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Introduction

This text comprises two parts, namely the study of the semidirect products of lattices with appli-
cations in the Coxeter groups and in the Garside monoids, and the one of the free self-distributif
idempotent groupoids (free LDI groupoids), which has as its elements the equivalence classes struc-
tured as lattices. The common point that connects this enough independent parts is the notion of
lattice and of the confluence and, more generally, the type of combinatorial and algebraic arumen-
tation used.

This first part is centred on the notion of semidirect product of lattices, whis is the analog, in
the world of lattices, of the semidirect product of groups. As in the case of groups, there exists
an internal version and an external version of the semidirect product of lattices, and this one is
constructed using an action of one of the lattices on the other, the direct product corresponds to
the case where the action is trivial. Since a lattice possesses two basic operations (meet and join),
the construction of the semidirect product requiers a priori two applications from the first lattice
into the endomorphisms of the second one. Actually, one mapping is sufficient for determine the
order of the product and therefore for determine the second mapping.

Chapter 1 of the thesis describes the construction of the semidirect product of lattices, as well
as the one of the semidirect product of semilattices (the case where only one lattice operation
is defined). Many examples are analysed in details. The main result from the point of view of
further developments is Proposition 1.15 which shows that, for determine a semidirect product of
discrete lattices (and particulary of finite lattice), there suffices to know how to enumerate a set of
triples called special, which code in a certain sense the immediate successor relation in the product.
Another result is a characterisation of the smallest class of lattices closed under semidirect products:

Proposition 1.25 Let L be a finite lattice. Then the following conditions are equivalent:

(1) the lattice L belongs to the smallest class that contains the two element lattice and that is
closed under sublattices, semidirect products and under isomorphic images;

(17) the lattice L does not contain any sublattice that maps onto a simple lattice;

(i71) the lattice L belongs to the smallest class that contains the two element latice and that is
closed under sublattices, under short exact sequences and under isomorphic images;

(1v) the lattice L belongs to the greatest class of lattices closed under sublattices and under homo-
morphic images that does not contain any simple lattice.

Chapter 2 describes an application of the semidirect product of lattices in the Coxeter groups.
This application is in fact the starting point of all twe work and the main motivation for which the
general semidirect product was introduced. The Coxeter groups are a class of groups containing
the symmetric groups and, more genrally, the reflection groups of an affine space, and they have
been object of multiple works [27], [4] or [5]. Each Coxeter group W is equiped with a partial
order relation called the weak order < |3], which gives a semilattice structure on W in all cases,
and a lattice structure in the case when W is finite. Our goal is to describe an explicit construction
of this (semi)lattice structure, and this is where the semidirect product intervene. Among all the
subgroups of a Coxeter group, there exists subgroups called parabolic which are themselves Coxeter
groups, and which are indexed by the subsets of the set of the canonical generators of W. If W; is
a parabolic subgroup of W, there exists a natural decomposition of the elements of W associated
with W, and it shows that this decomposition gives a congruence of the weak order (semi)lattice



of W. Moreover, the classes of this congruence are mutually isomorphic and they have themselves
a (semi)-lattice structure. We show the following general result:

Theorem 2.10 Let (W, S) be a Coxeter system and let .J be a subset of S. We denote by W, the
subgroup generated by J and by W7 a left coset associated with W;. Then the semilattice (W, )
is isomorphic to a semidirect product of semilattices (W, <) and (W7, ).

Moreover, the preceding result is effectif in the measure that we can, in a great number of
examples, completely describe the considered semidirect products exhaustively enumerating the
special triples. We treat also the case of the types A,, B,, D,, I,,, as well as the one of Ay: for
every infite family, the weak ordre lattice is constructed inductively starting with the one of the
preceding group of the family.

Other results of decompositions exist in the litterature [41], [23]. The specificity of our result
is to enable an inductive construction (to construct the big lattice starting with the small lattices,
which are the only known) and not only a decomposition (to exprime the elements of the big lattice,
supposed to be known, in terms of the small lattices). Moreover, it seems that only the case of
finite Coxeter groups has been considered, although our approach applicates to the infinite case as
well.

Chapter 3 is sacrificed to the study ot the divisibility lattices in the Garside monoids. To
each Coxeter group we associate so called Artin group, or Artin-Tits group, the presentation of
which is obtained from the standard presentation of the Coxeter groups removing the torsion
relations s? = 1, and a monoid of the same presentation. If W is a finite Coxeter group, and if M is
the corresponding Artin monoid, there exists by construction a surjective homomorphism from M
on W, and there exists also a canonical set section of this homomorphism. The image under this
section of the maximal element wy of W is an element A of M which has important properties,
and particulary the divisors of A in the sense of monoid M form a lattice isomorphic to the weak
order lattice on W. We study here the lattices that appear as the lattices of the divisors of the
elements A* as well as the divisibility lattice of the monoid M :

Proposition 3.11 Let M be an irreducible Artin monoid of spherical type having at least two
atoms. Then the divisibility lattice of M is simple.

The notion of Artin monoid is generalised to the Garside monoid defined as the monoid having
an element called Garside element, divisors of which form a lattice [17]. We describe examples of
Garside monoids M where the lattice of divisors of the minimal Garside element A in M is obtained
as a semidirect product of the lattice of divisors of the minimal Garside element § of a submonoid
of M and of a lattice of divisors of A prime to the element J.

The second part of the thesis is sacrificed to the study of the self-distributivity in presence of
the idempotency. The self-distributivity is the algebraic identity D: z(yz) = (zy)(zz), and the
idempotency is the algebraic identity I: * = xx. The LD groupoids, that means the groupoids
formed of a set equipped with an operation satisfying the identity LD, have been much studied
in the recent years, for instance by Dehornoy [13], Drapal [19], Kepka [34] ou Laver [39]. An LDI
groupoid is an LD groupoid that satisfies also the identity I. The first problem, when we consider
an algebraic identity or a family of algebraic identities, is the word problem, defined as the problem
to algorithmically decide whether two abstract expressions written with variables and an operation
(we say simply two terms) are or not equal modulo the considered identities. To solve this problem



means to describe explicitely the free structures of the equational variety defined by these identities.

In the case of the identity LD, the question has been positively solved in [12|, and there exist
actually more methods for find out if two terms are or not LD-equivalents. In the case of LDI,
that means when we add the idempotency to the self-distributivity, the question is open and still
remains. The results established in this thesis can be seen as partial results in the direction to a
solution of the word problem of LDI, which remains to find.

Chapter 4 introduce basic notions needed to study LDI, that means to describe the equivalence
relation on terms induced by the identities LD and I. The leading idea is to follow the methods
developped in |12] for the case of LD, and to seek to extend them to the case of LDI—which is not
an immediate task. It seems to be natural to introduce a variation ot the idempotency, namely the
identity LI: (z - x) -y = x - y, and to make parallelly the study for LDI and for LDLI.

One of the results known for LLD is that each class of LLD-equivalence has a structure of lattice
type (wheter it is a real lattice remains a conjecture in the general case): we introduce an oriented
notion of LD-expansion raffining the LD-equivalence, and one of the main technical results is the
result of confluence which affirms that two terms are LD-equivalents if and only if they have a
common LD-expansion. This result has been shown also in the case of LDI by Larue in [38]. We
remake the proof here and we show a similar result for LDLI:

Proposition 4.12 Two terms are LDLI-equivalent if and only if they have a common LDLI-
expansion.

The problem for solving the word problem of a family of identities, for instance LDI or LDLI,
is to know to show that two terms are not equivalent: in fact, if two terms are equivalent, we
can always establish it systematically enumerating all the terms equivalent to the first one and
watching if the second one appears on the list. There exist two methods for showing that two
terms t, ¢ are not equivalent: the semantic method that consist of constructing an example of a
groupoid S satisfying the considered itentities such that ¢ and ' have different evaluations in S,
and the syntactic method, consisting to find purely formel criteria showing that ¢ and ¢’ cannot be
equivalent. For instance, in the case of LDI, both the identities LD and I conserve the rightmost
and the leftmost variables and therefore, if these two variables in ¢ and ¢ do not coincide, it is
impossible for ¢ and t' to be LDI-equivalent. What we would like to, is to define sufficiently fine
criteria to separate all the nonequivalent terms, and this would be a solution of the word problem.
In the case of LDI (and of LDLI), we do not have a such criterion but we show a partial result
enabling to syntactically separate terms we did not know to separate till now. The statement use
a certain notion of cut of a term.

Proposition 4.29 If two terms t,t' are LDI-equivalent, each cut of t' belongs to the set Cut(t).

We give nontrivial examples of an application of this criterion using a notion of weight on the
variables of a term.

In Chapter 5, we study the geometry monoids of the identities LDI and LDLI. For each family
of algebraic identities, there exists a monoid that describes the associated equivalence relation
on the terms as orbits under the action of a certain monoide of operators [15]. In the case of
the associativity, we obtain (essentielly) the Thompson’s group F [10], and in the one of the
associativity and of the commutativity, we obtain (essentielly) the Thompson’s group V' [7]. In the
case the self-distributivity LD, the geometry monoid is an extension of the Artin’s group B, and



it is the study of this monoid that enabled to solve the word problem of LD and many connected
questions [12]. Tt is hence natural to study the geometry monoids of the families of identities LDI
and LDLI too, particulary hoping to solve the word problems. In the case of LD, the solution
comprises four stages, namely the introduction of the syntactic monoid a monoid satisfying the
main relations of the geometry monoid; the proof of the confluence in the syntactic monoid, which
means to show that each element of the fraction group of the syntactic monoid can be written
in the form uv™! where u and v belong to the monoid; the solution of the word problem of the
syntactic monoid; and the construction of an injective mapping from classes of LLD-equivalence to
the syntactic group. We succeed to complete the first two stages of this approach in the case of
LDI and the first three stages in the case of LDLI. The main results of this chaptre are:

Proposition 5.41 Each element of the fraction group of the syntactic monoid of LDI (respectively
of LDLI) can be written as uv~! where u and v belong to the positive syntactic monoid of LDI
(respectively of LDLI).

Proposition 5.46 The syntactic monoid of LDLI is left cancellative, and each pair of elements
admit a right least common multiple and a left greatest common divisor and the word problem of
this monoid can be solved by the returning of words.

Chaptre 6 contains results about the LDLI groupoids, that means about the groupoids satisfying
both the identities LD and LI. We describe a decomposition of the LDLI groupoids that enables
to reconstruct the LDLI groupoids starting with LDI groupoids and right constant groupoids, that
means groupoids satisfying the identity x -z = y - 2. We use this construction to construct the free
LDLI groupoids starting with the free LDI groupoids and we deduce the following result:

Proposition 6.8 Two terms are LDLI-equivalent if and only if they are LDI-equivalent ant they
have the same right height, i.e. the same length of the rightmost branch when the terms are seen
as binary trees.

An easy corollary is that a word problem solution of LDLI would give a word problem solution
for LDI, and vice versa. Another application of the proposition is that the equational variety
generated by LDLI is the smallest variety that includes both the variety generated by LDI and the
one generated by the identity = -z =y - 2.

I Semidirect products of lattices
1 Semidirect product of lattices

Definition: Let L be a lattice and let § be a congruence on L. We say that the congruence 6
on L is isoform if the classes of # are mutually isomorphic sublattices.

Proposition 1.4: Let K, H be two lattices and let ¢, ¢ : K x K — H" be two mappings



satisfying the following conditions:

Pk = Ve = 1dm, (1.6)
Pkk'VE" = PkvEk k" © Pk k', (1-7)
Uk ke ak = Yrakr g © Y e, (1.8)
h < Yk kn © Crnw i (h), (1.9)
h = @ pvie © Vv i (D), (1.10)
e (hVR) = @pp(h) V o (h'), (1.11)
Ui (WA DY) = g () A g g (B). (1.12)
then the set K x H with the operations LI, I, defined by
(kv, hy) U (Ko, ho) = (k1 V kay @k ks (h1) V Qi (h2)), (1.17)
(k1, hy) T (kay ho) = (k1 A kay Yk, ko (h1) A Yy iy (ha)), (1.18)

forms a lattice.

Definition: The lattice constructed in Proposition 1.4 is called a semidirect product of lattices K
and H, and denoted by K x H.

Proposition 1.8: Suppose that L is equal to K |><$ H. Then there exists a congruence 6 on L
such that K is the factor lattice and all equivalence classes of f are isomorphic to H.

Proposition 1.9: Let L be a lattice admitting an isoform congruence . Let K be the factor

lattice L/ and let H be one of the congruence classes. Suppose that both the following conditions
are fulfilled:

the set {h' € H; Ik, k" € K: (k,h) < (k',h")}, denoted by Ej,
is lower bounded for each h in H,

the set {h' € H; 3k, k' € K: (k,h) > (K',h')}, denoted by E",
is upper bounded for each h in H.

(1.23)

(1.24)

Than there exist mappings ¢ and v satistying the conditions of Proposition 1.4 such that the
lattice L is isomorphic to the lattice K I><i H.

Proposition 1.12: Let K, H be two lattices and let ¢ be a mapping from K x K to H" that
satisfies ¢y = idy, for each k in K, and Conditions (1.7) and (1.11), and also, for all ky, ks in K,
the condition

the set gp,;l’,w ((h}) owns a smallest element. (1.30)

Then the set K x H equipped with the order <, defined by

(k,h) < (K, 1) <= (k < K') et (grw(h) < B, (1.27)
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is a lattice.

Proposition 1.13: (i) Let K, H be two join-semilattices an let ¢ be a mapping from K x K
to End(H) that satisfies ¢y = idp, for each k in K, and Condition (1.11). Then the set K x H
equipped with the order < defined by (1.27) is a join-semilattice.

(i7) Moreover, if K, H are complete and the mapping ¢ satisfies Condition (1.30) then (K x H, <)
is a complete lattice.

Proposition 1.15: Let K,H be two join-semilattices and let ¢ be a mapping from K x K
to End(H) such that K x¥ H exists.

(i) If every interval of K is of finite length then the mapping ¢ is uniquelly described by the
mappings ¢y, with k', an immediate successor of k in K.

(17) If every interval of H if of finite lenght then we have, for each k' an immediate successor of k
in K,

Crn (h) = o (min{h' € H: (h' = h) and ((k', prp (h)) succeeds immed. (k,h')))}).

Definition: Let L, Ly, ..., L, be lattices, for an ordinal x. We denote by »._, L; the ordinal
sum of lattices, defined as the disjoint sum of sets L; equipped with th ordre <:

a<bin L <= ((a,b€ L;) and (a <y, b)) or ((a € L;,b € Lj) et (i < j)).

Proposition 1.16: Let L be a lattice and let 6 be a nontrivial congruence on L. Then L embeds
into a semidirect product of L/ and of an ordinal sum of congruence classes and one element sets.
This embedding extends the congruence  into the canonical congruence of the semidirect product.

Definition: We denote by SD the smallest class of lattices that contains the two element lattice
and that is closed under sublattices, under semidirect products and under isomorphic images.

Proposition 1.25: Let L be a finite lattice. Then the following conditions are equivalent:

() the lattice L belongs to SD;

(i) the lattice L do not contain any sublattice that maps onto a simple lattice;

(71) the lattice L belongs to the smallest class that contains the two element lattice and that is
closed under sublattices, under short exact sequences and under isomorphic images;

(1v) the lattice L belongs to the gratest class of lattices, closed under sublattices and under homo-
morphic images that does not contain any simple lattice.

Proposition 1.28: The smallest quasivariety of lattices that contains the two element lattice and
that is closed under semidirect product is not a variety.



2 Construction of the weak order of Coxeter groups

Definition: A Cozxeter graph T' = (S, A) is a finite nonoriented graph with edges (s,7) in A
labelled by a number m,; of the set {3,4,...,00}. We say that a group W is a Cozxeter group
associated to the graph of Coxeter I' = (S, A) if it admits the presentation

(S; s>=1,(st)> =1 for (s,1) € A,

2.1
(st)"* =1, pour (s,t) € A and my; < c0). (2.1)

We say that the pair (W, S) is a Cozxeter system if W is a groupe and if there exists a graph of
Coxeter I' = (S, A) to which the group W is associated. For each element g of W, we define the
lenght £(g) as the minimal length of a sequence s, so, . .., s, with s; in S, satisfying g = sys9 - - - sy
The word sys9 - -- s is then called a reduced expression.

Definition: Let W be a Coxeter group. For g,h in W, we write ¢ < h if and only if we have
0(g) + (g~ "'h) = £(h). This relation is called the weak order of the group W.

Proposition 2.2: Let W be a Coxeter group. Then the set (W, <) is a meet-semilattice and the
element 1 is its smallest element. If W is finite then (W, <) is a lattice.

Definition: Let (W, S) be a Coxeter system and let J a subset of S. We denote by W; the group
generated by .J and by W the left coset of minimal representatives relative to WJ.

Theorem 2.10: Let (W, S) be a Coxeter system and let J be a subset of S. Then the meet-
semilattice (W, %) is isomorphic to a semidirect product of the semilattices (Wy, <) and (W7, ).

Theorem 2.12: Let (W, S) be a Coxeter system with W finite and let J be a subset of S. Then
the lattice (W, %) is isomorphic to a semi-direct product of the lattices (W, <) and (W7, <).

Proposition 2.19: Let (W, S) be a Coxeter system and let .J be a subset of S. Then the operation
of meet in the semilattice (W, X) is determined using the operations of meet in the semilattices W
and W7 by the formula:

(B, h) A (K 1) = (k A K o (B) A o i (B))). (2.4)

where the mapping v is expressed by an explicit algorithme.
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3 Lattices of divisibility

Definition: Let [' = (X, A) be a Coxeter graph. The Artin group associated to I is the group
presented by the group presentation

(%; [o,7)™ " =[1,0)™"" pour m,, < oc). (3.1)

The Artin monoid associated to I' is the monoid presented by the monoid presentation (3.1). An
Artin group or an Artin monoid is said of spherical type if the associated Coxeter graph defines
afinite Coxter group. We say that an Artin group or an Artin monoid is irreducible if its Coxeter
graph is connected.

Definition: Let M be a monoid. We say that an element a of M is an atom if the relation a = be,
for b,c in M, implies b = 1 or ¢ = 1 We say that the monoid M is atomic if the upper bound ||all
of lengths of decompositions of the element a as a product of atoms is finite for each a in M.

For the order by left divisibility on an Artin monoid of spherical type, there exists a supremum a Vb
and an infimum a A b. We define the operation \ of the left residue by

aVb=a(a\b) = b(b\a) (3.2)

Definition: Let M be an atomic monoid. We say that an element § of M is balanced if the set
of left divisors of § coincide with the set of right divisors of §. This set is denoted by M (9).

An element § of M is called a Garside element if it is balanced and M (§) generates M.

A Garside element is called a minimal Garside element of M if it is the smallest among all Garside
elements of M, with respect to the left divisibility.

Proposition 3.8: Let M be an irreducible Artin monoid of spherical type that has at least two
atoms. We denote by A its minimal Garside element and by L the left divisibility lattice of divisors
of A for k > 1. Let § be a nontrivial congruence on L. If two elements a,b of L are §-equivalent
then the two following conditions are fullfilled:

{ce€ L; ¢ g aand ||

| <k} ={ceL; ecxband|c| <k}, (3.3)
{c€ L; a<cand|c\A¥

<
<k}y={ce L; b= cand|c\A*| < k}. (3.4)

Proposition 3.11: Let M be an irreducible Artin monoid of spherical type that has at least two
atoms. Then the lattice (M, %) is simple.

Definition: A monoid M is called a Garside monoid if it satisfies the following four conditions:
(i) The monoid M is atomic with a finite number of atoms.

11



(77) The monoid M is cancellative.
(i71) Each pair of elements of M admits a right lem and a left ged.
(iv) There exists a Garside element in M.

Definition: Let M be a Garside monoid and let A be its minimal Garside element. Let 6 be a
balanced divisor of A in M. We denote by M the monoid generated by the set of divisors of §. If
we have M(J) = M(A) N Ms then the monoid M; is called a parabolic subomonoid of M.

Definition: Let M be a Garside monoid and let A be its minimal Garside element. Let M; be a
parabolic submonoid of M. We say that an element a of M(A) is §-reduced if we have a A § = 1.
The set of all the d-reduced elements is denoted by M?°. We denote by ds the greatest element
of M? if such an element exists.

Theorem 3.18: Let M be a Garside monoid and let A be its minimal Garside element. Let M;
be a parabolic submonoid of M. Suppose that the element ds exists and that we have A = dd;.
Then the set M is a lattice and the lattice M (A) is isomorphic to the semidirect product of M (§)
and M°.

Definition:  Suppose that M,,..., M, are Garside monoids. Let ¢ be the set of the atoms
of M; for i between 1 and n. A family of functions verifying the residue identities is defined as a
family O of functions ©;; + M; x M; — M; for 1 < ¢ # j < n such that, for each a in M;, the
restriction ©;;(a, ) of ©;; to {a} x M; is a bijection of M;, and verifies

©ij(ab, c) = 0;;(b, Oij(a, c)),
Oij(a, cd) = Oy(a, ¢)0;;(O;(c, a), d),
O,k(0ij(a, c), Owla,e)) = Ou(0ji(c, a), Oj(c, e)),

for a,b in M;, ¢,d in M;, e in My, with 1 <@ # j # k # i@ < n. The crossed product N?Mi is
defined as the factor of the free product of M; under the congruence generated by all the pairs
(20;(z,y),y0;i(y,x)) with z in A;, y in A; and 1 < ¢ < j < n. For n = 2, we denote the crossed
product by M; pxg M.

Proposition 3.22: Suppose that M, My are Garside monoids. Let O be a family of functions
verifying the residue identies. We denote by A; the minimal Garside element of the monoid M;,
for i = 1,2 and by M the monoid M, <ig M,. Then the lattice of divisors of the minimal Garside
element of M is isomorphic to the semidirect product M(A;) x¥ M(Ay), where the mapping ¢ is
defined as g a4z (b) = ©12(x, b), for each a in M(A,), each b in M(A,) and each x an atom of M;.

12



IT Left self-distributive idempotent groupoids

4 Identities LD, I, LI and their expansions

Definition: Let 7,7 be two terms.

(i) We say that t' is a basic LD-expansion of the term ¢ if it is obtained from t by replacing a
subterm t; - (t5 - t3) by the term (¢; - to) - (¢; - t3).

(i7) We say that ' is a basic I-ezpansion of the term ¢ if it is obtained from ¢ by replacing a subterm
t1by the term %, - t;.

(131) We say that ¢’ is a basic LI-expansion of the term ¢ if it is obtained from ¢ by replacing a
subterm t; - t5 by the term (¢ - t1) - to.

(iv) We say that ¢' is a basic LDI-expansion of the term ¢ if ¢’ is either a basic LD-expansion of ¢
or a basic I-expansion of t.

(v) We say that ¢’ is a basic LDLI-expansion of the term ¢ if ¢’ is either a basic LD-expansion of ¢
or a LI-expansion of ¢.

Definition: Let the symbol X mean one of the families LD, I, LI, LDI or LDLI. We say that a
term t' is a k-IX-expansion of the term ¢ if there exists a sequence t = tg, t1, ..., t; = t' such that ¢; is
a basic X-expansion of ¢; 1, for all i between 1 and k. We say that ' is a X-exzpansion of t (notation
t =5 ') if there exists k such that ¢’ is a k-X-expansion of the term ¢.

Definition: Let ty,¢ be two terms. The term ¢y % ¢ is defined inductively:

to -t when ¢ is a variable,

(to*t])'(to*tg) fOI't:t] 'tg.

We can show by induction that the term ¢yxt is obtained from the term ¢ by applying the substitution
Tty .

Definition: Suppose that ¢ is a term. We define the terms 0,pt, Oyt et Ot inductively:

t when ¢ is a variable,

Ot = (4.5)
aLDtl * aLDtQ for t = tl . tg,
t-t when ¢ is a variable,

aLDIt - (46)
aLDItl * aLDItQ for t = tl : tg,
t when t is a variable,

Ot = (4.7)
Orpit1 * Oppute  pour t =ty - .

Proposition 4.9: Let the symbol X mean one of the families LD, LDI or LDLI and let t,t' be
two terms. Ift' is a basic X-expansion of t then Ot is a X-expansion of t'.
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Proposition 4.12: Let the symbol X mean one of the families LD, LDI or LDLI and let t and t'
be two terms. Then there exists k such that the term 9%t is a X-expansion of t'.

Definition: An addresse is a finite sequence of 0’s and 1’s. The empty adresse is denoted by &.
The set of all the addresses is denoted by A. An adresse « is said final if we have o = 17 for
some p = (.

Definition: Suppose that t is a term. For a an addresse in A, the subterm of t at «, or the
a-subterm of ¢, is the term sub(t, ), specified possibly as:

t pour a = &,
sub(t, ) = < sub(t,8) for a =08 and t = t; - s, (4.11)
sub(ty, ) for a =15 and t = t; - to.

Definition: TLet ¢ be a term. We say that « is an addresse in ¢ if the subterm sub(t, ) exists.
In this cas, we say that « is external in ¢ if sub(t, @) is a variable, and is internal otherwise. The
skeleton of t is defined as the set Skel(t) of all the addresses in ¢; the outline of t is defined as the
set, Out () of all the external addresses in t.

Definition: For two terms ¢; and ty, we write t; C t9 if we have ¢; = sub(¢;,0?) for some p > 0.
We denote by t; C t5 the same relation witth p > 0. We write t; C 5 if there exist terms #; and ¢,
with # = t,, t, =1, and | C ),

Definition: For a term ¢ and « in Skel(t), we define the cut of t at « as the term cut(t, «)
recursively:
t pour a = &,
cut(t, &) = ¢ cut(ty, fB) for a =08 and t =t - 9, (4.15)
ty - cut(te, ) for a =10 and t =ty - ts.

Definition: For a term ¢, we define the sets Cuty;, () and Cut,p,(f) as the smallest sets of terms
satisfying:

- each cut of the term ¢ belongs to Cuty(t);

- each term s’ -equivalent to a term s in Cuty(¢) belongs to Cut,(t);

- let s, s" be two terms in Cutyy,(t); if there exists a term ¢’ in Cutyy,(¢) such that s is the cut of ¢
at an addresse o and s’ is the cut of ¢ at an addresse o’ and if we have o > o/, then the term s - s’
belongs to Cut,p(t);

- let s, ' be two terms in Cut,p,(#); if there exists a term ¢’ in Cutyy,,(¢) such that s is the cut of ¢
at a nonfinal addresse o and s’ is the cut of ¢ at an addresse o and if we have a > «/, then the
term s - s’ belongs to Cutyp,(t).

14



From now, the symbol X stands for one of the families LDI or LDLI.

Proposition 4.29: Let t' be a term X-equivalent to a term t. Then each cut of t' belongs to the
set Cuty(t).

Proposition 4.34: The following conditions are equivalent for two terms s and t:

(1) we have s C t;

(i1) there exists a term t', with t = ¢/, and «, an addresse of Skel(t') satisfying cut(t', o) = s;
(i7i) we have s € Cut(t);

(iv) we have Cut(s) C Cut(?).

Definition: Suppose that o and 3 are two addresses with o >, 8. We say that a covers g if
there exists an addresse v and a positif integer ¢ satisfying o = y19 and v0 C . Otherwise we say
that a incovers § and we write o > [3.

Definition: Let ¢ be a term. A cascade in t is a finite sequence @ of pairs ((a1,a1), ..., (o, a,))
such that a, ..., q, is a strictement decreasing sequence of addresses in Out(t), and a4, ..., a, are
coefficients 0 or 1, for which a; = 0 implies i = p or a; > a;11. We write Casc(t) for the set of all
the cascades in t.

Proposition 4.38: (i) For every term t, there exists a bijection m; between the set Casc(t) and
the set Out(Oipt). Suppose that & = ((aq,a1),- .., (ap,ap)) is a cascade in t. Then we have:

cut(Oumt, T (&) = Oq, cut(t, o) - - - - 0,4, cut(t, ay), (4.23)
where 0y means O, and 0, means O p;;.
Definition: Let ¢35 be a term. For k > 0, we say that a term ¢ is a ty-Oy-normal of degree k if t

is the cut of 8§t0 in an addresse o and no cut of 8§t0 at an addresse § <,; « is X-equivalent to t.
Moreover, for k > 0, we require that no cut of 0¥ 71¢ is H-equivalent to ¢ neither.

Proposition 4.43: Let ty be a term. Then each term t with t T ty is X-equivalent to a unique
tg-Og-normal term.

Conjecture 4.44: Let ty be a term and k an integer. Then each cut t of the term 0%, is a
H-expansion of the ty-Og-normal term that is X-equivalent to t.

Proposition 4.45: Let t and ty be two terms satisfying t T to. If Conjecture 4.44 is true, then
there exists an algorithme to find the t4-0y-normal term X-equivalent to t.
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5 Geometry monoids

Definition: For each addresse a, we define D, (respectively 1,) as the partial function from
the set of terms to the set of terms that sends each term ¢ on its basic LD-expansion (its basic
I-expansion) at the addresse «, if it exists.

Definition: Let A;;, and A; be two disjoint copies of the addresse set A. We denote by Ay,
the set A, U A, and, for each « in Ay, we define DI, either as D, if o belongs to Ay, or as 1,
if @ belongs to A,. We also denote by A;, the subset of A, defined as {a € A;; Iy : a = ~0} and
by A the set Ay U A,

Definition:  The geometry monoid of X is the monoid G, generated by the operators DIX!

with o in A, using the composition. Analogically, the positive geometry monoid is the monoid G
generated by the operateors DI, with o in A .

Definition: For w = af' - ----q;” in (Af')*, the operator DI, is defined as the product DIZ!
-« DIy?, where the symbol « means the composition from the left to the right.

Proposition 5.4: Let t and t' be two terms.

(i) The terms t and t' are X-equivalent if and only if an operator in G, sends t onto t', that means
if we have t' =t « DI1,, for a word w on AEL.

(1) The term t is a X-expansion of the term t if and only if an operator in G sends t onto t', that
means if we have t' =t « D1, for a word u on A .

Definition: For ¢ a term, we define the right height as:

rht(t) =0 when £ is a variable,

5.6
I"ht(t) = rht(tg) +1 for t = tl : t2. ( )

We see that the right height of a term ¢ is the legth of the rightmost branch of ¢.

Proposition 5.25: If Conjecture 4.44 is true then two terms t and t' are LDLI-equivalent if and
only if they are LDI-equivalent and they have the same right height.

Definition: The set A, is defined as the set of symbols di,., with o in A,,,,. An LDI-relation is
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a pair of words on A;;,; among the following relations:

(dWOa ~dyig, dyige dWOa) type L
(i"/Oa ~dyig, dyig 'ivﬂa) type L
(dyon - Ly1g 5 1y15 - dyoa) type L
(Ly0a 118 5 1yis - Hoa) type L
(d'yOa -dy, dy-dyo0a- dflea) type DO
(dy10a - dy , dy - dyo1a) type D10
(dyi1a-dy, dy-dyiia) type D11
(dy1-dy-dyi-dyo, dy-dyr-dy) type D1
(lya -1y s 1y 100 - 1y1a) type I
(dya -1y 5 1y dyoa - dyia) type DI
(i'yOa -dy , dy-1y00a 'i'yl[]oz) type IDO
(ivloa -d,, dy- iqma) type ID10
(iyi0-dy-dyo s dy-iy0) type ID10+
(110 -dy, dy-iy11a) type ID11
(iy-d,-dy-dy, dy- i) type ID1
(diyg iy -d,y, diye-1y) type C
(dy-iy1-dy s dy i) type C
(i1 -d, - diyia , 1y diyia) lg(a) > 1 type C
(hi-dy-dy s 1y-dy) type C
(ip-dy-dyr, iy -dy) type C

The set A,y is defined as the set of symbols di,, with « in A,,;,. An LDLI-relation is an LDI-
relation (u,v) such that u and v belong to A;p;. For X, one of the families LDI, LDLI, the
relation =/ is defined as the congruence of the monoid A}, generated by the X-relations, and the
relation =, is defined as the congruence of the monoid (Afl)* generated by the X-relations and

by the relations (di,-di," ¢) and (di,'-di,,e).

the relation di, = di, implies DI, = DI,,.

U ~LDI

Proposition 5.26: For u,v in A

LDI?

Proposition 5.39: Let u,v be two words on A . Then there exist words u',v" on A, satisfying

di, - di, =} di, - diy

Vv T

Proposition 5.41: If w is a word on A*! such that the domain of DI1,, is not empty then there
exist words u,v on A, satisfying di,, =, di, - di,-1.
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Definition: Let A be an alphabete. We say that f is a complement on A if f is a partial mapping
from A x A on A* satisfying f(z,x) = ¢, for each z from A, and that f(z,y) exists if f(y,z) exists.
We denote E}F the relation generated by the relations (zf(x,y),yf(y,z)) with (z,y) in the domain
of f. The monoid associated with f on the right is the monoid A* factorised by E}_. We denote
by =; the relation generated by the relations (xf(z,y),yf(y,x)) with (z,y) in the domain of f
completed by the relations (zz~',¢) and (z'z,¢). The group associated with f on the right is the
monoid (AU A™1)* factorised by =;.

We define the syntactic monoid of LDLI M, as the monoid (AZ! )* factorised by the LDLI-

relations. We see that the monoid M, is associated on the right with a complement.

Definition: Let w,w’ be two words. We say that w is returnable (to the right) into w’, denoted
by w ~ w', if there exists a sequence of words w = wy, ..., w; = w' satisfying, for all i < k,

wi =w; -z yew] and wiy = w) - f(@, ) - fyn ) w)

2 7

where z; and y; are letters.

Proposition 5.46: We have di, di, if and only if we have di;1 -di, ~ €.

=+
~— LDLI

Proposition 5.47: The monoid My, is left cancelative and the left divisibility order on M
forms a lattice.

6 Decomposition of LDLI groupoids

Definition: Let G be a groupoid. We define ips as the smallest equivalence relation on G that
satisfies (a, a?) € ipg.

Proposition 6.4: For each LDLI groupoid G, the relation ipg is a congruence and, for all a, b, ¢
in G with (a,b) € ipg, we have ac = be.

Definition: A right constant groupoid is a groupoid satistying the identity z -z =y - 2.

Proposition 6.8: (i) Let H be an LDI groupoid and let A,, with a € H, be a family of pairwise
disjoint sets. Suppose that there exists mappings f,, from Ay to Ay, for all a,b in H. We define
the groupoid B(H, f) as the set | J,.,, Aa with the operation x defined by xxy = fq4(y), for x in A,
and y in Ay,. Then the groupoid B(H, f) is LI. Moreover, if the mappings f,, satisfy the identity

fa,,bc o fb,r: = fa,b,a,c o fa,,c (64)
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for all a, b and ¢ in H, then the groupoid B(H, f) is LD.
(4i) Let G be an LDLI groupoid. Then G is isomorphic to B(G/ipg, f), where we have f,; = ac
and a stands for the class of ipg that contains a.

Proposition 6.13: All simple nonidempotent LDLI groupoids are finite of primal cardinality:
there exists exactly one such groupoid, up to isomorphism, for an odd prime cardinality, and two
such groupoids, up to isomorphism, for the cardinality of two.

Theorem 6.17: Two terms t and t' are LDLI-equivalent if and only if they are LDI-equivalent
and they have the same right height.

Corollary 6.18: The variety of LDLI groupoids is the join of the variety of LDI groupoids and
of the one of right constant groupoids.
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