This is not the case of power associative loops, here k · x is uniquely defined, for every k ∈ Z. In
particular, −x = x \ 0 = x/0. The mapping x 7→ −x is then a bijection which is usually denoted
by J .

Definition 2.9. A power associative loop (Q,+) is called a right Bruck loop, if it satisfies

• −(x+ y) = (−x) + (−y), or equivalently JRy = RJ(y)J , for all x, y ∈ Q,
• ((z+x) +y) +x = z+ ((x+y) +x), or equivalently RxRyRx = RRxRy(x), for all x, y, z ∈ Q.
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Right Bruck loops are generalizations of abelian groups. They can be found mainly in non-
euclidean geometry, often under different names as K-loops [6] or gyrocommutative gyrogroups [16].
In a euclidean space the sum of two vectors forms an abelian group, whereas in a non-euclidean
space the addition is neither commutative nor associative. But it satisfies both identities shown
above an hence it forms (at least locally) a 2-divisible Bruck loop, see e.g. [17].

Among well-known properties [11] of right Bruck loops we shall benefit of Ri·u = Riu, in particular
RJ(x) = R−x = R−1x . And of a characterization of finite 2-divisible Bruck loops.

Proposition 2.10. [1] A finite right Bruck loop Q is uniquely 2-divisible if and only if |Q| is odd.

3. Correspondence between involutory latin quandles and 2-divisible right Bruck
loops

The well-known correspondence between abelian groups and their cores has its origins in geom-
etry. Suppose that we work on a manifold with following properties: there exists a unique geodesic
between each pair of points and we can measure its length. We can then define “the reflection of
x through y”, denoted by x ∗ y, as the point on the geodesic from to x via y such that y is the
midpoint between x and x ∗ y. It is easy to see that a groupoid so defined is an involutory quandle.
Moreover, if every line from x to y has a midpoint, this midpoint is x \ y since x ∗ (x \ y) = y and
therefore the quandle is latin.

Now, if we are in a euclidean space, the operation x ∗ y can be derived using affine coordinates.
We choose an origin 0 and then x ∗ y = 2 · y − x, independently on the origin. On the other hand,
x + y can be derived from the reflection operation: x + y = (x ∗ 0) ∗ (0 \ y). If the space is not
euclidean then this correspondence works as well, only that the addition is not an abelian group.

Theorem 3.1. [7],[12],[15]

(1) Let (Q, ∗) be an involutory latin quandle and let 0 ∈ Q. Then FQ→B(Q, ∗), which is the
groupoid (Q,+, 0) with the operation + defined by

x+ y = (x/0) ∗ (0 \ y) = (x ∗ 0) ∗ (0 \ y),

is a uniquely 2-divisible right Bruck loop.
(2) Let (Q,+, 0) be a uniquely 2-divisible right Bruck loop. Then FB→Q(Q,+), which is the

groupoid (Q, ∗) with the operation ∗ defined by

x ∗ y = (−x) + (y + y) = −x+ 2y,

is an involutory latin quandle.
(3) These constructions are mutually inverse, that means FQ→B(FB→Q(Q,+)) = (Q,+) and

FB→Q(FQ→B(Q, ∗)) = (Q, ∗)

An immediate consequence is due to Proposition 2.10.

Corollary 3.2. A finite involutory latin quandle is of an odd order.

Let an involutory latin quandle be FB→Q of a non-associative Bruck loop. Is it possible that the
quandle is Alexander? An effective criterion how to recognize an Alexander quandle was described
in [4]; nevertheless we do not need that much detail here, we focus on one property only; as we saw
in Example 2.7, the displacement group of an Alexander quandle is commutative.

Proposition 3.3. Let (Q, ∗) be an involutory latin quandle. Then Dis(Q, ∗) = RMlt(FQ→B(Q, ∗))
and RMlt(Q, ∗) = Dis(Q, ∗) o 〈R0〉 = RMlt(FQ→B(Q, ∗)) o 〈J〉.

Proof. We shall denote by (Q,+, 0) the corresponding loop and we shall distinguish right transla-
tions of the quandle and of the loop by superscripts.
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The group Dis(Q, ∗) is generated by the elements R∗x(R∗0)−1. Now R∗x(R∗0)−1 = R+
2·xJ(R+

2·0J)−1 =
R+

2·x and hence Dis(Q, ∗) and RMlt(Q) have the same generators.
Since R∗0 = R+

2·0J = J , the group RMlt(Q,+) is generated by RMlt(Q,+)∪{J}. Now JR+
x (y) =

−(y + x) = −y + (−x) = (R+
−x)J(y) = (R+

x )−1J(y) and we see that RMlt(Q, ∗) is a semidirect

product of RMlt(Q,+) and 〈J〉 determined by the homomorphism J 7→ (α 7→ α−1). �

Lemma 3.4. Let Q be a loop. Then RMlt(Q) is commutative if and only if Q is an abelian group.

Proof. Let RMlt(Q) be commutative. Then, for all x, y ∈ Q, RxRy = RyRx implies (0 + x) + y =
(0 + y) + x and therefore Q is commutative. Furthermore,

x+ (y + z) = (y + z) + x = (y + x) + z = (x+ y) + z.

The other direction is evident. �

Combining the previous two results we immediately obtain

Corollary 3.5. An involutory latin quandle (Q, ∗) is Alexander if and only if FQ→B(Q, ∗) is an
abelian group.

4. Construction of right Bruck loops of order pq

In this section we finally describe all involutory latin quandles of order pq. For this we need the
classification of right Bruck loops of order pq.

Theorem 4.1. [8, Theorem 1.1, Proposition 4.7] Let p < q be two odd primes.

(1) There exists a non-associative right Bruck loop of order pq if and only if p divides q2 − 1
and such a loop is unique up to isomorphism.

(2) If p divides q2 − 1 then a non-associative right Bruck loop of order pq can be constructed
on a set Fq × Fp with the multiplication

(a, i) ∗ (b, j) = (b · (1 + θj)
−1 + (a+ b · (1 + θj)

−1) · θ−1i θi+j , i+ j),

where θ0, . . . , θp−1 are defined as θi = 2 · (ζi + ζ−i)−1, where ζ ∈ Fq2 is a primitive p-th root
of unity.

(3) If p divides q and Q is a non-associative right Bruck loop of order pq then RMlt(Q) ∼=
(Zq × Zq) o Zp.

From this theorem we immediately obtain Theorem 1.1.

Proof of Theorem 1.1. There exists only one abelian group of order pq, namely the cyclic one. This
group has only one involutory automorphism, namely the inversion. Hence there exists a unique, up
to isomorphism, involutory Alexander quandle of order pq and this quandle is latin, since 1− (−1)
is an invertible element in a cyclic group of order pq.

According to Theorem 3.1 and Corollary 3.5, there is a 1-1 correspondence between involutory
non-Alexander latin quandles of order pq and non-associative right Bruck loops of order pq. And,
according to Theorem 4.1, such a loop exists if and only if p divides q2 − 1 and it is unique. �

Theorem 4.1 reveals how to construct the right Bruck loop of order pq. We shall, however, use
a different construction because it is arguably more transparent and it is more general. In this
construction we obtain a right Bruck loop of order pq if we set M = R = Fq, S = Fq2 and k = p.

Theorem 4.2. [5, Theorem 28] Let M be a faithful module over a ring R, which is either a field or
the ring Zn. Suppose that, for some odd number k, there exists ζ, an element lying in a quadratic
extension S of R, that satisfies:

• ζ is of order k in S∗,
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• ζ is a root of a polynomial x2 + cx+ 1, for some c ∈ R.

Then we can define a loop on the set M × Zk as follows:

(4.1) (a, i) ∗ (b, j) =

(
a · ζ

j · (ζi + 1)2

(ζi+j + 1)2
+ b · (ζ2i+j + 1) · (ζj + 1)

(ζi+j + 1)2
, i+ j

)
.

This loop is a non-associative right Bruck loop.

The property that ζ2 + 1 = −cζ ensures that the expression is well defined, i.e. that both the
fractions lie in the ring R, although the numerators and the denominators may lie in S rR.

For each k, there may exist several elements ζ. It was shown in [5] that the choice of ζ is irrelevant
when R is a field since we always obtain isomorphic loops. We may, on the other hand, obtain
non-isomorphic loops if the ring is not a field. Another interesting question is the sole existence of
such a ζ. We give several examples.

Example 4.3. Let R = R and k > 2 an arbitrary odd number. Then such ζ always exists, namely
ζ = cos 2π

k + i · sin 2π
k , since this number lies in C which is a quadratic extension of R and ζ is a

root of x2 − 2 cos 2π
k x+ 1.

Example 4.4. If R = Q then such ζ exists for k = 3 only. The number −1
2 + i ·

√
3
2 is a root of

x2 + x+ 1, whereas xk−1 + xk−2 + · · ·+ x+ 1 does not split as a product of quadratic polynomials
with rational coefficients, for k > 3 and k odd.

Example 4.5. Let R = Fq. There are two possibilities: every ζ ∈ R∗ is a root of x2−(ζ+ζ−1)x+1
and it satisfies ζq−1 = 1. Therefore k may be any odd divisor of q − 1. The other possibility is
ζ ∈ Fq2 r Fq. It is then not difficult to prove [5, Proposition 9] that k may be any odd divisor
of q + 1.

Theorem 4.6. Let M be a faithful module over a ring R, which is either a field or the ring Zn.
Suppose that, for some odd number k, there exists ζ, an element lying in a quadratic extension S
of R, that satisfies:

• ζ is of order k in S∗,
• ζ is a root of a polynomial x2 + cx+ 1, for some c ∈ R.

Then we can define a quasigroup on the set M × Zk as follows:

(4.2) (a, i) ∗ (b, j) =

(
b · (ζj + 1)2 · (ζ2j−2i + 1)

(ζ2j−i + 1)2
− a · (ζj−i + ζj)2

(ζ2j−i + 1)2
, 2j − i

)
.

This quasigroup is an involutory latin quandle which is not Alexander.

Proof. Let us construct a Bruck loop (Q,+, 0) on the set M × Zk using Theorem 4.2 and we shall
compute the operation ∗ of FB→Q(Q,+), following Theorem 3.1. We first compute

2 · (b, j) =

(
b · ζj · (ζj + 1)2 + b · (ζ3j + 1) · (ζj + 1)

(ζ2j + 1)2
, 2j

)
=

=

(
b · (ζj + 1) · (ζ2j + ζj + ζ3j + 1)

(ζ2j + 1)2
, 2j

)
=

(
b · (ζj + 1)2 · (ζ2j + 1)

(ζ2j + 1)2
, 2j

)
=

(
b · (ζj + 1)2

ζ2j + 1
, 2j

)
and we prove that −(a, i) = (−a,−i):

(a, i) ∗ (−a,−i) =

(
a · ζ−i · (ζi + 1)2 − a · (ζi + 1) · (ζ−i + 1)

(1 + 1)2
, 0

)
= (0, 0)
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Finally

(−a,−i) + 2 · (b, j) =

−a · ζ2j · (ζ−i + 1)2 + b · (ζ
j+1)2

ζ2j+1
· (ζ−2i+2j + 1) · (ζ2j + 1)

(ζ−i+2j + 1)2
,−i+ 2j


=

(
−a · (ζj−i + ζj)2 + b · (ζj + 1)2 · (ζ2j−2i + 1)

(ζ2j−i + 1)2
, 2j − i

)
�

There are two things worth noting. There is a natural projection (a, i) 7→ i of M × Zk onto the
core of Zk which is evidently a homomorphism. On the other hand, by setting i = j we obtain
(a, i)∗ (b, i) = (2b−a, i) and therefore each kernel class of the natural projection is itself isomorphic
to the core of M . We can hence view this quandle as a sort of a semidirect extension of the core
of M by the core of Zk.

Remark 4.7. It is straightforward (but tedious) to check that the operation defined in (4.2) is
always right distributive and idempotent, if it is well-defined, that means if the denominator is
never 0, that means if k is not even. In other words, the construction works for k =∞ too.
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[3] Jedlička P., Kinyon M. K., Vojtěchovský P.: Constructions of commutative automorphic loops, Comm.

Algebra 38,9 (2010), 3243–3267.
[4] Jedlička P., Pilitowska A., Stanovský D., Zamojska-Dzienio A.: Subquandles of affine quandles, J.

Algebra 510,15 (2018), 259–288
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[18] Vojtěchovský P.: Bol loops and Bruck loops of order pq up to isotopism, Finite Fields and Their Applications

52 (2018), 1–9

Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences, Kamýcká
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