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Abstract. A loop whose inner mappings are automorphisms is an automorphic loop (or
A-loop). We characterize commutative (A-)loops with middle nucleus of index 2 and solve
the isomorphism problem. Using this characterization and certain central extensions based
on trilinear forms, we construct several classes of commutative A-loops of order a power of
2. We initiate the classification of commutative A-loops of small orders and also of order p3,
where p is a prime.

1. Introduction

A loop is a groupoid (Q, ·) with neutral element 1 such that all left translations Lx : Q → Q,
y 7→ xy and all right translations Rx : Q → Q, y 7→ yx are bijections of Q. Given a loop Q
and x, y ∈ Q, we denote by x \ y the unique element of Q satisfying x · x \ y = y. In other
words, x \ y = L−1

x (y).
To reduce the number of parentheses, we adopt the following convention for term evaluation:

\ is less binding than juxtaposition, and · is less binding than \ . For instance xy \u · v \w is
parsed as ((xy) \u)(v \w).

The inner mapping group Inn(Q) of a loop Q is the permutation group generated by

Lx,y = L−1
yx LyLx, Rx,y = R−1

xy RyRx, Tx = L−1
x Rx,

where x, y ∈ Q. A subloop of Q is normal if it is invariant under all inner mappings of Q.
A loop Q is an automorphic loop (or A-loop) if Inn(Q) ≤ Aut(Q), that is, if every inner

mapping of Q is an automorphism of Q. Hence a commutative loop is an A-loop if all its left
inner mappings L−1

yx LyLx are automorphisms, which can be expressed by the identity

xy \x(yu) · xy \x(yv) = xy \x(y · uv). (A)

Note that the class of commutative A-loops contains commutative groups and commutative
Moufang loops.

We assume that the reader is familiar with the terminology and notation of loop theory, cf.
[1] or [10]. This paper is a companion to [6], where we have presented a historical introduction
and many new structural results concerning commutative A-loops, including:

• commutative A-loops are power-associative (cf. [2]),
• for a prime p, a finite commutative A-loop Q has order a power of p if and only if

every element of Q has order a power of p,
• every finite commutative A-loop is a direct product of a loop of odd order (consisting

of elements of odd order) and a loop of order a power of 2,
• commutative A-loops of odd order are solvable,
• the Lagrange and Cauchy theorems hold for commutative A-loops,
• every finite commutative A-loop has Hall π-subloops (and hence Sylow p-subloops),
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• if there is a nonassociative finite simple commutative A-loop, it is of exponent 2.
Despite these deep results, the theory of commutative A-loops is in its infancy. As an illus-
tration of this fact, the present theory is not sufficiently developed to classify commutative
A-loops of order 8 without the aid of a computer, commutative A-loops of order pq (where
p < q are primes), nor commutative A-loops of order p3 (where p is a prime).

The two main problems for commutative A-loops stated in [6] were: For an odd prime p,
is every commutative A-loop of order pk centrally nilpotent? Is there a nonassociative finite
simple commutative A-loop, necessarily of exponent 2 and order a power of 2? For an example
of a commutative A-loop of order 8 that is not centrally nilpotent, see Subsection 3.1.

In the meantime, we have managed to solve the first problem of [6] in the affirmative, but we
neither use nor prove the result here—it will appear elsewhere. The second problem remains
open and the many constructions of commutative A-loops of exponent 2 obtained here can be
seen as a step toward solving it.

One of the most important concepts in the investigation of commutative A-loops appears to
be the middle nucleus Nµ(Q), since, by [2], Nλ(Q) ≤ Nµ(Q), Nρ(Q) ≤ Nµ(Q) and Nµ(Q)EQ
is true in any A-loop Q. In §2 we characterize all commutative loops with middle nucleus of
index 2, solve the isomorphism problem, and then characterize all commutative A-loops with
middle nucleus of index 2. In §3 we classify commutative A-loops of order 8, among other
applications of §2.

Central extensions of commutative A-loops are described in §4. A broad class of such
extensions is obtained from trilinear forms that are symmetric with respect to an interchange
of (fixed) two arguments. As an application, we characterize all parameters (k, `) with the
property that there is a nonassociative commutative A-loop of order 2k with middle nucleus
of order 2` > 1.
§5 uses another class of central extensions partially based on the overflow in modular arith-

metic that yields many (conjecturally, all) nonassociative commutative A-loops of order p3,
where p is an odd prime.

A classification of commutative A-loops of small orders based on the theory and computer
computations can be found in §6.

2. Commutative loops with middle nucleus of index 2

Throughout this section, we denote by X = {x; x ∈ X} a disjoint copy of the set X.
Let G be a commutative group and f a bijection of G. Then G(f) will denote the groupoid

(G ∪G, ∗) with multiplication

x ∗ y = xy, x ∗ y = xy, x ∗ y = xy, x ∗ y = f(xy), (2.1)

for x, y ∈ G. Note that G(f) is a loop with neutral element 1.

Lemma 2.1. Let G be a commutative group, f a bijection of G and (Q, ·) = G(f) = (G∪G, ∗).
Then:

(i) Q is commutative.
(ii) x \ y = x−1y, x \ y = x−1y, x \ y = x−1f−1(y), x \ y = x−1y for every x, y ∈ G.
(iii) G ≤ Nµ(Q).
(iv) Q is a group if and only if f is a translation of the group G.
(v) If Q is not a group (that is, G = Nµ(Q)) then Nλ(Q) = Nρ(Q) = Z(Q) = {x ∈

G; f(x) = xf(1)}.
Proof. Part (i) follows from the definition of G(f). Part (ii) is straightforward, for instance,
x ∗ x−1y = xx−1y = y shows that x \ y = x−1y.
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For (iii), let x, y, z ∈ G and verify that

x ∗ (y ∗ z) = (x ∗ y) ∗ z,

x ∗ (y ∗ z) = x ∗ yz = xyz = xy ∗ z = (x ∗ y) ∗ z,

x ∗ (y ∗ z) = x ∗ yz = xyz = xy ∗ z = (x ∗ y) ∗ z,

x ∗ (y ∗ z) = x ∗ yz = f(xyz) = xy ∗ z = (x ∗ y) ∗ z.

This shows G ≤ Nµ(Q).
(iv) An easy calculation shows that 1 ∈ Nµ(Q) (that is, Q is a group) if and only if

f(xy) = xf(y) = f(x)y for every x, y ∈ G. With y = 1 we deduce that f(x) = xf(1) for every
x. On the other hand, f(x) = xf(1) implies f(xy) = xf(y) = f(x)y.

(v) Let x, y, z ∈ G. Then x ∗ (y ∗ z) = (x ∗ y) ∗ z, x ∗ (y ∗ z) = xyz = (x ∗ y) ∗ z,
x∗(y∗z) = xyz = (x∗y)∗z, and x∗(y∗z) = xf(yz) while (x∗y)∗z = f(xyz). Hence x ∈ Nλ(Q)
if and only if xf(yz) = f(xyz) for every y, z ∈ G. With y = z = 1, this condition reduces to
f(x) = xf(1). On the other hand, f(x) = xf(1) already implies xf(yz) = xyzf(1) = f(xyz).
We have Nρ(Q) = Nλ(Q) by commutativity of ∗. Since our assumption is G = Nµ(Q), we
conclude that Nλ(Q) = Nρ(Q) = Z(Q) = {x ∈ G; f(x) = xf(1)}. ¤
Lemma 2.2. Let Q be a commutative loop with subloop G satisfying G ≤ Nµ(Q), [Q : G] = 2.
Then G is a commutative group and there exists a bijection f of G such that Q is isomorphic
to G(f).

Proof. The commutative loop G is a group by G ≤ Nµ(Q). Denote by 1 a fixed element of
Q \ G, and define x = 1x = x1 for every x ∈ G. Note that 1 is well-defined, G ∩ G = ∅ and
Q = G ∪ G. Moreover, xy = x · y1 = xy · 1 = xy and xy = 1x · y = 1 · xy = xy for every x,
y ∈ G, using G ≤ Nµ(Q) again. Finally, if x1, y1, x2, y2 ∈ G satisfy x1y1 = x2y2 then

x1y1 = 1x1 · y11 = 1(x1 · y11) = 1(x1y1 · 1) = 1(x2y2 · 1) = x2y2.

Thus the multiplication in the quadrant G×G mimics that of G×G, except that the elements
are renamed according to the permutation f : G → G, x 7→ 1 · x1. ¤
Corollary 2.3. Let Q be a commutative loop. Then [Q : Nµ(Q)] ≤ 2 if and only if there exists
a commutative group G and a bijection f of G such that Q is isomorphic to G(f) = (G∪G, ∗)
defined by (2.1).

We now solve the isomorphism problem for nonassociative commutative loops with middle
nucleus of index 2 in terms of the associated bijections:

Proposition 2.4. Let G be a commutative group and f1, f2 bijections of G such that G(f1),
G(f2) are not groups. Then G(f1) ∼= G(f2) if and only if there is ψ ∈ Aut(G) such that

f−1
2 ψf1(x) = f−1

2 ψf1(1) · ψ(x) for all x ∈ G, (2.2)

and f−1
2 ψf1(1) is a square in G.

Proof. Denote by ∗ the multipication in G(f1), and by ◦ the multiplication in G(f2).
Assume that ϕ : G(f1) → G(f2) is an isomorphism. Since G(f1), G(f2) are not groups, ϕ

maps Nµ(G(f1)) = G onto Nµ(G(f2)) = G, and hence ψ = ϕ|G is a bijection of G. Then

ψ(xy) = ϕ(xy) = ϕ(x ∗ y) = ϕ(x) ◦ ϕ(y) = ψ(x) ◦ ψ(y) = ψ(x)ψ(y)

for every x, y ∈ G, so ψ ∈ Aut(G).
Define ρ : G → G by ρ(x) = ϕ(x). We have

ρ(x) = ϕ(x) = ϕ(x ∗ 1) = ϕ(x) ◦ ϕ(1) = ψ(x) ◦ ρ(1) = ψ(x)ρ(1),
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so ρ(x) = ρ(1)ψ(x) for every x ∈ G. Using this observation, we have

ψ(f1(xy)) = ϕ(f1(xy)) = ϕ(x∗y) = ϕ(x)◦ϕ(y) = ρ(x)◦ρ(y) = f2(ρ(x)ρ(y)) = f2(ρ(1)2ψ(xy)).

Equivalently, f−1
2 ψf1(x) = ρ(1)2ψ(x) for every x ∈ G. With x = 1, we deduce that ρ(1)2 =

f−1
2 ψf1(1) is a square, and that (2.2) holds.
Conversely, assume that (2.2) holds for some ψ ∈ Aut(G), and that u2 = f−1

2 ψf1(1) is a
square in G. Define ϕ : G(f1) → G(f2) by ϕ(x) = ψ(x), ϕ(x) = uψ(x). Then

ϕ(x ∗ y) = ϕ(xy) = ψ(xy) = ψ(x)ψ(y) = ψ(x) ◦ ψ(y) = ϕ(x) ◦ ϕ(y),

ϕ(x ∗ y) = ϕ(xy) = uψ(xy) = uψ(x)ψ(y) = uψ(x) ◦ ψ(y) = ϕ(x) ◦ ϕ(y),

and, similarly, ϕ(x ∗ y) = ϕ(x) ◦ ϕ(y) for every x, y ∈ G. Finally, using (2.2) to obtain the
third equality below, we have

ϕ(x ∗ y) = ϕ(f1(xy)) = ψ(f1(xy)) = f2(u2ψ(xy)) = uψ(x) ◦ uψ(y) = ϕ(x) ◦ ϕ(y)

for every x, y ∈ G. Thus G(f1) ∼= G(f2). ¤
We say that two bijections f1, f2 of G are conjugate in Aut(G) if there is ψ ∈ Aut(G)

such that f2 = ψf1ψ
−1. The following specialization of Proposition 2.4 will be useful in the

classification of commutative A-loops of order 8.

Corollary 2.5. Let G be a commutative group, and let f1, f2 be bijections of G such that
G(f1), G(f2) are not groups.

(i) If f1, f2 are conjugate in Aut(G) then G(f1) ∼= G(f2).
(ii) If f1(1) = 1 = f2(1) then G(f1) ∼= G(f2) if and only if f1, f2 are conjugate in Aut(G).
(iii) If f2 ∈ Aut(G), t is a square in G and f1(x) = f2(x)t for every x ∈ G then G(f1) ∼=

G(f2).

Proof. (i) Let ψ ∈ Aut(G) be such that f2 = ψf1ψ
−1. Then f−1

2 ψf1 = ψf−1
1 ψ−1ψf1 = ψ, so

f−1
2 ψf1(1) = ψ(1) = 1 is a square and (2.2) holds.
(ii) Assume that G(f1) ∼= G(f2). Then there is ψ ∈ Aut(G) such that (2.2) holds. Since

f−1
2 ψf1(1) = f−1

2 ψ(1) = f−1
2 (1) = 1, we deduce from (2.2) that f1, f2 are conjugate in Aut(G).

The converse follows by (i).
(iii) Let ψ be the trivial automorphism of G. Then (2.2) becomes f−1

2 f1(x) = f−1
2 f1(1) · x,

and it is our task to check this identity and that f−1
2 f1(1) is a square. Now, f−1

2 f1(1) =
f−1
2 (f2(1)t) = f−1

2 (f2(1))f−1
2 (t) = f−1

2 (t) is a squares since t is. Moreover, f1(1) = f2(1)·t = t,
so f1(x) = f1(1)f2(x), and (2.2) follows upon applying f−1

2 to this equality. ¤
Finally, we describe all commutative A-loops with middle nucleus of index 2.

Proposition 2.6. The following conditions are equivalent for a commutative loop Q possessing
a subgroup of index 2:

(i) Q is an A-loop and [Q : Nµ(Q)] ≤ 2.
(ii) Q = G(f), where G is a commutative group, [Q : G] = 2, and f is a permutation of G

satisfying

f(xy) = f(x)f(y)f(1)−1, (P1)

f(x2) = x2f(1), (P2)

f2(x)2f(x)−2 = f2(1) (P3)

for every x, y ∈ G.
(iii) Q = G(f), where G is a commutative group, [Q : G] = 2, and f is a permutation of G

satisfying (P1), (P2) and f2(1) = f(1)2.
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(iv) Q = G(f), where G is a commutative group, [Q : G] = 2, f(x) = g(x)t for every
x ∈ G, g ∈ Aut(G), g(x2) = x2 for every x ∈ G, and t is a fixed point of g.

Proof. By Corollary 2.3, we can assume that Q = G(f) = (G ∪ G, ∗), where G ≤ Nµ(Q) is
a commutative group and f is a bijection of G. (The global assumption that Q possesses a
subgroup of index 2 is needed only in (i) when Q is a group, to guarantee the existence of G.)
Let us establish the equivalence of (i) and (ii).

Denote by α(a, b, c, d) the ∗ version of (A), namely

(a ∗ b) \ (a ∗ (b ∗ (c ∗ d))) = [(a ∗ b) \ (a ∗ (b ∗ c))] ∗ [(a ∗ b) \ (a ∗ (b ∗ d))],

where a, b, c, d are taken from G ∪ G. With the exception of the variables a, b, c, d, we
implicitly assume that variables without bars are taken from G, while variables with bars are
taken from G.

Then α(x, y, u, v) holds, as the evaluation of α(x, y, u, v) takes place in the group G.
Since y ∈ Nµ(Q), α(a, y, c, d) holds. By commutativity of ∗, α(a, b, c, d) holds if and only
if α(a, b, d, c) holds. Hence it remains to investigate the identities α(x, y, u, v), α(x, y, u, v),
α(x, y, u, v), α(x, y, u, v), α(x, y, u, v), and α(x, y, u, v).

Straightforward calculation with (2.1) and Lemma 2.1 shows that α(x, y, u, v) holds if and
only if

xf(yuv) = f(xy)−1f(xyu)xf(yv). (2.3)

Using x = y = 1, (2.3) reduces to (P1). On the other hand, (P1) already implies (2.3), and so
α(x, y, u, v) is equivalent to (P1). From now on, we will assume that (P1) holds and denote
f(1) by t.

The identity α(x, y, u, v) is then equivalent to

x−1t−1 = f(x−2)f(y−2)f(y)2xt−5, (2.4)

and since t = f(yy−1) = f(y)f(y−1)t−1 yields

f(y−1) = f(y)−1t2, (2.5)

we can rewrite (2.4) as f(x)2 = x2t2, or, equivalently (using (P1)), as (P2).
Finally, note that (P1) and (2.5) imply

f2(uv) = f(f(uv)) = f(f(u)f(v)t−1) = f2(u)f2(v)f(t−1)t−2 = f2(u)f2(v)f(t)−1. (2.6)

Using (2.6) and (2.5), we see, after a lengthy calculation, that the identity α(x, y, u, v) is
equivalent to (P3).

We leave it to the reader to check that the identities α(x, y, u, v), α(x, y, u, v), α(x, y, u, v)
imply no additional conditions on f beside (P1)–(P3), and, conversely, that if (P1)–(P3) are
satisfied then the identities α(x, y, u, v), α(x, y, u, v), α(x, y, u, v) hold.

We have proved the equivalence of (i) and (ii).
Assume that (ii) holds. With x = 1 in (P3) we have f2(1)2f(1)−2 = f(t), or f(t)2t−2 = f(t),

or f(t) = t2, so (iii) holds. Conversely, assume that (iii) holds. Then, f2(x)2f(t)−1 =
f2(x)t−2 = f(f(x))f(f(x))t−2 = f(f(x)f(x))t−1 = f(f(x)2)t−1 = f(x)2, which is (P3), so (ii)
holds.

Assume that (iii) holds and define g by g(x) = f(x)t−1, where t = f(1). Then g(xy) =
f(xy)t−1 = f(x)f(y)t−2 = f(x)t−1f(y)t−1 = g(x)g(y) by (P1), g(x2) = f(x2)t−1 = x2 by
(P2), and g(t) = f(t)t−1 = t by f(t) = t2. Conversely, assume that (iv) holds, f(x) = g(x)t,
g ∈ Aut(G), where t is a fixed point of g (not necessarily satisfying t = f(1)). Then f(1) =
g(1)t = t, f(xy) = g(xy)t = g(x)g(y)t = g(x)tg(y)tt−1 = f(x)f(y)t−1, f(x2) = g(x2)t = x2t,
and f(t) = g(t)t = t2, proving (iii). ¤
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3. Constructions of commutative A-loops with middle nucleus of index 2

As an application of Proposition 2.6, we classify all commutative A-loops of order 8 and
present a class of commutative A-loops of exponent 2 with trivial center and middle nucleus
of index 2.

3.1. Commutative A-loops of order 8. It is not difficult to classify all commutative A-
loops of order 8 up to isomorphism with a finite model builder, such as Mace4 [7]. It turns out
that there are 4 nonassociative commutative A-loops of order 8. All such loops have middle
nucleus of index 2; a fact for which we do not have a human proof. But using this fact, we
can finish the classification by hand with Proposition 2.4, Corollary 2.5 and Proposition 2.6.

Lemma 3.1. Let G be a commutative loop, g ∈ Aut(G) and t ∈ G. Let f be a bijection of G
defined by f(x) = g(x)t. Then Z(G(f)) = Z(G(g)) as sets.

Proof. If 1 = g then f is a translation by t and both G(g), G(f) are commutative groups,
hence Z(G(g)) = G ∪G = Z(G(f)).

Assume that 1 6= g. Then neither g nor f is a translation of G, so both G(g) and G(f) are
nonassociative, by Lemma 2.1(iv). By Lemma 2.1(v), Z(G(f)) = {x ∈ G; f(x) = xf(1)} =
{x ∈ G; g(x)t = xt} = {x ∈ G; g(x) = x} = Z(G(g)). ¤

Let Q be a nonassociative commutative A-loop of order 8, necessarily with a middle nucleus
of index 2. By Proposition 2.6, Q = G(f), where G is a commutative group of order 4 and
f(x) = g(x)t for some g ∈ Aut(G) and t ∈ G such that g(x2) = x2 and g(t) = t.

Let G = Z4 = 〈a〉 be the cyclic group of order 4. The two automorphisms of G are the
trivial automorphism g = 1 and the transposition g = (a, a3); both fix all squares of G. Let
g = 1 and f(x) = g(x)t for some t ∈ G. Then G(f) is a commutative group by Lemma
2.1(v). Assume that g = (a, a3). Then G(g) is a nonassociative commutative A-loop. The
only nontrivial fixed point of g is a2. Let f(x) = g(x)a2. By Corollary 2.5(iii), G(f) ∼= G(g).

Now let G = Z2 × Z2 = 〈a〉 × 〈b〉 be the Klein group. Then Aut(G) = {(), (a, b), (a, ab),
(b, ab), (a, b, ab), (a, ab, b)} ∼= S3. The only square in G is 1 and it is trivially fixed by all
g ∈ Aut(G).

If g = 1 and f(x) = g(x)t for some t ∈ G, G(g) is a commutative group by Lemma 2.1(v).
Assume that g1 = (a, b). The choices for t are t = 1, t = ab. Let f1(x) = g1(x)ab. Then G(g1),
G(f1) are nonassociative commutative A-loops. Since g1(xx) = g1(1) = 1, G(g1) has exponent
2. Since f1(xx) = f1(1) = ab, G(f1) does not have exponent 2. Hence G(g1) 6∼= G(f1).

Assume that g2 = (a, ab), and note that the choices for t are t = 1, t = b. Let f2(x) = g2(x)b.
Since all transpositions of S3 are conjugate in S3, G(g1) ∼= G(g2) by Corollary 2.5(i). Note
that f1 = ψ−1f2ψ with ψ = (b, ab). Hence G(f1) ∼= G(f2) by Corollary 2.5.

Similarly, no new nonassociative commutative A-loop of order 8 is obtained with g3 = (b, ab).
Let g4 = (a, b, ab). Then t = 1 is the only choice, and G(g4) is a nonassociative commutative

A-loop. By Lemma 2.1(v), Z(G(g4)) = 1 and Z(G(g1)) ∼= Z2. By Lemma 3.1, Z(G(f1)) ∼=
Z(G(g1)). Thus G(g4) is a new nonassociative commutative A-loop.

Finally, let g5 = (a, ab, b). Since g4, g5 are conjugate in Aut(G), G(g4) ∼= G(g5) by Corollary
2.5(i).

3.2. A class of commutative A-loops of exponent 2 with trivial center and middle
nucleus of index 2. Let GF(2) be the two-element field and let V be a vector space over
GF(2) of dimension n ≥ 2. Let G = (V,+) be the corresponding elementary abelian 2-group.

Let {e1, . . . , en} be a basis of V . Define an automorphism of G by

g(e1) = e2, g(e2) = e3, g(en−1) = en, g(en) = e1 + en.
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Since g(x + x) = g(0) = 0 = g(x) + g(x), Proposition 2.6 with f = g shows that Qn = G(f)
is a commutative A-loop of order 2n+1 with nucleus of index at most 2.

We claim that g has no fixed points besides 0. Indeed, for x =
∑n

i=1 αiei we have

g(x) = αne1 + α1e2 + · · ·αn−2en−1 + (αn−1 + αn)en,

so x = g(x) if and only if

α1 = αn, α2 = α1, αn−1 = αn−2, αn = αn−1 + αn,

or, α1 = · · · = αn = 0.
Thus Lemma 2.1(v) implies that Qn has trivial center. In particular, Qn is not a group,

and [Qn : Nµ(Qn)] = 2 follows. Finally, x ∗ x = x + x = 0 and x ∗ x = g(x + x) = 0 for every
x ∈ G, so Qn has exponent two.

4. Central extensions based on trilinear forms

Let Z, K be loops. We say that a loop Q is an extension of Z by K if Z EQ and Q/Z ∼= K.
If Z ≤ Z(Q), the extension is said to be central.

It is well-known that central extensions of an abelian group Z by a loop K are precisely
the loops K nθ Z defined on K × Z by

(x, a)(y, b) = (xy, abθ(x, y)),

where θ : K ×K → Z is a (loop) cocycle, that is, a mapping satisfying θ(x, 1) = θ(x, 1) = 1
for every x ∈ K.

In [2, Theorem 6.4], Bruck and Paige described all central extensions of an abelian group
Z by an A-loop K resulting in an A-loop Q. The cocycle identity they found is rather com-
plicated, and despite some optimism of Bruck and Paige, it is by no means easy to construct
cocycles that conform to it.

In the commutative case, we deduce from [2, Theorem 6.4]:

Corollary 4.1. Let Z be an abelian group and K a commutative A-loop. Let θ : K ×K → Z
be a cocycle satisfying θ(x, y) = θ(y, x) for every x, y ∈ K and

F (x, y, z)F (x′, y, z)θ(Ry,z(x), Ry,z(x′)) = F (xx′, y, z)θ(x, x′) (4.1)

for every x, y, z, x′ ∈ K, where

F (x, y, z) = θ(Ry,z(x), yz)−1θ(y, z)−1θ(xy, z)θ(x, y).

Then K nθ Z is a commutative A-loop.
Conversely, every commutative A-loop that is a central extension of Z by K can be repre-

sented in this manner.

Corollary 4.2. Let Z be an elementary abelian 2-group and K a commutative A-loop of
exponent two. Let θ : K ×K → Z be a cocycle satisfying θ(x, y) = θ(y, x) for every x, y ∈ K,
θ(x, x) = 1 for every x ∈ K, and

θ(x, y)θ(x′, y)θ(xx′, y)θ(x, x′)θ(xy, z)θ(x′y, z)θ(y, z)θ((xx′)y, z) =

θ(Ry,z(x), yz)θ(Ry,z(x′), yz)θ(Ry,z(xx′), yz)θ(Ry,z(x), Ry,z(x′)) (4.2)

for every x, y, z, x′ ∈ K. Then K nθ Z is a commutative A-loop of exponent two.
Conversely, every commutative A-loop of exponent two that is a central extension of Z by

K can be represented in this manner.
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When K is an elementary abelian 2-group, the cocycle identity (4.2) can be rewritten as

θ(x, y)θ(x′, y)θ(xx′, y)

θ(xy, z)θ(x′y, z)θ(xx′, z) (4.3)

θ(x, yz)θ(x′, yz)θ(xx′, yz)

θ(y, z)θ(xx′, z)θ((xx′)y, z) = 1.

Since every line above is of the form θ(u,w)θ(v, w)θ(uv,w), it is tempting to try to satisfy
(4.2) by imposing θ(u,w)θ(v, w)θ(uv,w) = 1 for every u, v, w ∈ K. However, that identity
already implies associativity. A nontrivial solution to the cocycle identity for commutative
A-loops of exponent two can be obtained as follows:

Proposition 4.3. Let Z = GF(2) and let K be an elementary abelian 2-group. Let g :
K3 → GF(2) be a trilinear form such that g(x, xy, y) = g(y, xy, x) for every x, y ∈ K.
Define θ : K2 → GF(2) by θ(x, y) = g(x, xy, y). Then Q = K nθ Z is a commutative A-
loop of exponent 2. Moreover, (y, b) ∈ Nµ(Q) if and only if for every x, z ∈ K we have
g(y, x, z) = g(x, z, y).

Proof. Trilinearity alone implies that θ(u,w)θ(v, w)θ(uv, w) = g(u, v, w)g(v, u, w). The left-
hand side of (4.3) can then be rewritten as

g(x, x′, y)g(x′, x, y)g(xy, x′y, z)g(x′y, xy, z)g(x, x′, yz)g(x′, x, yz)g(y, xx′, z)g(xx′, y, z),

which reduces to 1 by trilinearity.
We have (y, b) ∈ Nµ(Q) if and only if θ(x, y)θ(xy, z) = θ(y, z)θ(x, yz) for every x, z ∈ K,

and the rest follows from trilinearity of g. ¤

Let V = GF(2)n. Call a 3-linear form g : V → GF(2) (1, 3)-symmetric if g(x, y, z) =
g(z, y, x) for every x, y, z ∈ V . By Proposition 4.3, a (1, 3)-symmetric trilinear form gives
rise to a commutative A-loop Q of exponent 2, and (y, b) ∈ Nµ(Q) if and only if g(y, x, z) =
g(y, z, x), that is, if and only if the induced bilinear form g(y,−,−) : V 2 → GF(2) is symmetric.

Example 4.4. Let V = GF(2)3 with basis {e1, e2, e3}. Define a (1, 3)-symmetric trilinear
form g : V 3 → GF(2) by g(ei, ej , ek) = 0 for every 1 ≤ i, j, k ≤ 3, except for g(e1, e2, e1) =
g(e2, e1, e3) = g(e3, e2, e3) = 1. Then it is not difficult to check (by computer) that for every
0 6= x ∈ V the induced form g(x,−,−) : V 2 → GF(2) is not symmetric.

Lemma 4.5. Let V = GF(2)n, n ≥ 3. Then there is a (1, 3)-symmetric form g : V 3 → GF(2)
such that for every 0 6= x ∈ V the induced bilinear form g(x,−,−) is not symmetric.

Proof. We proceed by induction on n. When n = 3, see Example 4.4. Assume that V has
basis {e1, . . . , en+1}, and that for the hyperplane W = 〈e1, . . . , en〉 we have a (1, 3)-symmetric
form g : W 3 → GF(2) such that for every 0 6= x ∈ W the induced form g(x,−,−) is not
symmetric. Extend g into a (1, 3)-symmetric trilinear form ĝ : V 3 → GF(2) arbitrarily but
subject to the restrictions

ĝ(en+1, ei, ej) = g(en, ei, ej) for 1 ≤ i, j ≤ n,

ĝ(en+1, en, en+1) 6= ĝ(en+1, en+1, en),

ĝ(en, en+1, en) = ĝ(en+1, en, en).

For 0 6= x ∈ W the induced form ĝ(x,−,−) is an extension of the form g(x,−,−), and hence
it is not symmetric. Furthermore, ĝ(en+1 + x, y, z) = ĝ(en+1, y, z) + g(x, y, z) = g(en, y, z) +
g(x, y, z) = g(en+x, y, z), so ĝ(en+1+x,−,−) is not symmetric as long as x 6= en. By definition,
ĝ(en+1+en, en, en+1) = ĝ(en+1, en, en+1)+ĝ(en, en, en+1) = ĝ(en+1, en, en+1)+ĝ(en+1, en, en) 6=
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ĝ(en+1, en+1, en) + ĝ(en, en+1, en) = ĝ(en+1 + en, en+1, en), so ĝ(en+1 + en,−,−) is not sym-
metric. Finally, ĝ(en+1,−,−) is not symmetric on 〈en, en+1〉 by definition. ¤

Example 4.6. By Lemma 4.5, for every n ≥ 3 there is a commutative A-loop Q of exponent
2 and order 2n+1 with Nµ(Q) = Z(Q), |Z(Q)| = 2.

Let Q be a finite commutative A-loop of exponent 2. By results of [6], |Q| = 2k for some k.
Let |Nµ(Q)| = 2`. We show how to realize all possible pairs (k, `) with ` > 0.

Lemma 4.7. Let k ≥ ` > 0. Then there is a nonassociative commutative A-loop of order 2k

with middle nucleus of order 2` if and only if: either d = k − ` ≥ 3, or d ≥ 1 and ` ≥ 2.

Proof. If d ≥ 3, consider the loop Q of order 2d+1 with middle nucleus of order 2 from Example
4.6. Then Q× (Z2)k−d+1 achieves the parameters (k, `).

Assume that d = 2. The parameters (3, 1) are not possible by §3, and the parameters (4, 2)
are possible (see §6). Then (k, `) can be achieved using the appropriate direct product.

Finally, assume that d = 1. Then we are done by Subsection 3.2. We obviously must have
` ≥ 2, else |Q| = 2k ≤ 4. ¤

We remark that Lemma 4.5 cannot be improved:

Lemma 4.8. Let V = GF(2)n and let g : V 3 → GF(2) be a (1, 3)-symmetric trilinear form.
If n < 3 then there is 0 6= x ∈ V such that the induced form g(x,−,−) is symmetric.

Proof. There is nothing to show when n = 1, so assume that n = 2 and {e1, e2} is a basis of V .
The form g is determined by the 6 values g(e1, e1, e1), g(e1, e1, e2), g(e1, e2, e1), g(e1, e2, e2),
g(e2, e1, e2) and g(e2, e2, e2).

Suppose that no induced form g(x,−,−) is symmetric, for 0 6= x ∈ V . Then g(e1, e1, e2) 6=
g(e1, e2, e1), else g(e1,−,−) is symmetric. Similarly, g(e2, e1, e2) 6= g(e2, e2, e1). But then
g(e1 + e2, e1, e2) = g(e1, e1, e2) + g(e2, e1, e2) = g(e1, e2, e1) + g(e2, e2, e1) = g(e1 + e2, e2, e1),
hence g(e1 + e2,−,−) is symmetric, a contradiction. ¤

Remark 4.9. The many examples presented so far might suggest that Q/Nµ(Q) is a group in
every commutative A-loop. This is not so: Consider a commutative Moufang loop Q. Then
Q is a commutative A-loop, and Nµ(Q) = Z(Q) since the three nuclei of Q coincide. So the
statement “Q/Nµ(Q) is a group” is equivalent to “Q/Z(Q) is an abelian group”, i.e., to “Q
has nilpotency class at most 2”. There are commutative Moufang loops of nilpotency class 3.

Problem 4.10. Find a smallest commutative A-loop Q in which Q/Nµ(Q) is not a group.

4.1. Adding group cocycles. Let Z be an abelian group and K a loop. Then a loop cocycle
θ : K ×K → Z is said to be a group cocycle if it satisfies the identity

θ(x, y)θ(xy, z) = θ(y, z)θ(x, yz). (4.4)

Note that if K is a group and θ is a group cocycle then K nθ Z is a group, too.

Lemma 4.11. Let Z be an abelian group, K a group and θ, µ : K×K → Z loop cocycles such
that ν = θµ−1 : (x, y) 7→ θ(x, y)µ(x, y)−1 is a group cocycle. Then the left inner mappings in
K nθ Z and K nµ Z coincide.

Proof. Calculating in K nθ Z, we have

(x, a)(y, b) = (xy, abθ(x, y)),

(x, a) \ (y, b) = (x \ y, a−1bθ(x, x \ y)−1).
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Then

(x, a)(y, b) \ (x, a)((y, b)(z, c)) = (xy, abθ(x, y)) \ (xyz, abcθ(x, yz)θ(y, z)

= (z, cθ(x, yz)θ(y, z)θ(x, y)−1θ(xy, z)−1). (4.5)

Thus the left inner mappings in K nθ Z and K nµ Z coincide if and only if

θ(x, yz)θ(y, z)θ(x, y)−1θ(xy, z)−1 = µ(x, yz)µ(y, z)µ(x, y)−1µ(xy, z)−1

for every x, y, z ∈ K, which happens precisely when ν = θµ−1 is a group cocycle. ¤

Lemma 4.12. Let Z be an abelian group, K a group and θ : K × K → Z a cocycle such
that K nθ Z is a commutative A-loop. Let µ : K × K → Z be a group cocycle satisfying
µ(x, y) = µ(y, x) for every x, y ∈ K. Then K nµθ Z is a commutative A-loop with the same
(left) inner mappings as K nθ Z.

Proof. Both Qθ = K nθ Z, Qµθ = K nµθ Z are commutative loops. Since µθθ−1 is a group
cocycle, Qµθ has the same (left) inner mappings as Qθ, by Lemma 4.11. It therefore remains
to show that every left inner mapping of Qµθ is an automorphism.

Let (x, a), (y, b) ∈ K × Z and let ϕ be a left inner mapping of Qµθ (and hence of Qθ).
Denote by · the multiplication in Qθ and by ∗ the multiplication in Qµθ. Then

ϕ((x, a) ∗ (y, b)) = ϕ((x, a) · (y, b) · (1, µ(x, y))) = ϕ((x, a)) · ϕ((y, b)) · (1, µ(x, y)),

because (1, µ(x, y)) ∈ Z is a central element. The equation (4.5) in fact shows that ϕ((x, a)) =
(x, a′) for some a′, and similarly, ϕ((y, b)) = (y, b′) for some b′. Thus

ϕ((x, a))·ϕ((y, b))·(1, µ(x, y)) = (x, a′)·(y, b′0·(1, µ(x, y)) = (x, a′)∗(y, b′) = ϕ((x, a))∗ϕ((y, b)),

proving ϕ ∈ Aut(Qµθ). ¤

5. A class of commutative A-loops of order p3

Let Q be a commutative A-loop of odd order. Equivalently, let Q be a finite commutative
A-loop in which the mapping x 7→ x2 is a bijection of Q (cf. [6, Lemma 3.1]). For x ∈ Q,
denote by x1/2 the unique element of Q such that (x1/2)2 = x. Define a new operation ◦ on
Q by

x ◦ y = (x−1 \xy2)1/2.

By [6, Lemma 3.5], (Q, ◦) is a Bruck loop. By [6, Corollary 3.11], (Q, ◦) is commutative if and
only if it is isomorphic to Q.

Proposition 5.1. Let p be an odd prime, and let Q be a commutative A-loop of order p, 2p,
4p, p2, 2p2 or 4p2. Then Q is an abelian group.

Proof. Loops of order less than 5 are abelian groups. By the Decomposition Theorem men-
tioned in the introduction, it remains to prove that commutative A-loops of order p and p2 are
abelian groups. For |Q| = p, this follows from the Lagrange Theorem and power-associativity.
Assume that |Q| = p2. Then (Q, ◦) is a Bruck loop of order p2. Burn showed in [3] that all
Bol loops of order p2 are groups, and hence (Q, ◦) is an abelian group. Consequently, Q is an
abelian group. ¤

In this section we initiate the study of commutative A-loops of order p3. We conjecture
that the class of loops constructed below accounts for all such loops.

Lemma 5.2. There is no commutative A-loop with center of prime index.
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Proof. For a contradiction, let Q be a commutative A-loop such that |Q/Z(Q)| = p for some
prime p. By the Lagrange Theorem and power-associativity, Q/Z(Q) is the cyclic group of
order p. Let x ∈ Q \ Z(Q). Then |xZ(Q)| = p and every element of Q can be written as xiz,
where 0 ≤ i < p and z ∈ Z(Q). With 0 ≤ i, j, k < p and z1, z2, z3 ∈ Z(Q) we have

(xiz1 · xjz2) · xkz3 = (xixj)xk · z1z2z3 = xi(xjxk) · z1z2z3 = xiz1 · (xjz2 · xkz3)

by power-associativity, so Q is an abelian group with center of prime index, a contradiction. ¤

Hence a nonassociative commutative A-loop of order p3 has center of size 1 or p. (By the
result announced in the introduction, we know that the center has size p if p is odd.)

Let n ≥ 1. The overflow indicator is the function (−,−)n : Zn × Zn → {0, 1} defined by

(x, y)n =
{

1, if x + y ≥ n,
0, otherwise.

Note that for x, y ∈ Zn we have x⊕ y = x + y − n(x, y)n, and thus

(x, y)n =
x + y − (x⊕ y)

n
, (5.1)

where we use ⊕ to denote the addition in Zn, and + to denote the addition in Z.

Lemma 5.3. We have

(x, y)n + (x⊕ y, z)n = (y, z)n + (x, y ⊕ z)n (5.2)

for every x, y, z ∈ Zn.

Proof. Using (5.1), the identity (5.2) can be rewritten as

x + y − (x⊕ y) + (x⊕ y) + z − (x⊕ y ⊕ z) = y + z − (y ⊕ z) + x + (y ⊕ z)− (x⊕ y ⊕ z),

which holds. ¤

From now on we write + for the addition in Zn, too.
For n ≥ 1 and a, b ∈ Zn, define Qa,b(Zn) on Zn × Zn × Zn by

(x1, x2, x3)(y1, y2, y3) = (x1+y1+(x2+y2)x3y3+a(x2, y2)n+b(x3, y3)n, x2+y2, x3+y3). (5.3)

Then Qa,b(Zn) can be seen as a central extension of Zn by Zn × Zn via the loop cocycle
θ((x2, x3), (y2, y3)) = (x2 + y2)x3y3 + a(x2, y2)n + b(x3, y3)n, and hence Qa,b(Zn) is a commu-
tative loop with neutral element (0, 0, 0).

Note that we can write θ as θ = µ + ν, where µ((x2, y2), (x3, y3)) = (x2 + y2)x3y3 and
ν((x2, y2), (x3, y3)) = a(x2, y2)n + b(x3, y3)n. By Lemma 5.3, ν is a group cocycle.

Proposition 5.4. Let n ≥ 2 and a, b ∈ Zn. Let Q = Qa,b(Zn) and x = (x1, x2, x3), y =
(y1, y2, y3), z = (z1, z2, z3) ∈ Q. Then:

(i) x \ y = (y1 − x1 − (y3 − x3)x3y2 − a(x2, y2 − x2)n − b(x3, y3 − x3)n, y2 − x2, y3 − x3),
(ii) xy \x(yz) = (z1 + y3(x3z2 − x2z3), z2, z3),
(iii) Q is a nonassociative commutative A-loop of order n3,
(iv) Nλ(Q) = Z(Q) = Zn × 0× 0, Nµ(Q) = Zn × Zn × 0 as subsets of Q,
(v) Q/Z(Q) ∼= Inn(Q) ∼= Zn × Zn, and Inn(Q) = {Lu,v; u, v ∈ Q},
(vi) for every m ≥ 0, xm = (mx1 + 2

(
m+1

3

)
x2x

2
3 + at2 + bt3,mx2,mx3), where ti =∑m−1

k=1 (xi, kxi)n. (As usual, the summation is considered empty and the binomial co-
efficient vanishes when m < 2.)
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Proof. Part (i) follows from the multiplication formula (5.3). Let Q0 = Q0,0(Zn). By Lemma
4.11, it suffices to verify the formula (ii) for Q0 instead of for Q. Now, calculating in Q0,

x(yz) = (x1 + y1 + z1 + (y2 + z2)y3z3 + (x2 + y2 + z2)x3(y3 + z3), x2 + y2 + z2, x3 + y3 + z3),

so (i) for Q0 implies that xy \x(yz) is equal to

(z1 +(y2 +z2)y3z3 +(x2 +y2 +z2)x3(y3 +z3)− (x2 +y2)x3y3−z3(x3 +y3)(x2 +y2 +z2), z2, z3),

which simplifies in a straightforward way to (ii).
By Lemma 4.12, to verify that left inner mappings of Q are automorphisms of Q, it suffices

to check that the left inner mappings of Q0 are automorphisms of Q0. With u = (u1, u2, u3),
v = (v1, v2, v3), use (ii) to see that

xy \x(yu) · xy \x(yv)

= (u1 + y3(x3u2 − x2u3), u2, u3)(v1 + y3(x3v2 − x2v3), v2, v3)

= (u1+v1+y3(x3(u2+v2)−x2(u3, v3))+(u2+v2)u3v3+a(u2, v2)n+b(u3, v3)n, u2+v2, u3+v3)

= xy \x(y · uv).

Hence Q is a commutative A-loop of order n3.
To calculate the middle nucleus, we can once again resort to the loop Q0, since the group

cocycle will not play any role in identities that follow from associativity. We have

y · (x1, x2, 0)z = y(x1 + z1, x2 + z2, z3)

= (x1 + y1 + z1 + (x2 + y2 + z2)y3z3, x2 + y2 + z2, y3 + z3)

= (x1 + y1, x2 + y2, y3)z = y(x1, x2, 0) · z,

so Zn × Zn × 0 ≤ Nµ(Q0). On the other hand,

(0, 0, x3)(x1, x2, 0) = (x1, x2, x3),

so to prove that (x1, x2, x3) 6∈ Nµ(Q0) whenever x3 6= 0, it suffice so show that (0, 0, x3) 6=
Nµ(Q0) whenever x3 6= 0. Now,

(0, 0, 1) · (0, 0, x3)(0, 1, 0) = (0, 0, 1)(0, 1, x3) = (x3, 1, 1 + x3)

6= (0, 1, 1 + x3) = (0, 0, 1 + x3)(0, 1, 0) = (0, 0, 1)(0, 0, x3) · (0, 1, 0)

shows just that. Similarly,

(x1, 0, 0) · yz = (x1, 0, 0)(y1 + z1 + (y2 + z2)y3z3, y2 + z2, y3 + z3)

= (x1 + y1 + z1 + (y2 + z2)y3z3, y2 + z2, y3 + z3)

= (x1 + y1, y2, y3)z = (x1, 0, 0)y · z
proves that Zn × 0× 0 ≤ Nλ(Q0), and, for x2 6= 0,

(x1, x2, 0) · (0, 0, 1)(0, 0, 1) = (x1, x2, 0)(0, 0, 2) = (x1, x2, 2)

6= (x1 + x2, x2, 2) = (x1, x2, 1)(0, 0, 1) = (x1, x2, 0)(0, 0, 1) · (0, 0, 1)

implies that Nλ(Q) = Zn × 0× 0 (recall that Nλ(Q) ≤ Nµ(Q) in any A-loop Q).
Consider the mapping ϕ : Q → Inn(Q) defined by

ϕ(x1, x2, x3) = L(0,x2,x3),(0,0,1).
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Then

ϕ(x1, x2, x3)ϕ(y1, y2, y3)(z1, z2, z3)

= ϕ(x1, x2, x3)(z1 + (y3z2 − y2z3), z2, z3) = (z1 + y3z2 − y2z3 + (x3z2 − x2z3), z2, z3)

= ϕ((x1, x2, x3)(y1, y2, y3))(z1, z2, z3)

and ϕ is a homomorphism. Its kernel consists of all (x1, x2, x3) ∈ Q such that x3z2−x2z3 = 0
for every z2, z3 ∈ Q. Thus kerϕ = {(x1, 0, 0); x1 ∈ Zn}. To prove (v), it remains to show
that ϕ is onto Inn(Q). By (ii),

L(x1,x2,x3),(y1,y2,y3) = L(0,x2,x3),(0,0,y3) = L(0,y3x2,y3x3),(0,0,1).

This means that Imϕ contains a generating subset of Inn(Q), and hence it is equal to Inn(Q).
In fact, purely of the grounds of cardinality, we have Inn(Q) = {Lu,v; u, v ∈ Q}.

The identity of (vi) clearly holds when m = 0. Assume that it holds for some m ≥ 0. Let
tmi =

∑m
k=1(xi, kxi)n. By power-associativity, we have

xm+1 = xxm = x(mx1 + 2
(

m + 1
3

)
x2x

2
3 + atm−1

2 + btm−1
3 ,mx2,mx3)

= ((m+1)x1+2
(

m + 1
3

)
x2x

2
3+(m+1)x2mx2

3+atm2 +btm3 , (m+1)x2, (m+1)x3),

Since 2
(
m+1

3

)
+ (m + 1)m = 2

(
m+2

3

)
, we are through. ¤

Lemma 5.5. Let p be a prime and a, b ∈ Zp. Let Q = Qa,b(Zp). Then:
(i) if (a, b) = (0, 0) and p 6= 3 then Q has exponent p,
(ii) if (a, b) 6= (0, 0) or p = 3 then Q has exponent p2,
(iii) if a = 0 then Nµ(Q) ∼= Zp × Zp,
(iv) if a 6= 0 then Nµ(Q) ∼= Zp2.

Proof. By [6], every element of Q has order a power of p, so Q has exponent p, p2 or p3. Since
Q is nonassociative by Proposition 5.4, the exponent is either p or p2.

Assume that (a, b) = (0, 0). Then by Proposition 5.4(vi),

(x1, x2, x3)p = (2
(

p + 1
3

)
x2x

2
3, 0, 0).

The integer 2
(
p+1
3

)
is divisible by p if and only if p 6= 3. This proves (i).

To show (ii), it remains to prove that Q has exponent p2 if (a, b) 6= (0, 0). Assume that
a 6= 0, and note that, by Proposition 5.4(vi),

(0, 1, 0)p = (a
p−1∑

k=1

(1, k)p, 0, 0) = (a(1, p− 1)p, 0, 0) = (a, 0, 0).

This means that Q does not have exponent p, and it also shows, by Proposition 5.4(iv), that
Nµ(Q) ∼= Zp2 . Similarly, when b 6= 0, use

(0, 0, 1)p = (b
p−1∑

k=1

(1, k)p, 0, 0) = (b, 0, 0)

to conclude that Q does not have exponent p.
Finally, when a = 0, we have (x1, x2, 0)p = 0 by Proposition 5.4(vi), so Nµ(Q) ∼= Zp × Zp

by Proposition 5.4(iv). ¤
Lemma 5.6. Let n > 0. If b, c ∈ Z∗n then Q0,b(Zn) ∼= Q0,c(Zn).
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Proof. Define ϕ : Q0,b(Zn) → Q0,c(Zn) by (x1, x2, x3) 7→ ((c/b)x1, (c/b)x2, x3), and note that
ϕ is a bijection since b, c are invertible.

Denote by · the multiplication in Q0,b(Zn) and by ∗ the multiplication in Q0,c(Zn). Then

ϕ((x1, x2, x3) · (y1, y2, y3)) = ϕ((x1 + y1 + (x2 + y2)x3y3 + b(x3, y3)n, x2 + y2, x3 + y3))

= (
c

b
(x1 + y1 + (x2 + y2)x3y3 + b(x3, y3)n),

c

b
(x2 + y2), x3 + y3)

= (
c

b
x1,

c

b
x2, x3) ∗ (

c

b
y1,

c

b
y2, y3) = ϕ((x1, x2, x3)) ∗ ϕ((y1, y2, y3)).

¤
Let p be an odd prime. Recall that a ∈ Z∗p is a quadratic residue modulo p if there is

x ∈ Z∗p such that x2 ≡ a (mod p). Else a is a quadratic nonresidue modulo p. The well-known
Legendre symbol identity (ab/p) = (a/p)(b/p) shows that ab−1 is a quadratic residue if and
only if either both a, b are quadratic residues or both a, b are quadratic nonresidues.

Lemma 5.7. Let p be an odd prime and a1, a2 ∈ Z∗p. If a1, a2 are either both quadratic
residues or both quadratic nonresidues then Qa1,0(Zp) ∼= Qa2,0(Zp).

Proof. Since a1a
−1
2 is a quadratic residue, there is u such that a2 = a1u

2. Define ϕ :
Qa1,0(Zp) → Qa2,0(Zp) by (x1, x2, x3) 7→ (u2x1, x2, ux3). Then ϕ is a bijection. Denote
by · the multiplication in Qa1,0(Zp) and by ∗ the multiplication in Qa2,0(Zp). Then

ϕ((x1, x2, x3) · (y1, y2, y3)) = ϕ((x1 + y1 + (x2 + y2)x3y3 + a1(x2, y2)p, x2 + y2, x3 + y3))

= (u2(x1 + y1 + (x2 + y2)x3y3 + a1(x2, y2)p), x2 + y2, u(x3 + y3))

= (u2x1 + u2y1 + (x2 + y2)ux3uy3 + a2(x2, y2)p, x2 + y2, u(x3 + y3))

= (u2x1, x2, ux3) ∗ (u2y1, y2, uy3) = ϕ((x1, x2, x3)) ∗ ϕ((y1, y2, y3)).

¤
Lemma 5.8. For a prime p, let Q1 = Qa,b(Zp), Q2 = Qa,c(Zp) and let f : Q1 → Q2 be an
isomorphism that pointwise fixes the middle nucleus of Q1 (i.e., f is identical on Zp×Zp×0).
Then there are A, B ∈ Zp and C ∈ Z∗p such that

f(x1, x2, x3) = (x1, x2, 0) ∗ (A,B, C)x3 (5.4)

for every (x1, x2, x3) ∈ Q1.
In addition, every mapping f : Q1 → Q2 defined by (5.4) with A, B ∈ Zp and C ∈ Z∗p is a

bijection that pointwise fixes Nµ(Q1).

Proof. Let f : Q1 → Q2 be an isomorphism that pointwise fixes Nµ(Q1). As Q1/Nµ(Q1) is a
cyclic group, f is determined by the image of any element in Q1 \ Nµ(Q1). Let f(0, 0, 1) =
(A,B, C). We must have C 6= 0, else f is not a bijection. Since (x1, x2, x3) = (x1, x2, 0)(0, 0, x3)
and (0, 0, x3) = (0, 0, 1)x3 by Proposition 5.4(vi), we have

f(x1, x2, x3) = f(x1, x2, 0) ∗ f(0, 0, 1)x3 = (x1, x2, 0) ∗ (A,B, C)x3 .

Conversely, define f : Q1 → Q2 by (5.4), where C 6= 0. Then f obviously pointwise fixes
Nµ(Q1). To show that f is a bijection, assume that f(x1, x2, x3) = f(y1, y2, y3). Since the last
coordinate of (x1, x2, 0)∗ (A,B, C)x3 is Cx3, we conclude that x3 = y3. The second coordinate
of (x1, x2, 0) ∗ (A,B, C)x3 is x2 + Bx3, and we conclude that x2 = y2. Then x1 = y1 follows
from the multiplication formula for Q2 and from Proposition 5.4(vi). ¤
Lemma 5.9. Let p 6= 3 be a prime and assume that a, b, c ∈ Zp are such that a + c ≡ b
(mod p). Let Q1 = Qa,b(Zp) = (Q1, ·) and Q2 = Qa,c(Zp) = (Q2, ∗). Then f : Q1 → Q2

defined by (5.4) with (A,B, C) = (0, 1, 1) is an isomorphism.
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Proof. For x ∈ Zp, let x′ = (x − 1)x(x + 1)/3. By Lemma 5.8, f is a bijection onto Q2 that
pointwise fixes Nµ(Q1). Upon expanding the formula (5.4), we see that

f(x1, x2, x3) = (x1 + x′3 + a(x2, x3)p, x2 + x3, x3),

since the expression
∑x3−1

k=1 (1, k)p vanishes for every x3. Let (u1, u2, u3) = f(x1, x2, x3) ∗
f(y1, y2, y3) and (v1, v2, v3) = f((x1, x2, x3) · (y1, y2, y3)). A quick calculation then shows that

(u2, u3) = (v2, v3) = (x2 + x3 + y2 + y3, x3 + y3),

u1 is equal to

x1+x′3+a(x2, x3)p+y1+y′3+a(y2, y3)p+(x2+x3+y2+y3)x3y3+a(x2+x3, y2+y3)p+c(x3, y3)p,

while v1 is equal to

x1+y1+(x2+y2)x3y3+a(x2, y2)p+b(x3, y3)p+(x3+y3)′+a(x2+y2, x3+y3)p.

Now, x′3 + y′3 = (x2 + y2)x3y3 + (x3 + y3)′. Using (5.1), it is easy to see that

(x2, x3)p + (y2, y3)p + (x2 + x3, y2 + y3)p = (x2, y2)p + (x2 + y2, x3 + y3)p + (x3, y3)p.

Hence we are done by a + c ≡ b (mod p). ¤
Corollary 5.10. Let p 6= 3 be a prime, a ∈ Z∗p and b, c ∈ Zp. Then Qa,b(Zp) is isomorphic
to Qa,c(Zp).

Proof. By Lemma 5.9 we have Qa,0(Zp) ∼= Qa,a(Zp) ∼= Qa,2a(Zp), and so on. ¤

5.1. Ring construction. Note that for a = b = 0, the construction (5.3) makes sense over
any commutative ring R, not just over Zn. We can summarize the most important features of
the construction as follows:

Proposition 5.11. Let R 6= 0 be a commutative ring. Let Q = Q(R) be defined on R×R×R
by

(x1, x2, x3)(y1, y2, y3) = (x1 + y1 + (y2 + x2)x3y3, x2 + y2, x3 + y3).
Then Q is a commutative A-loop satisfying Nλ(Q) = Z(Q) = R×0×0 and Nµ(Q) = R×R×0.

Proof. See the relevant parts of the proof of Proposition 5.4. ¤

5.2. Towards the classification of commutative A-loops of order p3. The results ob-
tained up to this point come close to describing the isomorphism types of all loops Qa,b(Zp)
for all primes p 6= 3.

Fix p 6= 3. The loop Q0,0(Zp) is of exponent p and is not isomorphic to any other loop
Qa,b(Zp), by Lemma 5.5. By Lemmas 5.5 and 5.6, the loops {Q0,b(Zp); 0 < b < p} form an
isomorphism class. By Lemmas 5.7 and 5.8, each of the two sets Ir = {Qa,b(Zp); a > 0 is
a quadratic residue modulo p and 0 ≤ b ≤ p − 1} and In = {Qa,b(Zp); a > 0 is a quadratic
nonresidue modulo p and 0 ≤ b ≤ p− 1} consist of pairwise isomorphic loops.

However, we did not manage to establish the following:

Conjecture 5.12. Let p > 3 be a prime, let a1 ∈ Z∗p be a quadratic residue and a2 ∈ Z∗p be a
quadratic nonresidue. Then Qa1,0(Zp) is not isomorphic to Qa2,0(Zp).

We have verified the conjecture computationally with the GAP [5] package LOOPS [8] for
p = 5, 7. It appears that one of the distinguishing isomorphism invariants is the multiplication
group Mlt(Q) = 〈Lx, Rx; x ∈ Q〉.

The loops Qa,b(Zp) behave differently for p = 3 due to the fact that 3 is the only prime p for
which p does not divide 2

(
p+1
3

)
. Denote by f(A,B,C) the bijection defined by (5.4). It can be

verified by computer that f(0,1,1) is an exceptional isomorphism Q0,0(Z3) → Q0,1(Z3), f(0,0,2)
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b =
2 3 5 7p =

‖

Figure 1. Isomorphism classes of loops Qa,b(Zp) for p ∈ {2, 3, 5, 7}.

is an isomorphism Q1,1(Z3) → Q1,2(Z3), f(0,1,2) is an isomorphism Q2,0(Z3) → Q2,1(Z3) and
f(0,1,1) is an isomorphism Q2,0(Z3) → Q2,2(Z3). The loops Q0,0(Z3), Q1,0(Z3), Q1,1(Z3) and
Q2,0(Z3) contain precisely 12, 6, 24 and 18 elements of order 9, respectively, so no two of them
are isomorphic.

Altogether, Figure 1 depicts the isomorphism classes of loops Qa,b(Zp) as connected com-
ponents, for p ∈ {2, 3, 5, 7} and a, b ∈ Zp. Moreover, if Conjecture 5.12 is true, the pattern
established by p = 2, 5 and 7 continues for all primes p > 7.

It is reasonable to ask whether, for an odd prime p, there are nonassociative commutative
A-loops of order p3 not of the form Qa,b(Zp).

Using a linear-algebraic approach to cocycles (see Subsection 6.4), we managed to classify
all nonassociative commutative A-loops of order p3 with nontrivial center, for p ∈ {2, 3, 5, 7}.
It turns out that all such loops are of the type Qa,b(Zp). In particular, p = 3 is the only prime
for which there is no nonassociative commutative A-loop of order p3 and exponent p.

Problem 5.13. Let p be an odd prime and Q a nonassociative commutative A-loop of order
p3. Is Q isomorphic to Qa,b(Zp) for some a, b ∈ Zp?

6. Enumeration

We believe that future work will benefit from an enumeration of small commutative A-loops.
The results are summarized in Table 1, which lists all orders n ≤ 32 for which there exists a
nonassociative commutative A-loop.

In the table, Z(Q) refers to the center of Q, and A(Q) refers to the associator subloop of
Q, that is, the smallest normal subloop of Q such that Q/A(Q) is a group. For instance,
the row labeled by A(Q) 6= 1, Z(Q) 6= 1 counts all nonassociative commutative A-loops
with nontrivial center, and the row labeled by A(Q) 6= 1, Qp = 1 counts all nonassociative
commutative A-loops of exponent p (for the appropriate prime p).

In the table, if there is only one number in a cell, it is both the number of isomorphism
classes and the number of isotopism classes. If there are two numbers in a cell, the first one
is the number of isomorphism classes and the second one (in parentheses) is the number of
isotopism classes.

All computations were done with the finite model builder Mace4 and with the GAP package
LOOPS on a Unix machine with a single 2 GHz processor, with computational times for
individual orders ranging from seconds to hours.
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Table 1. Commutative A-loops up to isomorphism and up to isotopism.

n 8 15 16 21 24 27 30 32
A(Q) = 1 3 1 5 1 3 3 1 7
A(Q) 6= 1 4(3) 1 46(38) 1 4(3) 4 1 ?
A(Q) 6= 1
Z(Q) 6= 1 3(2) 0 44(37) 0 4(3) 4 1 ?

A(Q) 6= 1
Qp = 1 2 − 12(11) − − 0 − ?

A(Q) 6= 1
Z(Q) 6= 1

Qp = 1
1 − 10 − − 0 − 211(210)

6.1. Comments on commutative A-loops of order 8. For classification up to isomor-
phism, see Section 3.

Lemma 6.1. Let G be a commutative loop, g ∈ Aut(G), and let t1, t2 be fixed points of g.
Define fi(x) = g(x)ti, for i = 1, 2. If there is z ∈ G such that g(z) = z−1t−1

1 t2, then G(f1),
G(f2) are isotopic.

Proof. Denote by ∗ the multiplication in G(f1) and by ◦ the multiplication in G(f2). For
x ∈ G, define α(x) = x, α(x) = xr−1, β(x) = rx, β(x) = x, γ(x) = rx, and γ(x) = x. Then

α(x) ◦ β(y) = x ◦ ry = xry = γ(xy) = γ(x ∗ y),

α(x) ◦ β(y) = x ◦ y = xy = γ(xy) = γ(x ∗ y),

α(x) ◦ β(y) = xr−1 ◦ ry = xy = γ(xy) = γ(x ∗ y),

α(x) ◦ β(y) = xz−1 ◦ y = g(xz−1y)t2 = zg(xy)t1 = γ(g(xy)t1) = γ(x ∗ y),

where we have used g(z) = z−1t−1
1 t2 in the last line. ¤

Let G = Z2×Z2 = 〈a〉 × 〈b〉 be the Klein group. Consider the transposition g = (a, b) with
fixed points t1 = 1, t2 = ab. Let fi(x) = g(x)ti, for i = 1, 2. Then b = g(a) = a−1t−1

1 t2, so
G(f1), G(f2) are isotopic by Lemma 6.1.

6.2. Comments on commutative A-loops of order 15 and 21.

Lemma 6.2. Let Q be a nonassociative commutative A-loop of order p0p1, where p0 6= p1 are
odd primes. Then there is 0 ≤ i ≤ 1 such that Q contains a normal subloop S of order pi, and
all elements in Q \ S have order pi+1, where the subscript is calculated modulo 2.

Proof. We will use results of [6] mentioned in the introduction without further reference. Since
Q is of odd order, it is solvable. Since Q is also nonassociative, there is a normal subloop S
of Q such that 1 6= S 6= Q. By the Lagrange Theorem, |S| = pi for some 0 ≤ i ≤ 1. Without
loss of generality, let |S| = p0. Let y ∈ Q \ S and let T be the preimage of the subloop 〈yS〉
of Q/S. By the Lagrange Theorem again, yp1 = 1, as the only other alternative |y| = p0p1

would mean that Q is a group by power-associativity. ¤
The information afforded by Lemma 6.2 is sufficient to construct all nonassociative com-

mutative A-loops of order 15 and 21 by the finite model builder Mace4. It turns out that in
each case there is a unique such loop. These two loops were constructed already by Drápal [4,
Proposition 3.1]. Nevertheless the following problem remains open:
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Problem 6.3. Classify commutative A-loops of order pq, where p < q are odd primes.

We have some reasons to believe that there is no nonassociative commutative A-loop of
order 35.

6.3. Comments on commutative A-loops of order 16. Among the 12 nonassociative
commutative A-loops of order 16 and exponent 2, three have inner mapping groups of orders
that are not a power of 2, namely 12, 56 and 56. We now construct the two nonassociative
commutative A-loops of order 16 and exponent 2 with inner mapping groups of order 56, and
we show that they are isotopic.

Let G = Z4 × Z2. Define g ∈ Aut(G) by g(i, j) = (i, i + j mod 2). Note that t1 =
(0, 0), t2 = (2, 1) are fixed points of g, and let fi(x) = g(x) + ti. Then G(f1), G(f2) are
the two announced loops, and they are isotopic by Lemma 6.1, since g(1, 0) = (1, 1) and
−(1, 0)− (0, 0) + (2, 1) = (1, 1).

6.4. Comments on commutative A-loops of order 32 and exponent 2 with nontrivial
center. The methods developed in [9] in order to classify Moufang loops of order 64 can
be adopted to other classes of loops. Using the cocycle formula of Corollary 4.1 and the
classification of commutative A-loops of order 16 from Subsection 6.3, we were able to classify
all commutative A-loops of order 32 and of exponent 2 with nontrivial center.

We now briefly describe the search, following the method of [9] closely. For more details,
see [9].

Let Q be a commutative A-loop of order 32 and exponent 2 with nontrivial center. Then
Z(Q) is obviously an elementary abelian 2-group, and hence it possesses a 2-element central
subgroup Z = (Z, +, 0). Then Q/Z = K is a commutative A-loop of order 16 and exponent
2.

The loop cocycles θ : K ×K → Z form a vector space V over Z = GF(2) with respect to
addition (θ + µ)(x, y) = θ(x, y) + µ(x, y). The vector space V has basis {θu,v; 1 6= u ∈ K, 1 6=
v ∈ K}, where

θu,v(x, y) =
{

1, if (u, v) = (x, y),
0, otherwise.

The extension K nθ Z will be a commutative A-loop of exponent 2 if and only if θ belongs to
the subspace C = {θ ∈ V ; θ satisfies (4.1), θ(x, x) = 0 for every x ∈ K and θ(x, y) = θ(y, x)
for every x, y ∈ K}.

For every x, y, z, x′ ∈ K, the equation (4.1) can be viewed as a linear equation over GF(2)
in variables θu,v. Similarly, for every x, y ∈ K we obtain linear equations from the condition
θ(x, y) = θ(y, x), and from θ(x, x) = 0.

Upon solving this system of linear equations, we obtain (a basis of) C, and it is in principle
possible to construct all extensions K nθ Z for θ ∈ C. The two computational problems we
face are: (i) the dimension of C can be large, (ii) it is costly to sort the resulting loops up to
isomorphism. In order to overcome these obstacles, we take advantage of coboundaries and of
an induced action of Aut(K) on C.

Let τ : K × Z be a mapping satisfying τ(1) = 0. Then δτ : K ×K → Z defined by

δτ(x, y) = τ(xy)− τ(x)− τ(y)

is a coboundary. Coboundaries form a subspace B of V .
In fact, B is a subspace of C. This can be proved explicitly by verifying that every cobound-

ary θ = δτ satisfies the identity (4.1), θ(x, y) = θ(y, x) and θ(x, x) = 0. The verification of
(4.1) is a bit unpleasant, so it is worth realizing that every coboundary θ satisfies the group
cocycle identity

θ(x, y) + θ(xy, z) = θ(y, x) + θ(x, yz),



CONSTRUCTIONS OF COMMUTATIVE AUTOMORPHIC LOOPS 19

and hence also any cocycle identity that follows from associativity, in particular (4.1).
Moreover, if θ, µ : K × K → Z are two cocycles such that θ − µ is a coboundary, then

K nθ Z is isomorphic to K nθ Z, cf. [9, Lemma 9]. It therefore suffices to construct loops
K nθ Z, where θ ∈ D, C = B ⊕D.

Given θ ∈ V and ϕ ∈ Aut(K), we define θϕ ∈ V by

θϕ(x, y) = θ(ϕ(x), ϕ(y)).

This action of Aut(K) on V induces an action on D. Moreover, by [9, Lemma 14], K nθ Z is
isomorphic to K nθϕ Z. It therefore suffices to construct loops K nθ Z, where we take one θ
from each orbit of Aut(K) on D.

Using each of the 13 commutative A-loops of order 16 and exponent 2 as K (the elementary
abelian group of order 16 must also be taken into account), the above search finds 355 com-
mutative A-loops of order 32 and exponent 2 within several minutes. The final isomorphism
search takes several hours.

The lone isotopism Z2 ×Q1 → Z2 ×Q2 is induced by the isotopism Q1 → Q2 described in
Subsection 6.3.
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[9] G. P. Nagy and P. Vojtěchovský, The Moufang loops of order 64 and 81, J. Symbolic Computation 42

(2007), no. 9, 871–883.
[10] H. O. Pflugfelder, Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics 7, Heldermann

Verlag Berlin, 1990.
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