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Abstract. In this article we answer the following question: if one has a ring R
of characteristics 2 satisfying xp = x, for some p; which values of p imply the

identity x2 = x?

If we have a boolean algebra A, there is a classical way how to define a ring
structure on A, namely

x + y = (x ∧ y′) ∨ (x′ ∧ y), x · y = x ∧ y.

Such a ring is boolean, that means unitary (with 1 as the multiplicative unit), of
characteristic 2 and satisfying the identity x2 = x. On the other hand, whenever
one has a boolean ring, defining

x ∨ y = x + y + xy, x ∧ y = x · y, x′ = 1 + x

we obtain a boolean algebra.
Ivan Chajda and Filip Švrček were considering a more general situation. Sup-

pose, that our unitary ring of characteristic 2 satisfies the identity xp = x, for some
p > 2. Is there a lattice (or lattice-like) structure on the ring that enables one to
reconstruct the ring operations? And they managed to find a structure satisfying
all the lattice axioms but the absorption [1].

To make their result more complete, the authors of [1] needed to know whether
the identity xp = x implies already x2 = x (and hence the ring is already boolean
and the solution is trivial) or there exist non-boolean examples. They tackled the
problems using elementary methods obtaining some partial results [2].

In this paper we use structural properties of one-generated rings to answer the
question completely. It turns out that the only fundamental examples of rings, that
one has to consider, are finite fields.

Solution

We would like to find whether the identity xp = x, for a given p, implies x2 = x,
in a unitary ring of characteristic 2. Since it is an identity of a single variable,
it suffices to consider one-generated (sub)rings, more precisely, we are going to
construct the free one-generated ring of characteristic 2 with respect to xp = x.

The free one-generated ring of characteristic 2 is Z2[x]. Since our ring satisfies
xp = x, we have to factor over this identity, i.e. over the ideal generated by the
polynomial xp − x. However, this is not sufficient, we have to consider all the
possible identities fp = f , for every f ∈ Z2[x], and therefore the free ring of xp = x
is Z2[x]/I where I is the ideal generated by all the polynomials fp − f for all
f ∈ Z2[x].

The ring Z2[x] is a principal ideal domain and therefore I is generated by a
single polynomial, namely by the greatest common divisor of I. And this generator
is square-free:
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Lemma 1. Let d be a common divisor of all the polynomials fp−f , for all f ∈ Z2[x].
Then d is not divisible by the square of a non-trivial polynomial.

Proof. Let f ∈ Z2[x] be irreducible; we want to prove f2 6 | d. Since d is a divisor of
fp − f , it suffice to prove f2 6 | (fp − f).

The polynomial f clearly divides fp − f ; if f2 divides it then f divides the
derivative too. (fp − f)′ = f ′ · (p · fp−1 − 1). The polynomial f divides neither f ′

nor p · fp−1 − 1 and since it is irreducible, it cannot divide the derivative. �

The preceding lemma holds in fact in each characteristic and for all identities in
one variable with invertible linear coefficient—the proof remains the same.

Proposition 2. Any one-generated unitary ring of characteristic 2 satisfying the
identity xp = x is a product of finite fields.

Proof. Any such one-generated ring is a factor of Z2[x] over some ideal I. This
ideal has to contain all the polynomials fp− f . Hence I is generated by a common
divisor of fp−f , we denote it by d, and such d is square-free, according to Lemma 1
Hence d = d1 · · · dk, where all the di are irreducible and pairwise distinct. By the
Chinese remainder theorem,

Z2[x]/I ∼= Z2[x]/d1 × · · · × Z2[x]/dk

and since all the di are irreducible, they generate maximal ideals and Z2[x]/di is a
(finite) field. �

It is very likely that Proposition 2 is already known to some extent; however we
were not able to find a suitable reference. This is why we decided to include it in
the paper.

With this proposition at hand, we are able to decide when xp = x enforces
x2 = x.

Theorem 3. There exists a non-boolean unitary ring of characteristics 2 satisfying
the identity xp = x, for some p ≥ 1, if and only if p = l · (2k− 1) + 1, for some l ≥ 0
and k ≥ 2.

Proof. “⇐” An example is the 2k-element field. Since the multiplication group has

2k − 1 elements, all the non-zero elements satisty xl·(2k−1) = 1.
“⇒” Let R be a ring of characteristics 2 satisfying xp = x and take a ∈ R satisfying
a2 6= a. The subring 〈a〉 is a product of fields, according to Proposition 2. As 〈a〉
is not a product of 2-element fields, there must exist a larger field in the product.
But, a 2k-element field satisfies the identity xp = x if and only if (p− 1) | (2k − 1),
since the multiplication group is cyclic of order 2k − 1 and an element x satisfies
xp−1 = 1 only if its order divides the order of the group. �
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