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Abstract. We enumerate three classes of non-medial quasigroups of order 243 = 35 up to
isomorphism. There are 92 non-medial distributive quasigroups of order 243 (extending the
work of Kepka and Němec), 17004 non-medial trimedial quasigroups of order 243 (extend-
ing the work of Kepka, Bénéteau and Lacaze), and 6 non-medial distributive Mendelsohn
quasigroups of order 243 (extending the work of Donovan, Griggs, McCourt, Opršal and
Stanovský).

The enumeration technique is based on affine representations over commutative Moufang
loops, automorphism groups of commutative Moufang loops, and computer calculations with
the LOOPS package in GAP.

1. Introduction

Enumeration of quasigroups (equivalently, latin squares) is one of the classical topics of
combinatorics. Enumerating all quasigroups of a given order n is a difficult problem already
for small values of n. Indeed, the number of latin squares is known only up to n = 11
[18], and the number of quasigroups up to isomorphism is known only up to n = 10 [17].
Consequently, enumerations of quasigroups usually deal with well-studied classes or varieties.

In this paper we focus on quasigroups that are representable over commutative Moufang
loops. More precisely, we enumerate the non-medial algebras of order 243 up to isomor-
phism in three classes of quasigroups: distributive quasigroups, trimedial quasigroups, and
distributive Mendelsohn quasigroups.

In the above classes, the enumeration is interesting only for orders that are powers of
3 (see below). The previous step, n = 81 = 34, has been completed in 1981 by Kepka
and Němec for distributive quasigroups [16], in 1987 by Kepka, Bénéteau and Lacaze for
trimedial quasigroups [15], and recently by Donovan, Griggs, McCourt, Opršal and Stanovský
[9] for distributive Mendelsohn quasigroups. Our calculations independently verify their
enumeration results.

A quasigroup is a set Q with a binary operation + such that all left translations Lx : Q→
Q, y 7→ x + y and all right translations Rx : Q → Q, y 7→ y + x are bijections of Q. A
quasigroup (Q,+) is a loop if it possesses a neutral element, that is, an element 0 satisfying
0 + x = x+ 0 = x for all x ∈ Q.

A quasigroup (Q,+) is called idempotent if it satisfies the identity

x+ x = x,
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medial (also entropic) if it satisfies the identity

(x+ y) + (u+ v) = (x+ u) + (y + v),

and distributive if it satisfies the two identities

x+ (y + z) = (x+ y) + (x+ z),

(x+ y) + z = (x+ z) + (y + z).

A quasigroup (Q,+) is trimedial (also terentropic or triabelian) if every three elements of Q
generate a medial subquasigroup.

Belousov established the following connection between these three types of quasigroups:

Theorem 1.1 ([1]). A quasigroup is distributive if and only if it is trimedial and idempotent.

Historically, distributive and medial quasigroups were one of the first nonassociative al-
gebras studied [8]. Their structure theory has been developed mostly in the 1960s and
1970s: see [3] or [25, Section 3] for an overview. Quasigroups satisfying various forms of
self-distributivity were one of the favorite topics of Belousov’s school of quasigroup theory
[2], and they have connections to other branches of mathematics as well [25, Section 1].

The classification of medial quasigroups is to a large extent a matter of understanding
conjugation in the automorphism groups of abelian groups. This is explained in detail in
[26], for instance, where one can also find the complete classification of medial quasigroups up
to order 63 (up to order 127 with a few gaps). Hou [12] has strong results on the enumeration
of idempotent medial quasigroups.

In the present paper, we will focus on non-medial trimedial quasigroups, which will require
computational tools that are rather different from those of the medial case.

One of the fundamental tools in quasigroup theory is loop isotopy. Affine representations
of quasigroups over various classes of loops are particularly useful in the study of quasigroups.

Kepka Theorem 2.9 [14] represents trimedial quasigroups over commutative Moufang
loops. It is a generalization of both the Toyoda-Bruck Theorem 2.10 [5, 20, 27] that rep-
resents medial quasigroups over abelian groups, and the Belousov-Soublin Theorem 2.11
[1, 24] that represents distributive quasigroups over commutative Moufang loops. Theorem
2.13 [15] solves the isomorphism problem for representations of trimedial quasigroups and
forms the basis for our enumeration algorithm.

The class of commutative Moufang loops has attracted attention from the very onset of
abstract loop theory. It is only a slight hyperbole to say that the fundamental text of loop
theory, Bruck’s “A survey of binary systems” [7], has been written largely to develop tools
for dealing with commutative Moufang loops.

Every finite commutative Moufang loop decomposes as a direct product of an abelian
group of order coprime to 3 and of a commutative Moufang loop of order a power of 3 [6,
Theorem 7C].

It was known to Bruck that there are no nonassociative commutative Moufang loops of
order less than 34. Kepka and Němec [16] classified nonassociative commutative Moufang
loops of order 34 and 35 up to isomorphism: there are two of order 34 and six of order 35.
See [16] for explicit constructions of these commutative Moufang loops, and [4, Theorem
IV.3.44] for more results on commutative Moufang loops with a prescribed nilpotence class.
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Every automorphism of a commutative Moufang loop decomposes as a direct product of
automorphisms of the two coprime components. Therefore, thanks to Kepka Theorem, every
finite trimedial quasigroup is a direct product of a medial quasigroup of order coprime to 3
and of a non-medial trimedial quasigroup of order a power of 3. In particular, there are no
non-medial trimedial quasigroups of order less than 34.

The classification of non-medial distributive quasigroups of order 34 was also carried out
in [16]; there are 6 such quasigroups up to isomorphism. Non-medial trimedial quasigroups
of order 34 were enumerated by Kepka, Bénétau and Lacaze in [15]; there are 35 of them
up to isomorphism. Both [16] and [15] use affine representations and a careful analysis of
the automorphism groups of the two nonassociative commutative Moufang loops of order 34,
without using computers.

The main result of this paper is a computer enumeration of non-medial distributive quasi-
groups and non-medial trimedial quasigroups of order 35 up to isomorphism; see Table 3.
The paper is organized as follows.

In Section 2 we summarize the theoretical results of [16] and [15] that we use in the
enumeration. After introducing the notions of 1-central automorphisms and orthomorphisms,
we state the representation theorems 2.9–2.11. Theorem 2.13 is an isomorphism theorem for
affine representations that covers the situations of Theorems 2.9–2.11. We finish the section
with notes on general affine representations and on Steiner and Mendelsohn quasigroups.

In Section 3 we describe in detail our main contribution, the classification algorithm (The-
orem 3.3).

In Section 4 we present the results of our calculations; see Tables 2 and 3. We also give a
sample of explicit constructions of non-medial distributive quasigroups of order 35, covering
all non-medial distributive Mendelsohn triple systems of order 35.

1.1. Basic definitions and results. Loops will be denoted additively. The center Z(Q)
of a loop Q is the set of all elements of Q that commute and associate with all elements of
Q. The associator subloop A(Q) of a loop Q is the smallest normal subloop of Q generated
by all associators L−1

x+(y+z)((x + y) + z). The automorphism group of Q will be denoted by

Aut(Q).
A loop Q is power associative if any element of Q generates an associative subloop. Every

element x of a power associative loop (Q,+) has a two-sided inverse −x satisfying (−x)+x =
0 = x+ (−x). We write x− y as a shorthand for x+ (−y).

A loop Q is diassociative if any two elements of Q generate an associative subloop. Cer-
tainly, diassociative loops are power associative. Commutative diassociative loops satisfy the
automorphic inverse property −(x+ y) = −x− y.

A loop Q is Moufang it it satisfies the identity x+ (y + (x+ z)) = ((x+ y) + x) + z. By
Moufang’s theorem [19], Moufang loops are diassociative. In a commutative Moufang loop
(Q,+), 3x ∈ Z(Q,+) for every x ∈ Q [6].

See [2, 4, 6, 7] for more results on commutative Moufang loops.

2. Affine representation of trimedial quasigroups

2.1. 1-central automorphisms and orthomorphisms. Let Q = (Q,+) be a loop and
α : Q→ Q a mapping. Throughout the paper, denote by α̂ the mapping id+ α, i.e.,

α̂ : Q→ Q, x 7→ x+ α(x).
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As in [16, p. 636], we say that α is 1-central if α̂(x) ∈ Z(Q) for every x ∈ Q.
Note that when Q is a loop with two-sided inverses and α : Q → Q is 1-central, then

x+ (−x+ α̂(x)) = (x− x) + α̂(x) = α̂(x) = x+ α(x) implies

α(x) = −x+ α̂(x),

an identity we will use freely.
For a loop Q, let

AutC(Q) = {α ∈ Aut(Q) : α is 1-central}
be the set of all 1-central automorphisms of Q. Note that AutC(Q) need not be a subgroup
of Aut(Q). When Q is an abelian group then AutC(Q) = Aut(Q), of course.

Lemma 2.1. Let Q = (Q,+, 0) be a loop with the automorphic inverse property and let
α : Q → Q be a mapping. Then α is a 1-central endomorphism if and only if α̂ is an
endomorphism into Z(Q). Moreover,

Ker(α) = {x ∈ Q : α(x) = 0} = {x ∈ Q : α̂(x) = x} = Fix(α̂).

In particular, if Q is a finite loop with the automorphic inverse property and α : Q→ Q is
a mapping, then α ∈ AutC(Q) if and only if α̂ is an endomorphism into Z(Q) with a unique
fixed point.

Proof. Suppose that α is a 1-central endomorphism. Then α̂(x+ y) = (x+ y) + α(x+ y) =
(x + y) + (α(x) + α(y)) = (x + y) + ((−x + α̂(x)) + (−y + α̂(y)) = ((x + y) + (−x − y)) +
(α̂(x) + α̂(y)) = ((x+ y)− (x+ y)) + (α̂(x) + α̂(y)) = α̂(x) + α̂(y), where we have used the
automorphic inverse property.

Conversely, suppose that α̂ is an endomorphism into Z(Q). Then α(x+ y) = −(x+ y) +
α̂(x+ y) = (−x− y) + (α̂(x) + α̂(y)) = (−x+ α̂(x)) + (−y+ α̂(y)) = α(x) + α(y), where we
have again used the automorphic inverse property.

Note that α(x) = 0 if and only if α̂(x) = x. The rest is clear. �

As in [13], we say that a bijection α of a loop (Q,+, 0) with two-sided inverses is a (left)
orthomorphism if the mapping id− α is also a bijection of Q.

Remark 2.2. Strictly speaking, orthomorphisms were defined only for finite groups in [13].
Nowadays, researchers routinely work with orthomorphisms in arbitrary groups, but usually
use the dual notion of a right orthomorphism (−id + α is a bijection). In loops with the
automorphic inverse property, id− α is a bijection if and only if −id+ α is a bijection.

An orthomorphism need not be an automorphism. For brevity, we call orthomorphisms
that are also automorphisms orthoautomorphisms.

For a loop Q with two-sided inverses, let

AutCO(Q) = {α ∈ AutC(Q) : α is an orthomorphism}
be the set of all 1-central orthoautomorphisms of Q.

Lemma 2.3. Let Q be a commutative Moufang loop and let α : Q→ Q be a mapping. Then
α ∈ AutCO(Q) if and only if id− α ∈ AutCO(Q).

Proof. In any diassociative loop we have id− (id− α) = α because x− (x− α(x)) = α(x).
It therefore suffices to show that if α ∈ AutCO(Q) then β = id − α ∈ AutCO(Q). Suppose
that α ∈ AutCO(Q). By Lemma 2.1, α̂ is an endomorphism into Z(Q).
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For every x ∈ Q we have β(x) = x − α(x) = x − (−x + α̂(x)) = 2x − α̂(x). Hence
β(x) +β(y) = (2x− α̂(x)) + (2y− α̂(y)) = (2x+ 2y)− (α̂(x) + α̂(y)) = 2(x+ y)− α̂(x+ y) =

β(x + y), proving that β ∈ Aut(Q). We also have β̂(x) = x + β(x) = 3x − α̂(x) ∈ Z(Q)
because 3x ∈ Z(Q), so β is 1-central. Finally, id− β = id− (id− α) = α shows that β is an
orthomorphism. �

Lemma 2.4. Let Q be a loop with two-sided inverses. Then the subsets AutC(Q) and
AutCO(Q) of Aut(Q) are closed under conjugation by elements of Aut(Q).

Proof. Let α ∈ AutC(Q) and ξ ∈ Aut(Q). Certainly, αξ ∈ Aut(Q). For every x ∈ Q we

have α̂ξ(x) = (id + αξ)(x) = (id + α)ξ(x) = α̂ξ(x) = ξ−1α̂ξ(x) ∈ Z(Q) since α is 1-central.
Therefore αξ is 1-central.

If α is also an orthomorphism then id− α is a bijection of Q, hence id− αξ = (id− α)ξ is
a bijection of Q, and αξ is an orthomorphism. �

2.2. Affine representations and isomorphism theorems. For the purposes of this pa-
per, we define quasigroups affine over loops as follows:

Definition 2.5. Let (Q,+) be a loop, let ϕ, ψ be automorphisms of (Q,+), and let c ∈
Z(Q,+). Define a binary operation ∗ on Q by

(2.1) x ∗ y = ϕ(x) + ψ(y) + c.

The resulting quasigroup (Q, ∗) is said to be affine over the loop (Q,+), it will be denoted by
Q(Q,+, ϕ, ψ, c), and the quintuple (Q,+, ϕ, ψ, c) will be called an arithmetic form of (Q, ∗).

Remark 2.6. Definition 2.5 can be further generalized by not assuming that c is a central
element or, even more generally, that x ∗ y = (ϕ(x) + c) + (ψ(y) + d) for automorphisms ϕ,
ψ and arbitrary elements c, d. On the other hand, it can be specialized by assuming that
c = 0 (linear case), that ϕψ = ψϕ, or that ϕ, ψ are 1-central, for instance.

Lemma 2.7. An affine quasigroup (Q, ∗) = Q(Q,+, ϕ, ψ, c) is idempotent if and only if
c = 0 and ϕ+ ψ = id.

Proof. If (Q, ∗) is idempotent then x = x ∗x = ϕ(x) +ψ(x) + c for every x ∈ Q. With x = 0
we deduce c = 0. Then ϕ(x) + ψ(x) = x for every x ∈ Q, so ϕ+ ψ = id.

Conversely, if ϕ+ ψ = id and c = 0 then x ∗ x = ϕ(x) + ψ(x) + c = x. �

Lemma 2.8. Let (Q, ∗) = Q(Q,+, ϕ, ψ, c) be an affine quasigroup. Then (Q, ∗) is medial if
and only if (Q,+) is an abelian group and ϕψ = ψϕ.

Proof. Note that (x ∗ u) ∗ (v ∗ y) is equal to

(ϕϕ(x) + ϕψ(u) + ϕ(c)) + (ψϕ(v) + ψψ(y) + ψ(c)) + c.

Since ϕ(c), ψ(c), c are central, we see that (Q, ∗) is medial if and only if

(2.2) (ϕϕ(x) + ϕψ(u)) + (ψϕ(v) + ψψ(y)) = (ϕϕ(x) + ϕψ(v)) + (ψϕ(u) + ψψ(y)).

If (Q,+) is an abelian group and ϕψ = ψϕ then (2.2) holds.
Conversely, suppose that (2.2) holds. With x = y = v = 0 we deduce ϕψ = ψϕ from (2.2).

Then with x = y = 0 we deduce ϕψ(u) +ϕψ(v) = ϕψ(v) +ϕψ(u), so (Q,+) is commutative.
Finally, with x = 0 we deduce the identity r + (s + t) = s + (r + t), which, combined with
commutativity, yields associativity of (Q,+). �
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Theorem 2.9 (Kepka Theorem [14]). A quasigroup is trimedial if and only if it admits
an arithmetic form (Q,+, ϕ, ψ, c), where (Q,+) is a commutative Moufang loop, ϕ, ψ are
1-central automorphisms, and ϕψ = ψϕ.

Lemmas 2.7, 2.8 and Theorem 1.1 show that Kepka Theorem generalizes both the Toyoda-
Bruck Theorem and the Belousov-Soublin Theorem. (Set (Q,+) to be an abelian group to
deduce the Toyoda-Bruck Theorem, and set c = 0 and ϕ + ψ = id to deduce the Belousov-
Soublin Theorem.)

Theorem 2.10 (Toyoda-Bruck Theorem [5, 20, 27]). A quasigroup is medial if and only if
it admits an arithmetic form (Q,+, ϕ, ψ, c), where (Q,+) is an abelian group and ϕψ = ψϕ.

Theorem 2.11 (Belousov-Soublin Theorem [1, 24]). A quasigroup is distributive if and only
if it admits an arithmetic form (Q,+, ϕ, ψ, 0), where (Q,+) is a commutative Moufang loop,
ϕ, ψ are 1-central automorphisms, and ϕ = id− ψ.

Note that in the Belousov-Soublin Theorem the condition ϕ = id−ψ implies that ψ is an
orthomorphism. We then of course have ϕψ = (id − ψ)ψ = ψ − ψ2 = ψ(id − ψ) = ψϕ for
free.

We offer a variation of the Belousov-Soublin Theorem which will be used in Section 4:

Proposition 2.12. A quasigroup is distributive if and only if it is isomorphic to (Q, ◦),
where (Q,+) is a commutative Moufang loop, ψ is a 1-central orthoautomorphism of (Q,+),

and x ◦ y = (2x− y) + ψ̂(y − x).

Proof. By Lemma 2.3, if (Q,+) is a commutative Moufang loop and ψ ∈ AutCO(Q,+) then
id− ψ ∈ AutCO(Q,+) ⊆ AutC(Q,+).

It therefore suffices to show that (x− ψ(x)) + ψ(y) = (2x− y) + ψ̂(y − x) when (Q,+) is

a commutative Moufang loop and ψ ∈ AutCO(Q,+). By Lemma 2.1, ψ̂ is an endomorphism

into Z(Q,+). Therefore, (x−ψ(x)) +ψ(y) = (2x− ψ̂(x)) + (−y+ ψ̂(y)) = (2x− y) + ψ̂(y)−
ψ̂(x) = (2x− y) + ψ̂(y − x). �

Let us now state a solution to the isomorphism problem for certain affine representations
that cover the representations in Theorems 2.9, 2.10, 2.11.

Theorem 2.13 ([15]). For i = 1, 2, let (Qi,+i) be a commutative Moufang loop, ϕi, ψi
1-central automorphisms of (Qi,+i), and ci a central element of (Qi,+i). Then the two
affine quasigroups Q(Q1,+1, ϕ1, ψ1, c1), Q(Q2,+2, ϕ2, ψ2, c2) are isomorphic if and only if
there is a loop isomorphism f : (Q1,+1)→ (Q2,+2) and u ∈ Im(id−1 (ϕ1 +1 ψ1)) such that
ϕ2 = fϕ1f

−1, ψ2 = fψ1f
−1, and c2 = f(c1 +1 u).

Remark 2.14. The original formulation of the isomorphism test in Theorem 2.13 is some-
what different in [15]. Namely, the condition is replaced with: There is a loop isomorphism
f : (Q1,+1)→ (Q2,+2) and w ∈ Q2 such that

ϕ2f = fϕ1, ψ2f = fψ1, f(c1)−2 c2 = w −2 (ϕ2(w) +2 ψ2(w)).

We claim that this condition is equivalent to the condition of Theorem 2.13. First, because
“to be isomorphic” is a symmetric relation, we can replace the above condition with: There
is a loop isomorphism f : (Q2,+2)→ (Q1,+1) and w ∈ Q1 such that

ϕ1f = fϕ2, ψ1f = fψ2, f(c2)−1 c1 = w −1 (ϕ1(w) +1 ψ1(w)).
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Upon considering f−1, we can further replace it with the statement: There is a loop isomor-
phism f : (Q1,+1)→ (Q2,+2) and w ∈ Q1 such that

ϕ1f
−1 = f−1ϕ2, ψ1f

−1 = f−1ψ2, f−1(c2)−1 c1 = w −1 (ϕ1(w) +1 ψ1(w)).

The condition on c2 is then equivalent to c2 = f(c1 +1 w −1 (ϕ1(w) + ψ1(w))), which says
that c2 = f(c1 +1 u) for some u ∈ Im(id−1 (ϕ1 +1 ψ1)).

Note that in the distributive case (c = 0 and ϕ + ψ = id), the isomorphism test of
Theorem 2.13 reduces to: There is a loop isomorphism f : (Q1,+1) → (Q2,+2) such that
ψ2 = fψ1f

−1.

2.3. Commuting 1-central automorphisms. Our computational results show that, sur-
prisingly, for some small nonassociative commutative Moufang loops Q, any two 1-central
automorphisms of Q commute. This is partly explained by Proposition 2.16.

Lemma 2.15. Let (Q,+) be a commutative Moufang loop and let ϕ, ψ be 1-central auto-

morphisms of (Q,+). Then ϕψ = ψϕ if and only if ϕ̂ψ̂ = ψ̂ϕ̂.

Proof. We must proceed carefully since the addition of mappings on (Q,+) is not necessarily
an associative operation. However, for any α ∈ AutC(Q,+) and β, γ ∈ Aut(Q,+) we have
α̂ + (β + γ) = (α̂ + β) + γ because Im(α̂) ⊆ Z(Q,+). In particular, we have

(2.3) ψ̂ + ϕ = ψ̂ + ϕ̂− id = ϕ̂+ ψ̂ − id = ϕ̂+ ψ.

Now, ϕ̂ψ̂ = (id+ϕ)ψ̂ = ψ̂+ϕψ̂ = ψ̂+ϕ+ϕψ and, by symmetry, ψ̂ϕ̂ = ϕ̂+ψ+ψϕ. Thanks

to (2.3), we see that ϕ and ψ commute if and only if ϕ̂ and ψ̂ commute. �

Proposition 2.16. Let Q be a nonassociative commutative Moufang loop of order a power of
3 such that Z(Q) is cyclic and Q/Z(Q) is associative. Then any two 1-central automorphisms
of Q commute.

Proof. Let ϕ, ψ be 1-central automorphisms of Q = (Q,+). By Lemma 2.15, it suffices to

show that ϕ̂ψ̂ = ψ̂ϕ̂.
By Lemma 2.1, ϕ̂ and ψ̂ are endomorphism into Z(Q). Any endomorphism into Z(Q) has

all associators (x+ (y+ z))− ((x+ y) + z) in its kernel, and thus vanishes on the associator

subloop A(Q). Since Z(Q) is cyclic, there are integers a, b such that ϕ̂(z) = az, ψ̂(z) = bz
for every z ∈ Z(Q).

By our assumption, Q/Z(Q) is associative and 0 < A(Q). Thus 0 < A(Q) < Z(Q) and

the restriction of each of ϕ̂, ψ̂ onto Z(Q) has nontrivial kernel. Since |Z(Q)| is a power of 3,
it follows that 3 divides a and b. Then ax, bx ∈ Z(Q) for every x ∈ Q, and we calculate

ϕ̂ψ̂(x) = aψ̂(x) = ψ̂(ax) = bax = abx = ϕ̂(bx) = bϕ̂(x) = ψ̂ϕ̂(x)

for every x ∈ Q. �

Every commutative Moufang loop of order ≤ 35 is centrally nilpotent of class at most two
[16, Lemma 1.6]. Both of the nonassociative commutative Moufang loops of order 34 have
cyclic centers, and so do two of the six nonassociative Moufang loops of order 35 (see Table
1). Proposition 2.16 therefore applies to these loops. However, Proposition 2.16 does not tell
the whole story, as there is a commutative Moufang loop of order 35 that has a non-cyclic
center yet any two of its 1-central automorphisms commute.
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2.4. Quasigroups corresponding to triple systems. Certain distributive quasigroups
correspond to interesting combinatorial designs, such as Hall triple systems (these are the
distributive Steiner quasigroups), or distributive Mendelsohn triple systems (the distributive
Mendelsohn quasigroups); see [9] for details. The classification of the respective quasigroups
directly translates into the classification of the corresponding triple systems.

Non-medial distributive Mendelsohn quasigroups were enumerated up to order 34 in [9],
and non-medial distributive Steiner triple systems were enumerated up to order 36 in [3].
In the present paper, we extend the classification in the Mendelsohn case to order 35. The
following simple criterion identifies the relevant quasigroups in our classification results.

Proposition 2.17 ([9, Proposition 2.1]). Let (Q,+) be a commutative Moufang loop and let
ψ ∈ AutCO(Q,+). The corresponding distributive quasigroup Q(Q,+, id− ψ, ψ, 0) is:

(i) Steiner if and only if (Q,+) has exponent 3 and ψ(x) = −x for every x ∈ Q;
(ii) Mendelsohn if and only if ψ2(x)− ψ(x) + x = 0 for every x ∈ Q.

Remark 2.18. In a commutative Moufang loop we have (x + y) + z = 0 if and only if
x + (y + z) = 0, so it is not necessary to specify the order of addition in the expression
ψ2(x)− ψ(x) + x above.

Corollary 2.19. Let (Q,+) be a commutative Moufang loop and let ψ ∈ AutCO(Q,+). The
corresponding distributive quasigroup Q(Q,+, id− ψ, ψ, 0) is:

(i) Steiner if and only if (Q,+) has exponent 3 and ψ̂ = 0;

(ii) Mendelsohn if and only if ψ̂2(x)− 3ψ̂(x) + 3x = 0 for every x ∈ Q.

Proof. Part (i) is obvious. For (ii), we calculate ψ2−ψ+ id = (−id+ ψ̂)2− (−id+ ψ̂) + id =

ψ̂2 − 3ψ̂ + 3id. �

In particular, if a commutative Moufang loop (Q,+) has exponent 3 then the corresponding

distributive quasigroup is Steiner if and only if ψ̂ = 0, and it is Mendelsohn if and only if
ψ̂2 = 0.

3. The classification algorithm

3.1. Outline of the algorithm. For the purposes of this classification, let us call an affine
quasigroup Q(Q,+, ϕ, ψ, c) of Definition 2.5 1-central if the automorphisms ϕ, ψ are 1-
central. (In particular, quasigroups that are 1-central over abelian groups are precisely the
central quasigroups [26].)

Theorem 2.13 suggests the following algorithm for the classification of 1-central quasi-
groups Q(Q,+, ϕ, ψ, c) over commutative Moufang loops.

Let Q = (Q,+). We calculate the set AutC(Q)×AutC(Q)×Z(Q) and filter it subject to
the equivalence induced by the condition in Theorem 2.13. To obtain trimedial quasigroups,
we consider only triples (ϕ, ψ, c) satisfying ϕψ = ψϕ. To obtain distributive quasigroups, we
consider only triples (ϕ, ψ, c) satisfying c = 0 and ϕ+ ψ = id.

To complete the classification for a fixed order n, it suffices to consider the disjoint union
of the classifications obtained for each of the commutative Moufang loops of order n because
isomorphic 1-central quasigroups have isomorphic underlying loops, cf. Theorem 2.13. To
obtain non-medial quasigroups, we consider only nonassociative loops, cf. Lemma 2.8.
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Essentially the same idea was used in [15, 16] to classify trimedial and distributive quasi-
groups of order 34 = 81 by hand. Manual classification is out of the question for order
35, and even straightforward computer calculation is insufficient since the size of the set
AutC(Q)×AutC(Q)× Z(Q) is of the magnitude 108 for some of the loops under considera-
tion.

In the rest of this section we describe how to speed up the algorithm. We start with
general ideas that can be used for any order.

3.2. Calculating 1-central automorphisms. We do not calculate the set AutC(Q) di-
rectly by filtering Aut(Q) because Aut(Q) can be large. Instead, we use an incremental
approach. Let

H(Q) = {α ∈ Aut(Q) : α(x) + x ∈ Z(Q) or α(x)− x ∈ Z(Q) for every x ∈ Q}.

We clearly have AutC(Q) ⊆ H(Q) and it is not hard to check that H(Q) is a subgroup of
Aut(Q) (unlike AutC(Q)).

The standard algorithm for calculating automorphisms of a given algebraic structure at-
tempts to extend a partial map defined on a fixed generating set into an automorphism,
while employing various isomorphism invariants to restrict possible images of the genera-
tors. Modifying this algorithm, we can calculate a (small) subgroup of Aut(Q) containing
H(Q) as follows. Let X be a set of generators of Q used in the search. Whenever a choice
is being made for the image of x ∈ X, restrict the choice to the cosets ±x+Z(Q). Since we
enforce this condition only for generators, the algorithm can yield a subgroup G of Aut(Q)
properly containing H(Q). We can then filter the elements of G to obtain H(Q) and, in
turn, AutC(Q) and AutCO(Q).

To finish the classification of distributive quasigroups, various subgroups U of Aut(Q) can
be used to filter AutCO(Q) up to conjugacy in U (which makes sense thanks to Lemma
2.4). This is not necessarily as powerful as the conjugacy in the entire group Aut(Q), but it
reduces the number of elements of AutCO(Q) to be considered in the final stage, where we
employ the entire Aut(Q) to finish the classification. In our implementation, we used for U
the pointwise stabilizer of Z(Q) in Aut(Q).

3.3. Calculating the action on AutC(Q)×AutC(Q)× Z(Q). For trimedial quasigroups,
we must find a way to handle the equivalence on AutC(Q) × AutC(Q) and the relation
between c1 and c2 in the isomorphism test of Theorem 2.13.

Consider any group G and a subset X ⊆ A closed under conjugation in A. (Later we
will take G = Aut(Q) and X = AutC(Q), cf. Lemma 2.4.) Then G acts on X × X by
simultaneous conjugation in both coordinates, i.e., (α, β)γ = (αγ, βγ). To calculate orbits on
X ×X, we take advantage of the following well-known result.

Lemma 3.1. Let G be a group acting on a set X. Let O be the set of orbit representatives
of the action, and for every x ∈ O let Ox be the set of orbit representatives of the action of
the stabilizer Gx of x on X. Then

{(a, b) : a ∈ O, b ∈ Oa}

is a complete set of orbit representatives of the action of G on X × X given by (x, y)g =
(xg, yg).
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Proof. For every (x, y) ∈ X ×X there is a unique a ∈ O and some z ∈ X such that (x, y)
and (a, z) are in the same orbit. For a fixed a ∈ O and some u, v ∈ X, we have (a, u) in the
same orbit as (a, v) if and only if u, v belong to the same orbit of Ga. �

Lemma 3.2. Let Q = (Q,+) be a commutative Moufang loop, let A = Aut(Q), and let α,
β ∈ AutC(Q). Then CA(α) ∩ CA(β) acts naturally on Z(Q)/Im(id− (α + β)).

Proof. Let I = Im(id− (α+ β)). First, we note that I ≤ Z(Q). Indeed, for every x ∈ Q, we
have

x− (α(x) + β(x)) = x− ((−x+ α̂(x)) + (−x+ β̂(x))) = 3x− (α̂(x) + β̂(x)) ∈ Z(Q),

because 3x ∈ Z(Q) and α, β are 1-central.
It remains to show that for every γ ∈ CA(α)∩CA(β) the mapping u+I 7→ γ(u)+I is well-

defined. Suppose that u+ I = v+ I for some u, v ∈ Z(Q). Then u = v+ (x− (α(x) +β(x)))
for some x ∈ Q, and we have

γ(u) = γ(v) + (γ(x)− (γα(x) + γβ(x)))

= γ(v) + (γ(x)− (αγ(x) + βγ(x)))

= γ(v) + (id− (α + β))(γ(x)) ∈ γ(v) + I,

finishing the proof. �

We can now reformulate Theorem 2.13 so that it can be used directly in the enumeration of
quasigroups that are 1-central over a given commutative Moufang loop. (A similar theorem
for abelian groups was obtained by Drápal [10, Theorem 3.2] and used as an enumeration
tool in [26].)

Theorem 3.3. Let Q = (Q,+) be a commutative Moufang loop and let A = Aut(Q). The
isomorphism classes of 1-central quasigroups over Q (resp. trimedial quasigroups over Q)
are in one-to-one correspondence with the elements of the set

{(ϕ, ψ, c) : ϕ ∈ X, ψ ∈ Yϕ, c ∈ Zϕ,ψ},

where

• X is a complete set of orbit representatives of the conjugation action of A on AutC(Q);
• Yϕ is a complete set of orbit representatives of the conjugation action of CA(ϕ) on

AutC(Q) (resp. on AutC(Q) ∩ CA(ϕ)), for every ϕ ∈ X;
• Zϕ,ψ is a complete set of orbit representatives of the natural action of CA(ϕ)∩CA(ψ)

on Z(Q)/Im(id− (ϕ+ ψ)).

Proof. Consider the equivalence relation of AutC(Q) × AutC(Q) × Z(Q) implicitly defined
by Theorem 2.13. By Lemma 3.1, it remains to describe when two triples (ϕ, ψ, c1) and
(ϕ, ψ, c2) are equivalent, where ϕ ∈ X, ψ ∈ Yϕ and c1, c2 ∈ Z(Q).

Let I = Im(id− (ϕ+ ψ)). Using Lemma 3.2, for any γ ∈ Aut(Q) we have c2 = γ(c1 + u)
for some u ∈ I if and only if c2 ∈ γ(c1 + I) = γ(c1) + I, which is equivalent to c2 + I =
γ(c1) + I = γ(c1 + I). �
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3.4. Calculating with loops of order 243. Recall that all six commutative Moufang
loops of order 243 were constructed by Kepka and Němec [16]. Moufang loops of order
81 were classified by Nagy and Vojtěchovský in [22], and Moufang loops of order 243 were
classified by Slattery and Zenisek in [23].

The 71 nonassociative Moufang loops of order 243 can be found in the LOOPS [21] package
for GAP [11] and can be obtained by calling MoufangLoop(243,i). The six nonassociative
commutative Moufang loops correspond to the indices i ∈ {1, 2, 5, 56, 57, 67}.

The default method in LOOPS for calculating automorphism groups of loops is powerful
enough to calculate automorphism groups of Moufang loops of order 81 and even of some
Moufang loops of order 243. We adopted the default algorithm, made a better use of global
variables and ran it with different choices of generators (to which the algorithm is highly
sensitive). We succeeded in calculating the automorphism groups for the six commutative
Moufang loops of order 243. The longest calculation, for MoufangLoop(243,5), took several
hours.

The calculation of the sets AutC(Q) and AutCO(Q) and of the respective actions of the
automorphism group was described in the previous two subsections.

To get a feel for the complexity of the calculations, the sizes of the various sets of auto-
morphisms encountered during the enumeration can be found in Table 1. Here X/G denotes
the number of orbits of the action of a group G on a set X (where the action is as described
above). The loop notation n/k refers to MoufangLoop(n,k).

Q 243/1 243/2 243/5 243/56 243/57 243/67
exponent of Q 9 27 9 3 9 9

Z(Q) C2
3 C9 C2

3 C2
3 C2

3 C9

size of A = Aut(Q) 629856 34992 78732 49128768 1889568 909792
|AutC(Q)| 729 81 729 4374 4374 81

|AutC(Q)/A| 16 12 38 8 18 6
|AutC(Q)2/A| 1827 207 11061 283 2146 54

|(AutC(Q)2 × Z(Q))/A| 2310 288 13056 375 2537 114
|AutCO(Q)| 729 81 729 2187 2187 81

|AutCO(Q)/A| 16 12 38 6 14 6

Table 1. Sizes of various subsets of automorphisms that appear in the classification.

4. Results

4.1. Enumeration. Let c(Q) denote the number of 1-central quasigroups, t(Q) the number
of trimedial quasigroups, d(Q) the number of distributive quasigroups, dM(Q) the num-
ber of distributive Mendelsohn quasigroups, and dS(Q) the number of distributive Steiner
quasigroups over a loop Q, up to isomorphism.

Table 2 displays these numbers for every nonassociative commutative Moufang loop of
order 81 and 243. The entries for order 81 can be found already in [9, 15, 16] and have
been independently verified by our calculations. The entries in the last row can be found in
[3] and have also been independently verified. The remaining entries for order 243 are new.
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Since all the commutative Moufang loops in the table are nonassociative, the corresponding
quasigroups are non-medial by Lemma 2.8.

Q 81/1 81/2 243/1 243/2 243/5 243/56 243/57 243/67
c(Q) 8 27 2310 288 13056 375 2537 114
t(Q) 8 27 2310 288 13056 165 1071 114
d(Q) 2 4 16 12 38 6 14 6

dM(Q) 2 0 0 0 0 5 1 0
dS(Q) 1 0 0 0 0 1 0 0

Table 2. Enumeration of various classes of affine quasigroups over a given
commutative Moufang loop.

In Table 3 we summarize the results of Table 2 by order, and we use notation analogous to
that of Table 2. For instance, t(n) denotes the number of non-medial trimedial quasigroups
of order n up to isomorphism. Note that we have not enumerated non-medial 1-central
quasigroups of order 243, since this would require also the enumeration of all quasigroups
Q(Q,+, ϕ, ψ, c), where (Q,+) is an abelian group of order 243 and ϕ, ψ are non-commuting
automorphisms of (Q,+); a difficult task. Finally, see [26] for an enumeration of medial
quasigroups up to order 63.

n 33 34 35 36

t(n) 0 35 17004 ?
d(n) 0 6 92 ?

dM(n) 0 2 6 ?
dS(n) 0 1 1 3

Table 3. Enumeration of various classes of non-medial quasigroups for a given order.

4.2. Explicit constructions. Detailed results of the enumeration, including arithmetical
forms for all the quasigroups, can be obtained from the third author upon request.

To present a sample of the detailed results, we now give explicit formulas for all elements
of AutCO(Q) up to conjugacy in Aut(Q), where Q is MoufangLoop(243,i) with i = 56 or
i = 57. As a consequence, we obtain an explicit description of all non-medial distributive
Mendelsohn triple systems of order 243 (cf. Table 3).

Example 4.1. According to [16], the loop MoufangLoop(81,1) is isomorphic to (Z4
3,+),

where

(a1, b1, c1, d1) + (a2, b2, c2, d2) = (a1 + a2 + (d1 − d2)(b1c2 − c1b2), b1 + b2, c1 + c2, d1 + d2).

Then Q = MoufangLoop(243,56) is the direct product MoufangLoop(81,1) × Z3. The
associator subloop is A(Q) = Z3×0×0×0×0 and the center is Z(Q) = Z3×0×0×0×Z3.
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The elements of AutCO(Q) up to conjugacy by Aut(Q) are given by the following six
endomorphisms into the center:

ψ̂1 : (a, b, c, d, e) 7→ (0, 0, 0, 0, 0), ψ̂2 : (a, b, c, d, e) 7→ (b, 0, 0, 0, 0),

ψ̂3 : (a, b, c, d, e) 7→ (e, 0, 0, 0, 0), ψ̂4 : (a, b, c, d, e) 7→ (0, 0, 0, 0, b),

ψ̂5 : (a, b, c, d, e) 7→ (b, 0, 0, 0, c), ψ̂6 : (a, b, c, d, e) 7→ (e, 0, 0, 0, b).

It is straightforward to check that each of these mappings is an endomorphism into the center
with a unique fixed point, and that all id−ψi = 2id− ψ̂i are permutations. By Lemma 2.1,
ψi ∈ AutCO(Q) for every i.

To check that the six mappings are pairwise non-conjugate, we use the following criterion:
Let α ∈ End(Q) and ξ ∈ Aut(Q). If H is characteristic subloop of Q, we have αξ(H) =
ξα(H). If both H and α(H) are characteristic subloops of Q then α(H) = αξ(H). Now
observe that:

• Im(ψ̂1) = 0,

• Im(ψ̂2) = A(Q) and ψ̂2(Z(Q)) = 0,

• Im(ψ̂3) = A(Q) and ψ̂3(Z(Q)) 6= 0,

• Im(ψ̂4) is neither A(Q), nor 6= Z(Q),

• Im(ψ̂5) = Z(Q) and ψ̂5(Z(Q)) = 0,

• Im(ψ̂6) = Z(Q) and ψ̂6(Z(Q)) 6= 0.

Example 4.2. According to [16], the loop MoufangLoop(81,2) is isomorphic to (Z2
3×Z9,+),

where

(a1, b1, c1) + (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2 + 3(c1 − c2)(a1b2 − b1a2)).
Then Q = MoufangLoop(243,57) is the direct product MoufangLoop(81,2) × Z3. The
associator subloop is A(Q) = 0× 0× 3Z9 × 0 and the center is Z(Q) = 0× 0× 3Z9 × Z3.

The elements of AutCO(Q) up to conjugacy by Aut(Q) are given by the following endo-
morphisms into the center:

ψ̂1 : (a, b, c, d) 7→ (0, 0, 0, 0), ψ̂2 : (a, b, c, d) 7→ (0, 0, 3c, 0),

ψ̂3 : (a, b, c, d) 7→ (0, 0, 6c, 0), ψ̂4 : (a, b, c, d) 7→ (0, 0, 3d, 0),

ψ̂5 : (a, b, c, d) 7→ (0, 0, 3a, 0), ψ̂6 : (a, b, c, d) 7→ (0, 0, 0, a),

ψ̂7 : (a, b, c, d) 7→ (0, 0, 0, c mod 3), ψ̂8 : (a, b, c, d) 7→ (0, 0, 3a, b),

ψ̂9 : (a, b, c, d) 7→ (0, 0, 3c, a), ψ̂10 : (a, b, c, d) 7→ (0, 0, 6c, a),

ψ̂11 : (a, b, c, d) 7→ (0, 0, 3a, c mod 3), ψ̂12 : (a, b, c, d) 7→ (0, 0, 3d, a),

ψ̂13 : (a, b, c, d) 7→ (0, 0, 3d, c mod 3), ψ̂14 : (a, b, c, d) 7→ (0, 0, 3d, 2c mod 3).

Again, it is straightforward to check that the corresponding mappings ψi belong to AutCO(Q).

To show that they are pairwise non-conjugate, first notice that ψ̂1 = 0, ψ̂2 = 3id and
ψ̂3 = 6id, so they commute with any automorphism. To distinguish the remaining mappings,
consider also the characteristic subloop B = {x ∈ Q : x3 = 1} = Z3 × Z3 × 3Z9 × Z3 and
observe that

• Im(ψ̂i) = A(Q) iff i = 4, 5; here ψ̂5(Z(Q)) = 0 but ψ̂4(Z(Q)) 6= 0;
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• Im(ψ̂i) is of order 3 but not A(Q) iff i = 6, 7; here ψ̂7(B) = 0 but ψ̂6(B) 6= 0,

• Im(ψ̂i) = Z(Q) for i = 8, . . . , 14;

– ψ̂i(Z(Q)) = 0 for i = 8, 9, 10, 11, but

∗ ψ̂8(B) = Z(Q),

∗ ψ̂11(B) = A(Q),

∗ both ψ̂9(B), ψ̂10(B) have order 3, 6= A(Q); we have ψ̂9 = ψ̂2 + ψ̂6 and if

there existed ξ such that ψ̂ξ9 = ψ̂10 then ψ̂ξ6 = ψ̂10 − ψ̂2 = ψ̂9 which is
impossible;

– ψ̂i(Z(Q)) = A(Q) for i = 12, 13, 14, but

∗ ψ̂12(B) = Z(Q),

∗ ψ̂13(B) = ψ̂14(B) = A(Q); they cannot be conjugate, because their squares,

ψ̂2
13 = ψ̂2 and ψ̂2

14 = ψ̂3, are not.

Which of these quasigroups give rise to distributive Mendelsohn triple systems? According
to Corollary 2.19:

• for Q = MoufangLoop(243,56) whose exponent is 3, these are precisely the mappings

ψ̂i with ψ̂2
i = 0, which is the case for i = 1, 2, 3, 4, 5.

• for Q = MoufangLoop(243,57), since 3Z(Q) = 0, the equation is equivalent to

ψ̂2
i = −3id, which is satisfied only for i = 14.

Recall that (see Proposition 2.12) the triple systems are defined on Q by

{(x, y, 2x− y + ψ̂(y − x)) : x, y ∈ Q},
from which explicit formulas for the triples can be derived.
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[26] D. Stanovský, P. Vojtěchovský, Central and medial quasigroups of small order. Submitted.
[27] K. Toyoda, On axioms of linear functions. Proc. Imp. Acad. Tokyo 17 (1941), 221–227.
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(Vojtěchovský) Department of Mathematics, University of Denver, 2280 S Vine St, Denver,
Colorado 80208, U.S.A.
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