THE RINGS WHICH ARE BOOLEAN II

PŘEMYSL JEDLIČKA

Abstract

In this article we answer the following question: if one has a ring R of characteristics 2 satisfying $x^{p}=x$, for some p; which values of p imply the identity $x^{2}=x$?

If we have a boolean algebra A, there is a classical way how to define a ring structure on A, namely

$$
x+y=\left(x \wedge y^{\prime}\right) \vee\left(x^{\prime} \wedge y\right), \quad x \cdot y=x \wedge y
$$

Such a ring is boolean, that means unitary (with 1 as the multiplicative unit), of characteristic 2 and satisfying the identity $x^{2}=x$. On the other hand, whenever one has a boolean ring, defining

$$
x \vee y=x+y+x y, \quad x \wedge y=x \cdot y, \quad x^{\prime}=1+x
$$

we obtain a boolean algebra.
Ivan Chajda and Filip Švrček were considering a more general situation. Suppose, that our unitary ring of characteristic 2 satisfies the identity $x^{p}=x$, for some $p>2$. Is there a lattice (or lattice-like) structure on the ring that enables one to reconstruct the ring operations? And they managed to find a structure satisfying all the lattice axioms but the absorption [1].

To make their result more complete, the authors of [1] needed to know whether the identity $x^{p}=x$ implies already $x^{2}=x$ (and hence the ring is already boolean and the solution is trivial) or there exist non-boolean examples. They tackled the problems using elementary methods obtaining some partial results [2].

In this paper we use structural properties of one-generated rings to answer the question completely. It turns out that the only fundamental examples of rings, that one has to consider, are finite fields.

Solution

We would like to find whether the identity $x^{p}=x$, for a given p, implies $x^{2}=x$, in a unitary ring of characteristic 2 . Since it is an identity of a single variable, it suffices to consider one-generated (sub)rings, more precisely, we are going to construct the free one-generated ring of characteristic 2 with respect to $x^{p}=x$.

The free one-generated ring of characteristic 2 is $\mathbb{Z}_{2}[x]$. Since our ring satisfies $x^{p}=x$, we have to factor over this identity, i.e. over the ideal generated by the polynomial $x^{p}-x$. However, this is not sufficient, we have to consider all the possible identities $f^{p}=f$, for every $f \in \mathbb{Z}_{2}[x]$, and therefore the free ring of $x^{p}=x$ is $\mathbb{Z}_{2}[x] / I$ where I is the ideal generated by all the polynomials $f^{p}-f$ for all $f \in \mathbb{Z}_{2}[x]$.

The ring $\mathbb{Z}_{2}[x]$ is a principal ideal domain and therefore I is generated by a single polynomial, namely by the greatest common divisor of I. And this generator is square-free:

[^0]Lemma 1. Let d be a common divisor of all the polynomials $f^{p}-f$, for all $f \in \mathbb{Z}_{2}[x]$. Then d is not divisible by the square of a non-trivial polynomial.
Proof. Let $f \in \mathbb{Z}_{2}[x]$ be irreducible; we want to prove $f^{2} \not \backslash d$. Since d is a divisor of $f^{p}-f$, it suffice to prove $f^{2} X\left(f^{p}-f\right)$.

The polynomial f clearly divides $f^{p}-f$; if f^{2} divides it then f divides the derivative too. $\left(f^{p}-f\right)^{\prime}=f^{\prime} \cdot\left(p \cdot f^{p-1}-1\right)$. The polynomial f divides neither f^{\prime} nor $p \cdot f^{p-1}-1$ and since it is irreducible, it cannot divide the derivative.

The preceding lemma holds in fact in each characteristic and for all identities in one variable with invertible linear coefficient - the proof remains the same.
Proposition 2. Any one-generated unitary ring of characteristic 2 satisfying the identity $x^{p}=x$ is a product of finite fields.

Proof. Any such one-generated ring is a factor of $\mathbb{Z}_{2}[x]$ over some ideal I. This ideal has to contain all the polynomials $f^{p}-f$. Hence I is generated by a common divisor of $f^{p}-f$, we denote it by d, and such d is square-free, according to Lemma 1 Hence $d=d_{1} \cdots d_{k}$, where all the d_{i} are irreducible and pairwise distinct. By the Chinese remainder theorem,

$$
\mathbb{Z}_{2}[x] / I \cong \mathbb{Z}_{2}[x] / d_{1} \times \cdots \times \mathbb{Z}_{2}[x] / d_{k}
$$

and since all the d_{i} are irreducible, they generate maximal ideals and $\mathbb{Z}_{2}[x] / d_{i}$ is a (finite) field.

It is very likely that Proposition 2 is already known to some extent; however we were not able to find a suitable reference. This is why we decided to include it in the paper.

With this proposition at hand, we are able to decide when $x^{p}=x$ enforces $x^{2}=x$.
Theorem 3. There exists a non-boolean unitary ring of characteristics 2 satisfying the identity $x^{p}=x$, for some $p \geq 1$, if and only if $p=l \cdot\left(2^{k}-1\right)+1$, for some $l \geq 0$ and $k \geq 2$.
Proof. " \Leftarrow " An example is the 2^{k}-element field. Since the multiplication group has $2^{k}-1$ elements, all the non-zero elements satisty $x^{l \cdot\left(2^{k}-1\right)}=1$.
" \Rightarrow " Let R be a ring of characteristics 2 satisfying $x^{p}=x$ and take $a \in R$ satisfying $a^{2} \neq a$. The subring $\langle a\rangle$ is a product of fields, according to Proposition 2. As $\langle a\rangle$ is not a product of 2 -element fields, there must exist a larger field in the product. But, a 2^{k}-element field satisfies the identity $x^{p}=x$ if and only if $(p-1) \mid\left(2^{k}-1\right)$, since the multiplication group is cyclic of order $2^{k}-1$ and an element x satisfies $x^{p-1}=1$ only if its order divides the order of the group.

References

[1] I. Chajda, F. Svrček, Lattice-like structures derived from rings. Contributions to General Algebra 20, Proc. of Salzburg Conference (AAA81), J. Hayn, Klagenfurt 2011, to appear.
[2] I. Chajda, F. Svrček, The rings which are boolean, to appear in Discussiones Mathem., General Algebra and Appl.
E-mail address: jedlickap@tf.czu.cz
Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6 - Suchdol, Czech Republic

[^0]: 2000 Mathematics Subject Classification. 06E20; 16R40.
 Key words and phrases. Boolean ring, unitary ring, characteristic 2.

