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Abstract. We classify subdirectly irreducible medial quandles. We show that in the finite case
they are either connected (and therefore affine) or reductive. Moreover, we give an explicit descrip-
tion of all subdirectly irreducible reductive medial quandles.

1. Introduction

A binary algebra (Q, ·) is called a quandle if the following conditions hold, for every x, y, z ∈ Q:

• xx = x (we say Q is idempotent),
• x(yz) = (xy)(xz) (we say Q is left distributive),
• the equation xu = y has a unique solution u ∈ Q (we say Q is a left quasigroup).

A quandle Q is called medial if, for every x, y, u, v ∈ Q,

(xy)(uv) = (xu)(yv).

A prototypic example is the class of affine quandles: given an abelian group (A,+) with an automor-
phism f , let Aff(A, f) denote the quandle over the set A with the operation x∗y = (1−f)(x)+f(y).
Alternatively, affine quandles can be regarded as reducts of Z[x, x−1]-modules.

This paper continues the research on medial quandles we started in [7], and we refer to its
introduction for motivating remarks. Our main result in [7] states that all medial quandles are
built from affine pieces using a heterogeneous affine structure, called affine mesh, where the affine
pieces correspond to the orbits of the multiplication group.

The aim of this paper is to further develop the structure theory of medial quandles (mainly in the
reductive case) and to apply the theory to classify (finite) subdirectly irreducible medial quandles.

An algebra is called simple if it has no non-trivial homomorphic images, or, equivalently, no non-
trivial congruence relations (i.e., equivalence relations invariant with respect to the operations).
Finite simple quandles were classified independently in [1, 9]. Since the orbit decomposition provides
a congruence, simple quandles with more than two elements must be connected, hence, in the medial
case, affine. As a special case of the classification, we obtain that a finite medial quandle Q is simple
if and only if Q ' Aff(Zkp,M) where p is a prime and M is the companion matrix of an irreducible
monic polynomial in Fp[x].

Classification of simple objects in a class C allows to investigate the properties of algebras in C.
However, this requires a good understanding of extensions, such as in groups, and this is not always
the case, for instance in quandles. For that reason, universal algebra developed a stronger type of
representation.

An algebra A is called a subdirect product of algebras Si, i ∈ I, if it embeds into the direct product∏
i∈I Si in a way that every projection A→ Si is onto. An algebra S is called subdirectly irreducible

(SI) if it admits no non-trivial subdirect representation. Birkhoff’s theorem says that every algebra
in a variety V embeds in a subdirect product of SI algebras from V. Therefore, knowledge of SI
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algebras in a given variety provides a powerful tool, avoiding the need to understand congruences
and extensions. Another Birkhoff’s theorem says that an algebra S is subdirectly irreducible if
and only if the intersection of all non-trivial congruences, called the monolith congruence, is non-
trivial, thus providing an easy-to-use criterion of subdirect irreducibility (in particular, every simple
algebra is SI). See [2, Section 3.3] for details.

Here we summarize previous work on subdirectly irreducible medial quandles. On one hand,
there are two papers which deal with special cases: Roszkowska [13] gave an explicit construction
of all SI medial quandles that are involutory (2-symmetric), and Romanowska and Roszkowska [11]
did the same for the 2-reductive ones. In a broader perspective, Kearnes [6] studies SI algebras
in a larger class of modes [12], idempotent algebras with a commutative clone of term operations.
Kearnes classifies SI modes according to the algebraic properties of blocks of their monolith. An
SI mode S has precisely one of the following three types:

• the set type: all monolith blocks are trivial algebras (i.e. all operations are projections);
• the quasi-affine type: all monolith blocks are non-trivial algebras and embed into an affine

algebra;
• the semilattice type: the mode S (and thus each monolith block) has a semilattice term.

The semilattice type is well understood [5] but cannot appear in quandles. The properties of quasi-
affine algebras often reduce to module-theoretical questions, see e.g. Section 4. But very little is
known about the set type SI modes. A notable exception is [14], a classification of 2-reductive SI
modes (they are all of set type). Our paper fills partially the gap in another particular class of
modes, namely medial quandles, focusing on reductive medial quandles that are all of set type.
Our Theorem 6.12 constructs all reductive SI modes and gives actually a complete classification
of all finite SI medial quandles of set type. It is also interesting to note that classification of
non-idempotent SI racks uses substantially different techniques, see [8, 15].

The paper is organized as follows. In Section 2 notions and results from [7] on representing
medial quandles as sums of affine meshes are recalled. Each medial quandle can be constructed
from abelian groups which are naturally equipped with the structure of Z[x, x−1]-modules. In
Section 3 we describe a relationship between congruences of a medial quandle that are below the
orbit decomposition and submodules of the modules from which it is built. Then, in Section 4, we
show that every finite SI medial quandle is either reductive, or affine and connected, and discuss
briefly the connected case. In Section 5 we develop more structure theory of reductive medial
quandles. Section 6 brings the main result, namely an explicit construction of reductive SI medial
quandles (Theorem 6.12). In Section 7 we discuss with more details SI medial quandles with orbits
which are cyclic groups. We also provide an example on an infinite non-connected and non-reductive
medial quandle. We conclude with a few open questions related to the topic.

Notation and basic terminology. The identity permutation will always be denoted by 1. For
two permutations α, β, we write αβ = βαβ−1. The commutator is defined as [α, β] = βαβ−1.

Let a group G act on a set X. For e ∈ X, the stabilizer of e will be denoted Ge.
Let Q = (Q, ·) be a binary algebra. The left translation by a ∈ Q is the mapping La : Q → Q,

x 7→ ax. If Q is a left quasigroup, the unique solution to au = b will be denoted by u = a\b, and
we have L−1a (x) = a\x.

Notice that for an affine quandle Aff(A, f)

a \ b = L−1a (b) = (1− f−1)(a) + f−1(b).

Observe that Q is left distributive iff all the left translations are endomorphisms, and Q is a left
quasigroup iff all the left translations are permutations. We will often use the following observation:
for every a ∈ Q and α ∈ Aut(Q),

(1.1) (La)
α = Lα(a).
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Occasionally, we will also use the right translations Ra(x) = xa. A quandle is called latin (or, a
quasigroup), if the right translations, Ra, are bijective, too.

A subquandle is a subset closed with respect to both operations · and \.
A quandle (Q, ·) is (left) m-reductive, if it satisfies the identity

(((x y)y) . . .)y︸ ︷︷ ︸
m−times

≈ y.

A quandle Q is called reductive, if it is m-reductive for some m and Q is strictly m-reductive if it is
m-reductive and not k-reductive for any k < m. In particular, Aff(A, 1) is strictly 1-reductive and
is called a (right) projection quandle.

2. Orbit decomposition

In this section, we recall notions and results from [7] on representing medial quandles as sums of
affine meshes. We start with the definition of an important permutation groups acting on Q.

Definition 2.1. The (left) multiplication group of a quandle Q is the permutation group generated
by left translations, i.e.,

LMlt(Q) = 〈La | a ∈ Q〉 ≤ Aut(Q).

We define the displacement group as the subgroup

Dis(Q) = 〈LaL−1b | a, b ∈ Q〉 = {Lk1a1 . . . L
kn
an : a1, . . . , an ∈ Q and

n∑
i=1

ki = 0}.

Both groups act naturally on Q and it was proved in [4] that LMlt(Q) and Dis(Q) have the same
orbits of action. We refer to the orbits of transitivity of the groups LMlt(Q) and Dis(Q) simply as
the orbits of Q, and denote

Qe = {α(e) | α ∈ LMlt(Q)} = {α(e) | α ∈ Dis(Q)}
the orbit containing an element e ∈ Q. Notice that orbits are subquandles of Q.

One of the main results of [4] was that every orbit of a quandle Q admits a certain group
representation, called homogeneous representation, based on Dis(Q). In particular, if Q has only
one orbit (such a quandle is called connected) it has a Galkin’s representation and the authors of [4]
proved that the representation based on Dis(Q) is minimal such a representation.

This article deals with medial quandles. From the group-theoretical point of view, the importance
of medial quandles comes from the fact that Dis(Q) is abelian.

Proposition 2.2 ([7]). Let Q be a quandle. Then Q is medial if and only if Dis(Q) is commutative.

As we said, every orbit of a medial quandle Q admits a homogeneous representation based
on Dis(Q) and the fact that Dis(Q) is abelian implies that the representation actually reduces to
the definition of an affine quandle. The main result of [7] was a structural description of medial
quandles based on their affine orbits – the tool we used to reconstruct the whole quandle from its
affine pieces was the affine mesh.

Definition 2.3. An affine mesh over a non-empty set I is a triple

A = ((Ai)i∈I ; (ϕi,j)i,j∈I ; (ci,j)i,j∈I)

where Ai are abelian groups, ϕi,j : Ai → Aj homomorphisms, and ci,j ∈ Aj constants, satisfying
the following conditions for every i, j, j′, k ∈ I:

(M1) 1− ϕi,i is an automorphism of Ai;
(M2) ci,i = 0;
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(M3) ϕj,kϕi,j = ϕj′,kϕi,j′ , i.e., the following diagram commutes:

Ai
ϕi,j−−−−→ Ajyϕi,j′ yϕj,k

Aj′
ϕj′,k−−−−→ Ak

(M4) ϕj,k(ci,j) = ϕk,k(ci,k − cj,k).
If the index set is clear from the context, we shall write briefly A = (Ai;ϕi,j ; ci,j).

Definition 2.4. The sum of an affine mesh (Ai;ϕi,j ; ci,j) over a set I is a binary algebra defined
on the disjoint union of the sets Ai, with operation

a ∗ b = ci,j + ϕi,j(a) + (1− ϕj,j)(b)

for every a ∈ Ai and b ∈ Aj .

It was proved in [7] that the sum of any affine mesh is a medial quandle. Every fiber Ai becomes
a subquandle of the sum, and for a, b ∈ Ai we have

a ∗ b = ϕi,i(a) + (1− ϕi,i)(b),

hence (Ai, ∗) is affine and equal to Aff(Ai, 1−ϕi,i). Moreover, every fiber turns out to be a union of
orbits. If we want every fiber to be a single orbit, we have to add the indecomposability condition.

Definition 2.5. An affine mesh (Ai;ϕi,j ; ci,j) over a set I is called indecomposable if

Aj =

〈⋃
i∈I

(ci,j + Im(ϕi,j))

〉
,

for every j ∈ I. Equivalently, the group Aj is generated by all the elements ci,j , ϕi,j(a) with i ∈ I
and a ∈ Ai.

Theorem 2.6. [7] A binary algebra is a medial quandle if and only if it is the sum of an indecom-
posable affine mesh. The orbits of the quandle coincide with the groups of the mesh.

Starting from a medial quandle Q, a natural way to define an indecomposable affine mesh that
sums to Q is the canonical mesh.

Definition 2.7. Let Q be a medial quandle, and choose a transversal E to the orbit decomposition.
We define the canonical mesh for Q over the transversal E as AQ,E = (OrbQ(e);ϕe,f ; ce,f ) with
e, f ∈ E, where for every x ∈ Qe

ϕe,f (x) = xf − ef and ce,f = ef.

Lemma 2.8. [7] Let Q be a medial quandle and AQ,E its canonical mesh. Then AQ,E is an
indecomposable affine mesh and Q is equal to its sum.

Alternatively, we could have defined the canonical mesh using the groups Ae = Dis(Q)/Dis(Q)e,
homomorphisms ϕe,f (αDis(Q)e) = [α,Le]Dis(Q)f , and constants ce,f = LeL

−1
f Dis(Q)f . Then the

original quandle Q is isomorphic to the sum of the mesh, where the coset αDis(Q)e corresponds to
the element α(e) ∈ Q.
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3. Congruences below the orbit decomposition

As it was shown in Theorem 2.6, each medial quandle is the sum of an indecomposable affine mesh
A = (Ai;ϕi,j ; ci,j) over the index set I and the orbits of the quandle coincide with the groups of the
mesh. All the abelian groups Ai can be naturally equipped with the structure of a Z[x, x−1]-module
by defining

xn · a = (1− ϕi,i)n(a), for all n ∈ Z and a ∈ Ai.
Moreover, we have

ϕi,j(x
n · a) = ϕi,j(1− ϕi,i)n(a) = (1− ϕj,j)nϕi,j(a) = xnϕi,j(a)

and therefore every ϕi,j can be treated as a Z[x, x−1]-module homomorphism. Hence, in the sequel,
we shall assume that all the orbits are R-modules, where R is a suitable image of Z[x, x−1].

Let Q be a medial quandle and e ∈ Q. Let α(e), β(e) ∈ Qe with α, β ∈ Dis(Q) and put

α(e) + β(e) = αβ(e), −α(e) = α−1(e), and xn · α(e) = αL
n
e (e)

Then OrbQ(e) = (Qe,+,−, e, ·) is a Z[x, x−1]-module, called the orbit module for Qe.
Let us note that the orbit decomposition provides a congruence, namely the relation π ⊆ Q×Q

defined by

a π b iff a = α(b) for some α ∈ Dis(Q).

Clearly π is an equivalence relation. Now let a π b and c π d. Then a = α(b) and c = γ(d) for some
α, γ ∈ Dis(Q). By commutativity of the group Dis(Q) we have

a · c = α(b) · γ(d) = Lα(b)γ(d) = αLbα
−1γ(d) = αLbα

−1γL−1d (d) =

Lbα
−1γL−1d α(d) = LdL

−1
d Lbα

−1γL−1d αLd(d) =

Ldα
−1γL−1d αLdL

−1
d Lb(d) = Ldα

−1γL−1d αLb(d) = Ldα
−1γL−1d α(b · d),

which shows that π is a quandle congruence.

Proposition 3.1. The relation π is the least congruence on a quandle Q such that the quotient
Q/π is the right projection quandle.

Proof. First note that, for any a, b ∈ Q, ab = La(b), which means that ab π b and shows that Q/π
is the right projection quandle.

Now, let ψ be a congruence relation on Q such that Q/ψ is the right projection quandle. Then,
for any x, y ∈ Q, y ψ xy = Lx(y) and y ψ (x\y) = L−1x (y).

If aπb then a = α(b), for some α ∈ Dis(Q). By the definition of Dis(Q), α = Lk1b1 . . . L
kn
bn

, for

some b1, . . . , bn ∈ Q, and
∑n

i=1 ki = 0. This gives the following:

b ψ Lknbn (b) ψ L
kn−1

bn−1
Lknbn (b) ψ . . . ψ Lk1b1 . . . L

kn
bn

(b) = α(b) = a.

So, aψb and π ⊆ ψ. �

Now we will describe a relationship between congruences of medial quandle Q and congruences
of the modules from which it is built. In particular, we will show that each congruence on Q, when
restricted to an orbit, is a module congruence.

It is not usual to work with congruences of modules and we shall therefore be, from now on,
speaking about submodules instead of congruences of modules. In particular, if % is a congruence
of a module M then there is a submodule M% of M such that a % b ⇔ a − b ∈ M%. In the case if
a− b ∈ N , for some submodule N , we will sometimes write a ≡N b.
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Theorem 3.2. Let Q be a medial quandle being the sum of an affine mesh (Ai; ϕi,j ; ci,j) over
a set I. Then % ⊆ π is a congruence relation on Q if and only if, for each i ∈ I, there is a
Z[x, x−1]-submodule Mi of the module Ai satisfying the condition

(3.1) ϕk,j(Mk) ⊆Mj , for all k, j ∈ I

and such that for a, b ∈ Q

(3.2) a % b iff ∃(i ∈ I) a, b ∈ Ai and a ≡Mi b

Proof. Let AQ,E be the canonical mesh of Q and % be a congruence relation on Q such that % ⊆ π.
Let for some x, y ∈ Q, x % y. Since % is a quandle congruence, it follows that for each z ∈ Q,

zx = Lz(x) % Lz(y) = zy,

and

z\x = L−1z (x) % L−1z (y) = z\y.
In consequence, µ(x) % µ(y), for each µ ∈ Dis(Q).

Let a = α(e), b = β(e), c = γ(e), d = δ(e) ∈ Qe, with α, β, γ, δ ∈ Dis(Q) and let a % b and c % d.
Thus, γ(a) % γ(b) and β(c) % β(d). Hence,

c+ a = γ(e) + α(e) = γα(e) = γ(a) % γ(b) = γβ(e) = γ(e) + β(e) = c+ b,

and similarly (b+ c) % (b+ d) which implies

(a+ c) % (c+ b) % (b+ d).

Therefore, %e := %|Qe (the restriction of % to the orbit Qe) is a congruence relation of the abelian
group OrbQ(e).

Furthermore, it is easy to see that, for any f ∈ E,

ϕe,f (a) = af − ef %f bf − ef = ϕe,f (b).

In particular,

xn · a = (1− ϕe,e)n(a) %e (1− ϕe,e)n(b) = xn · b
and %e is a congruence of the module OrbQ(e). Then, for each e ∈ E, Me := {x ∈ Qe : x%ee} is a
submodule of the module OrbQ(e). Hence, for each x ∈Me and f ∈ E

ϕe,f (x) = xf − ef %f ef − ef = f.

So, conditions (3.1) and (3.2) are satisfied.
Now let Q be the sum of an affine mesh (Ai; ϕi,j ; ci,j) over a set I and assume that there is, for

each i ∈ I, a Z[x, x−1]-submodule Mi of the module Ai satisfying the condition (3.1). Let us define
a relation % ⊆ Q×Q in the following way

a % b iff ∃(i ∈ I) a, b ∈ Ai and a ≡Mi b.

Let a, b, c, d ∈ Q and suppose that a % b and c % d. Then there are i, j ∈ I, such that a, b ∈ Ai,
a ≡Mi b, c, d ∈ Aj and c ≡Mj d. By Condition (3.1) we have ϕi,k(a) ≡Mk

ϕi,k(b) and ϕj,k(c) ≡Mk

ϕj,k(d), for any k ∈ I.
By the definition of the multiplication in the sum of an affine mesh, we immediately obtain

ac = ci,j + ϕi,j(a) + (1− ϕj,j)(c) ≡Mj ci,j + ϕi,j(b) + (1− ϕj,j)(d) = bd.

Hence, % is a congruence of Q such that % ⊆ π. �

Theorem 3.2 gives a one-to-one correspondence between congruences on Q below π and submod-
ules of orbit modules satisfying the condition (3.1). Example 3.3 will show that just one submodule
of any orbit module is sufficient to determine a congruence relation on Q below π.
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Example 3.3. Let Q be a medial quandle which is the sum of an affine mesh (Ai; ϕi,j ; ci,j) over
a set I. Let, for some i0 ∈ I, Mi0 be a Z[x, x−1]-submodule of Ai0 and Mi = ϕi0,i(Mi0), for i 6= i0.

Note that ϕi0,i0(Mi0) = (1 − x) · Mi0 ⊆ Mi0 and, for i 6= i0, ϕi,j(Mi) = ϕi,jϕi0,i(Mi0) =
ϕj,jϕi0,j(Mi0) = ϕj,j(Mj) = (1 − x) ·Mj ⊆ Mj . Hence, the tuple of submodules (Mi)i∈I satisfies
the condition (3.1).

Example 3.4. Let Q be a medial quandle which is the sum of an affine mesh (Ai; ϕi,j ; ci,j) over
a set I and assume that there exists i0 ∈ I such that

⋂
j∈I

Ker(ϕi0,j) 6= {0}. Let Mi0 ⊆
⋂
j∈I

Ker(ϕi0,j)

be a non-trivial Z[x, x−1]-submodule of Ai0 . Then, by Theorem 3.2, the relation

a α b if and only if a = b or (a, b ∈ Ai0 and a ≡Mi0
b)

is a non-trivial congruence of Q, such that α ⊆ π and α|Ai is trivial, for each i0 6= i ∈ I.

4. Subdirectly irreducible medial quandles

Let m ≥ 1 be a natural number. Let Q = Aff(A, f) be an affine quandle. Then

(((x y)y) . . .)y︸ ︷︷ ︸
m−times

= (1− f)m(x) + (1− (1− f)m)(y),

and Q is m-reductive if and only if (1− f)m = 0. In particular, the orbit Ai = Aff(Ai, 1− ϕi,i) of
a medial quandle is m-reductive if and only if ϕmi,i = 0. The following characterization of reductive

medial quandles was presented in [7].

Theorem 4.1. [7] Let Q be a medial quandle. Then the following statements are equivalent.

(1) Q is reductive.
(2) At least one orbit of Q is reductive.
(3) All the orbits of Q are reductive.

Proposition 4.2. [7] Let A = (Ai; ϕi,j ; ci,j) be an indecomposable affine mesh over a set I. Then
the sum of A is m-reductive if and only if, for every i ∈ I,

ϕm−1i,i = 0.

In particular, a medial quandle Q is m-reductive if and only if all the orbits of Q are (m − 1)-
reductive and is 2-reductive if and only if every orbit is a projection quandle.

It was shown in [4] that a finite affine quandle is connected if and only if it is latin. Hence,
by Proposition 4.2, it is clear that the only both connected and reductive finite medial quandle
consists of exactly one element. In this Section we will prove that a non-connected finite SI medial
quandle must be reductive.

Up to isomorphism there is only one two element SI medial quandle, namely the two element
right projection quandle. Moreover, this is also the only 1-reductive SI medial quandle since each
right projection quandle is the sum of one element orbits. In what follows we will study only SI
medial quandles which have at least three elements.

Theorem 4.3. Let Q be a finite subdirectly irreducible medial quandle such that |Q| > 2. Then Q
is either connected (and therefore affine), or Q is reductive.

Proof. Let Q be a sum of an indecomposable affine mesh (Ai;ϕi,j ; ci,j) over a set I = {1, . . . , n}
for n ≥ 2. Since Q is finite, there exists ki, for each i ∈ I, such that ϕki+1

i,i (Ai) = ϕkii,i(Ai). Let

k = max{k1, . . . , kn}. Obviously, each ϕi,i is a permutation on ϕki,i(Ai), so Kerϕi,i∩ϕki,i(Ai) = {0}.
Let i0 be an arbitrarily chosen element of the set I. Consider two congruence relations on the
quandle Q: %1 given by Kerϕi0,i0 and %2 given by ϕki0,i0(Ai0), both constructed as in Example 3.3.
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Let Bi = ϕi0,i(Kerϕi0,i0) and Ci = ϕi0,i(ϕ
k
i0,i0

(Ai0)), for i 6= i0. Let a ∈ Bi. Then a = ϕi0,i(x)

for some x ∈ Kerϕi0,i0 and ϕi,i(a) = ϕi,iϕi0,i(x) = ϕi0,iϕi0,i0(x) = 0, so Bi ⊆ Kerϕi,i. On the

other hand, Ci = ϕi0,i(ϕ
k
i0,i0

(Ai0)) = ϕki,i(ϕi0,i(Ai0)) ⊆ ϕki,i(Ai). One obtains that for each i 6= i0,

Bi ∩Ci = {0} and %1 ∩ %2 is a trivial congruence on Q. Since Q is subdirectly irreducible, there are
two options:
— ρ2 is trivial and hence ϕki,i = 0, for each i. By Theorem 4.1 this means that Q is reductive;

— ρ1 is trivial and hence ϕi,i is a bijection, for each i. By results of [7, Section 5] this means
that Q is a product of an affine quandle and a projection quandle. Q is subdirectly irreducible and
therefore Q is either a projection quandle (and hence reductive) or an affine quandle (and hence
connected). �

Theorem 4.3 cannot be extended to infinite quandles because there exist infinite SI medial
quandles that are neither reductive nor connected, see e.g. Theorem 7.4. On the other hand,
a SI medial quandle with at least three elements cannot be both connected and reductive or non-
connected and affine.

Proposition 4.4. A connected non-trivial medial quandle Q is never reductive.

Proof. A connected medial quandle has only one orbit. Hence the mapping ϕ1,1 in its canonical
mesh has to be surjective. And therefore ϕn1,1 = 0 for no number n. �

Proposition 4.5. The only affine non-connected subdirectly irreducible medial quandle has two
elements.

Proof. Suppose Q = Aff(A, f). The only SI projective quandle has two elements. Consider thus
that Q is not projective, i.e. that π is non-trivial. All the orbits of Q are cosets of (1 − f)(A).
There are now two possibilities:
— If Im(1− f) ∩Ker(1− f) = {0} then the congruence π∩ ≡Ker(1−f) is trivial.
— If Im(1− f) ∩Ker(1− f) is non-trivial then let a /∈ Im(1− f) and consider M1 = Im(1− f) ∩
Ker(1− f) and M2 = M1 + a. Let us define ≡Mi , for i ∈ {1, 2}, as

a ≡Mi b if a = b or a− b ∈Mi.

It is easy to see that both the relations ≡Mi are congruences. Since M1 and M2 are disjoint, clearly
≡M1 ∩ ≡M2 is trivial. �

Consider now a connected affine quandle Q = Aff(A, f). By Theorem 3.2, congruences of Q and
congruences of the Z[x, x−1]-module A coincide. In particular, if Q is SI, the smallest non-trivial
congruence of Q is equal to the smallest non-trivial submodule of A. Consequently, the quandle Q
is subdirectly irreducible if and only if A is a subdirectly irreducible Z[x, x−1]-module.

In the previous paragraph, one direction did not need the assumption of connectedness, while
the other needed. Indeed, SI modules can give non-connected quandles that are not SI.

Example 4.6. Consider the affine quandle Aff(Z4, 3). It is a sum of the affine mesh ((Z2,Z2); ( 0 0
0 0 ) ; ( 0 1

1 0 )).
It is clear that there are two minimal elements in the lattice of its congruences: {{0, 2}, {1}, {3}} and
{{1, 3}, {0}, {2}}, so Aff(Z4, 3) is not subdirectly irreducible. However, Z4 = Z22 is a subdirectly
irreducible Z-module.

Recall that using Kearnes’s classification of SI modes [6] one can conclude that all SI quandles
are either quasi-affine or of the set type. Since affine quandles are trivially quasi-affine, Theorem
4.3 shows that all finite SI reductive medial quandles are of the set type.
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5. Reductivity versus nilpotency

Reductivity of medial quandles is closely related to the notion of nilpotency: reductive affine
quandles are reducts of modules over nilpotent rings, namely rings Z[x, x−1]/(1 − x)m, for some
m ≥ 1. A medial quandle Q is reductive if and only if its left multiplication group LMlt(Q)
is nilpotent, as we shall see later in Theorem 5.3. Further, a nilpotent ϕi,i can appear in an
indecomposable affine mesh A = (Ai; ϕi,j ; ci,j) if and only if the sum of A is reductive.

In the sequel we focus on the nilpotency of LMlt(Q). We start with two auxiliary lemmas.

Lemma 5.1. Let Q be a medial quandle, e, f ∈ Q and α ∈ Dis(Q). Then αLe = αLf .

Proof. αLe = LeαL
−1
e = LfL

−1
f LeαL

−1
e = LfαL

−1
f LeL

−1
e = αLf . �

By G′ we will denote the commutator subgroup (or derived subgroup) of a group G, i.e. the
subgroup generated by all the commutators of the group G.

It was proved in [4] that for any quandle Q, LMlt(Q)′ E Dis(Q). If Q is medial, it means
that LMlt(Q)′ is abelian and therefore [LMlt(Q)′,LMlt(Q)′] = 1. Although the following lemma is
pronounced for general groups, its setting in our context results in a strong relation to nilpotency.

Lemma 5.2. Let G be a group with [G′, G′] = 1. Then, for each α, β ∈ G′ and a, b, c, d ∈ G:

(1) [a, bc] = [a, b] · [a, c]b,
(2) [αβ, c] = [α, c] · [β, c],
(3) [αb, c] = [α, c]b

c
,

(4) [[a, bc], d] = [[a, b], d] · [[a, c], d]b
d
.

Proof. (1) [a, bc] = abca−1c−1b−1 = aba−1[a, c]b−1 = [a, b]b[a, c]b−1 = [a, b] · [a, c]b
(2) [αβ, c] = αβcβ−1α−1c−1 = α[β, c]cα−1c−1 = αcα−1c−1[β, c] = [α, c] · [β, c]
(3) [αb, c] = bαb−1cbα−1b−1c−1 = bα[b−1, c]cα−1b−1c−1 = b[b−1, c]αcα−1b−1c−1 = bc[α, c]b−1

c
=

[α, c]b
c

(4) [[a, bc], d] = [[a, b] · [a, c]b, d] = [[a, b], d] · [[a, c]b, d] = [[a, b], d] · [[a, c], d]b
d

�

Theorem 5.3. Let Q be a medial quandle and let m ≥ 1. Then Q is strictly m-reductive if and
only if LMlt(Q) is nilpotent of degree m− 1.

Proof. A quandle is a projection quandle if and only if its left multiplication group is trivial, so
theorem holds for m = 1.

Let m > 1 and let A = (Ai; ϕi,j ; ci,j), for i, j ∈ I, be the canonical affine mesh for Q. Choosing
an element ei ∈ Ai, every element of Ai can be written as α(ei), for some α ∈ LMlt(Q). Moreover,
according to [7, Lemma 3.8], we have ϕi,j(α(ei)) = [α,Lei ](ej), for any α ∈ LMlt(Q) and i, j ∈ I.

According to Proposition 4.2, Q is m-reductive if and only if ϕm−1i,i = 0, for each i ∈ I. This

condition can be equivalently rewritten as [. . . [[α,Lei ], Lei ], . . . , Lei ](ei) = ei, for each i ∈ I and
α ∈ LMlt(Q), which means [. . . [[α,Lei ], Lei ], . . . , Lei ] = 1.

“⇐” If LMlt(Q) is nilpotent of degree m−1 then [. . . [α1, α2], . . . , αm] = 1, for any αj ∈ LMlt(Q),
in particular for α2 = · · · = αm = Lei , for any i ∈ I.

“⇒” According to Lemma 5.1, we have [[α,Lei ], Lei ] = [[α,Lei ], Lej ], for any i, j. Hence m-
reductivity implies [. . . [[α,Lei1 ], Lei2 ], . . . , Leim−1

] = 1, for any eik , 1 ≤ k ≤ m− 1. Now we should

inductively enlarge this property to [. . . [[α, β1], β2], . . . , βm−1], for any β1, . . . , βm−1 ∈ LMlt(Q).

Suppose βj = β̂j β̄j . According to Lemma 5.2 (4),

[. . . [. . . [[α, β1], β2], . . . , β̂j β̄j ], . . . , βm−1] =

[. . . [. . . [[α, β1], β2], . . . , β̂j ], . . . , βm−1] · [. . . [. . . [[α, β1], β2], . . . , β̄j ], . . . , βm−1]β̂
β .
. .
βm−1

j+1

j
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and this is trivial, due to the induction hypothesis. Hence LMlt(Q) is a nilpotent group of degree
at most m− 1. �

By Proposition 4.2 we know that the orbits of an m-reductive medial quandle are (m − 1)-
reductive. But not necessarily strictly (m − 1)-reductive – the degree of reductivity may be even
smaller. It was nevertheless proved in [7] that the orbits cannot be (m − 4)-reductive in such a
case. We improve the result here showing that neither (m− 3)-reductive orbits can appear.

Lemma 5.4. Let m ≥ 1 and A = (Ai; ϕi,j ; ci,j) be an indecomposable affine mesh over a set I.

Assume there is j ∈ I such that ϕmj,j = 0. Then ϕm+1
i,i = 0 for every i ∈ I.

Proof. First note that applying (M3) m-times, for any k ∈ I, we have

(5.1) ϕmk,kϕj,k = ϕj,kϕ
m
j,j = 0,

because ϕmj,j = 0 by assumption.
The indecomposability condition says that the group Ak is generated by all the elements ci,k,

ϕi,k(a) with i ∈ I and a ∈ Ai. So it is sufficient to verify that ϕm+1
k,k ϕi,k = 0 and ϕm+1

k,k (ci,k) = 0,

for every i ∈ I.
By (5.1) and (M4) we have

ϕm+1
k,k (ci,k − cj,k) = ϕmk,kϕj,k(ci,j) = 0.

This implies
ϕm+1
k,k (ci,k) = ϕm+1

k,k (cj,k),

for all i, k ∈ I. In particular, for i = k, we see that ϕm+1
k,k (ck,k) = 0, and thus ϕm+1

k,k (cj,k) = 0. This

gives ϕm+1
k,k (ci,k) = 0 for every i ∈ I.

Further, by (M3) applying (m+ 1)-times,

ϕm+1
k,k ϕi,k = ϕj,kϕ

m
j,jϕi,j = 0,

for every i ∈ I. Hence, ϕm+1
k,k = 0, for every k ∈ I. �

Corollary 5.5. Let Q be a medial quandle. If one orbit of Q is m-reductive, then Q is (m + 2)-
reductive.

We recall now a few results about 2-reductive medial quandles.

Lemma 5.6. [7] Let A = (Ai; ϕi,j ; ci,j) be an indecomposable affine mesh over a set I. Assume
there are j, k ∈ I such that ϕj,k = 0. Then ϕi,k = 0 for every i ∈ I.

Theorem 5.7. [7] Let Q be a medial quandle and assume it is the sum of an indecomposable affine
mesh (Ai; ϕi,j ; ci,j) over a set I. Then the following statements are equivalent.

(1) Q is 2-reductive.
(2) For every j ∈ I, there is i ∈ I such that ϕi,j = 0.
(3) ϕi,j = 0 for every i, j ∈ I.

In particular, medial quandles with a one-element orbit are always 2-reductive and with a two-
element orbit are 3-reductive.

We know by now that a strictly m-reductive medial quandle has (m − 1)-reductive orbits and
may have (m− 2)-reductive orbits too. Some of the orbits might even be isomorphic. But none of
the mappings ϕi,j is a permutation.

Proposition 5.8. Let Q be a reductive medial quandle which is the sum of an indecomposable affine
mesh (Ai; ϕi,j ; ci,j) over a set I. If, for i, k ∈ I, |Ai| > 1 or |Ak| > 1, then the homomorphism ϕi,k
is not a permutation.
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Proof. Since medial quandles with a one-element orbit are always 2-reductive and by Theorem 5.7,
in 2-reductive medial quandles ϕl,j = 0, for every l, j ∈ I, we may assume that |Ai| > 1.

Let us suppose that there are i, k ∈ I such that ϕi,k : Ai → Ak is a permutation. By (M3)
ϕk,kϕi,k = ϕi,kϕi,i. It implies

(5.2) ϕ−1i,kϕk,k = ϕi,iϕ
−1
i,k .

On the other hand, by (M4) we have

cj,i = ϕ−1i,kϕk,k(cj,k − ci,k) = ϕi,iϕ
−1
i,k (cj,k − ci,k) ∈ Im(ϕi,i),

for any j ∈ I. By indecomposability, it means that Ai = 〈Im(ϕj,i) : j ∈ I〉.
Since Q is a reductive medial quandle, there is a natural number m > 0 such that ϕmk,k = 0.

Let m be the least such a number. If m = 1, then by Lemma 5.6, ϕj,k = 0, for every j ∈ I. In
particular, ϕi,k = 0.

For m > 1, once again by (M3) one has

(5.3) ϕm−1k,k ϕi,kϕj,i = ϕm−1k,k ϕk,kϕj,k = ϕmk,kϕj,k = 0,

for any j ∈ I. Since ϕi,k is a permutation and Ai = 〈Im(ϕj,i) : j ∈ I〉, Condition (5.3) implies that

ϕm−1k,k = 0, a contradiction with the minimality of m. Hence there are not i, k ∈ I such that ϕi,k is
a permutation. �

At the end of this section we shall prove that reductive medial quandles have a property enabling
us to find small congruences that are good candidates for monoliths.

Lemma 5.9. Let m ≥ 2 and Q be an indecomposable affine mesh A = (Ai; ϕi,j ; ci,j) over a set I

and assume that for some i, j ∈ I, i 6= j, ϕm−1i,i = ϕm−1j,j = 0. Then ϕi,jϕ
m−2
i,i = ϕm−2j,j ϕi,j = 0.

Proof. For m = 2 the conclusion follows by Lemma 5.6. Let m > 2. Clearly, by (M3),

(5.4) ϕi,jϕ
m−2
i,i = ϕi,jϕ

m−3
i,i ϕi,i = ϕj,jϕ

m−3
j,j ϕi,j = ϕm−2j,j ϕi,j .

By the indecomposability it is sufficient to verify that ϕi,jϕ
m−2
i,i ϕk,i = 0 and ϕi,jϕ

m−2
i,i (ck,i) = 0,

for every k ∈ I.
For each k ∈ I, by (M3) we have

ϕi,jϕ
m−2
i,i ϕk,i = ϕi,jϕi,iϕ

m−3
i,i ϕk,i = ϕj,jϕj,jϕ

m−3
j,j ϕk,j = ϕm−1j,j ϕk,j = 0

and by (5.4) and (M4)

ϕi,jϕ
m−2
i,i (ck,i) = ϕm−2j,j ϕi,j(ck,i) = ϕm−2j,j ϕj,j(ck,j − ci,j) = ϕm−1j,j (ck,j − ci,j) = 0. �

Proposition 5.10. Let Q be a non-projective reductive quandle that is the sum of an affine mesh
(Ai;ϕi,j ; ci,j) over a set I. Then there exists i ∈ I such that

⋂
j∈I Ker(ϕi,j) 6= {0}.

Proof. Assume that Q is strictly m-reductive, for some m ≥ 2. If m = 2 then by Theorem 5.7,
ϕi,j = 0, for all i, j ∈ I.

Suppose now m > 2. Since Q is strictly m-reductive then by Proposition 4.2, there is at least
one orbit of Q, say A1, which is strictly (m− 1)-reductive. Hence, there is an element 0 6= a1 ∈ A1

such that the elements: 0, a1, ϕ1,1(a1), . . . , ϕ
m−2
1,1 (a1) ∈ A1 are pairwise different. By Lemma 5.9,

0 6= ϕm−21,1 (a1) ∈
⋂
j∈I Ker(ϕ1,j). �

As we have seen in the proof, every strictly (m − 1)-reductive orbit has the property hence if⋂
j∈I Ker(ϕi,j) = {0}, for some i ∈ I, then the orbit has to be (m− 2)-reductive.
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6. Subdirectly irreducible non-connected quasi-reductive quandles

The aim of this section is to describe all finite subdirectly irreducible m-reductive quandles, for
m ≥ 2. As we have already noticed in Section 4, such reductive quandles are always non-connected.
Nevertheless, it turns out that all the considerations in this section can be performed for a slightly
larger class of quandles, let us call them quasi-reductive, and we shall thus obtain some infinite
examples that are not necessarily reductive.

We start the section with the construction of a congruence that is going to be the monolith of
our examples; the nature of this congruence will justify our definition of quasi-reductivity.

Let Q be a quandle and let λ be the relation on Q defined by

a λ b iff ∀(x ∈ Q) ax = bx.

Obviously, λ is a congruence on Q (see [12]). Set

(6.1) θ := π ∩ λ.

Let a medial quandle Q be the sum of an indecomposable affine mesh (Ai; ϕi,j ; ci,j) over a set
I. Note that for each i ∈ I, Mθ|Ai

=
⋂
j∈I

Ker(ϕi,j). To see it, let a, b ∈ Ai. Then

a θ b ⇔ ∀(j ∈ I) ∀(x ∈ Aj) ax = bx ⇔
∀(j ∈ I) ∀(x ∈ Aj) ci,j + ϕi,j(a) + (1− ϕj,j)(x) = ci,j + ϕi,j(b) + (1− ϕj,j)(x) ⇔

∀(j ∈ I) ϕi,j(a) = ϕi,j(b) ⇔ ∀(j ∈ I) a− b ∈ Ker(ϕi,j) ⇔ a− b ∈
⋂
j∈I

Ker(ϕi,j).

Definition 6.1. Let Q be a medial quandle being the sum of an indecomposable affine mesh
(Ai; ϕi,j ; ci,j) over a set I. The quandle is called quasi-reductive if there exists i ∈ I such that⋂
j∈I Ker(ϕi,j) is non-trivial.

An alternative definition of quasi-reductivity says that a medial quandle is quasi-reductive if and
only if θ is non-trivial on Q. The class of quasi-reductive medial quandles contains all non-projective
reductive medial modes, according to Proposition 5.10. But not every quasi-reductive is reductive,
an example is Aff(Z6,−1). Moreover, there exist even SI affine quasi-reductive medial quandles.

Example 6.2. Take Q = Aff(Zp∞ , 1 − p), where p is a prime and Zp∞ is the Prüfer group. The
multiplication by p is surjective on Zp∞ and therefore Q is connected. The multiplication by p is
not injective, its kernel is {a/p; a ∈ Zp}, i.e. the socle of Zp∞ , and therefore Q is quasi-reductive.
This socle is the minimal Z-submodule of Zp∞ and corresponds to the monolith of the subdirectly
irreducible quandle Q.

As we said, the main goal of the section is to describe all finite reductive SI medial quandles and
hence, from now on, we shall suppose not only that Q is quasi-reductive but also non-connected.
Moreover, in the next sequence of lemmas we assume that Q is a subdirectly irreducible and that
Q is the sum of an indecomposable affine mesh (Ai; ϕi,j ; ci,j) over at least two element set I. We
also assume that the orbit A1 is an orbit where θ is non-trivial, i.e. that

⋂
j∈I Ker(ϕ1,j) 6= {0}. If

Q happens to be reductive, we could alternatively say that A1 is strictly (m − 1)-reductive. We
show first that A1 is the only orbit where θ is non-trivial (or that is not (m− 2)-reductive).

Lemma 6.3. Let 1 6= i ∈ I and a, b ∈ Ai. Then a θ b if and only if a = b.

Proof. Let M1 =
⋂
j∈I Ker(ϕ1,j) and consider submodules Mj = ϕ1,j(M1), for j > 1. By Example

3.3, there is a congruence % ⊆ π of Q such that, for each k ∈ I, M%|Ak
= Mk. Note that Mk is

trivial, for k > 1.
12



Suppose, on the contrary, that there are 1 6= i ∈ I and elements a 6= b ∈ Ai such that a θ b. Let
M ′i =

⋂
j∈I Ker(ϕi,j) 6= {0} and consider submodules M ′j = ϕi,j(M

′
i), for i 6= j. By Example 3.3

again, there is a congruence %′ ⊆ π of Q such that, for each k ∈ I, M%′|Ak
= M ′k. Again, M ′k is

trivial, for k 6= j.
It follows that %∩%′ = ∆, which contradicts the assumption that Q is subdirectly irreducible. �

Lemma 6.4. The R-module A1 is subdirectly irreducible.

Proof. Suppose, contrary to our claim, that there are two distinct minimal R-submodules of A1,
let us say S1 and S2. It follows from Example 3.3 that there are congruences ξ1 and ξ2 of the
quandle Q, such that Mξ1|A1

= S1 and Mξ2|A1
= S2. By Theorem 3.2, M = Mθ|A1

is a non-trivial

R-submodule of A1. Let us consider two cases:
Case 1. Let S1 ∩M = {0}. By assumption, Mθ∩ξ1|A1

= M ∩ S1 = {0}. Moreover, by Lemma

6.3, we obtain θ ∩ ξ1 = ∆. Similarly we proceed in the case S2 ∩M = {0}.
Case 2. Assume now S1 ⊂ M and S2 ⊂ M . Then congruences ξ1 and ξ2 are non-trivial

congruences of the quandle Q, with ξ1 ⊂ θ and ξ2 ⊂ θ. Therefore ξ1 ∩ ξ2 = ∆ due to Lemma 6.3.
In both cases, Q is not subdirectly irreducible, contrary to the assumption. �

Let a, b ∈ Q and Θ(a, b) denote the smallest congruence on Q collapsing (a, b). Recall, by [10,
Theorem 1.20.] Θ(a, b) can be described by the following recursion:

X0 = {(a, b), (b, a)} ∪ {(q, q) : q ∈ Q}
Xn+1 = Xn ∪ {(x · x′, y · y′) : (x, y), (x′, y′) ∈ Xn} ∪ {(x, z) : (x, y), (y, z) ∈ Xn for some y ∈ Q}.
Then Θ(a, b) =

⋃
n∈NXn.

Lemma 6.5. Let a, b ∈ Q \A1. If for each x ∈ A1, ax = bx, then a = b.

Proof. Let a 6= b ∈ Q \ A1 and ax = bx, for every x ∈ A1. Then Θ(a, b)|A1 = ∆. By Lemma 6.3,
the relation θ|(Q\A1) is also trivial. It follows that Θ(a, b) ∩ θ = ∆, so Q can not be subdirectly
irreducible. �

Corollary 6.6. For each 1 6= i ∈ I, ϕi,1(Ai) embeds into the R-module A1.

Proof. We show that for each 1 6= i ∈ I, ϕi,1 is an injection. Let ϕi,1(a) = ϕi,1(b) for some a, b ∈ Ai.
Hence, for any x ∈ A1

a · x = ci,1 + ϕi,1(a) + (1− ϕ1,1)(x) = ci,1 + ϕi,1(b) + (1− ϕ1,1)(x) = b · x.
Hence, by Lemma 6.5, a = b. �

Summarizing, by Lemmas 6.3 and 6.4, Corollaries 5.5 and 6.6 in the reductive case, we have that
a SI strictly m-reductive medial quandle has exactly one strictly (m−1)-reductive orbit A1, which is
a subdirectly irreducible R-module. Furthermore, for each 1 6= i ∈ I, Ai is strictly (m−2)-reductive
quandle and for every 1 6= i ∈ I, the homomorphisms ϕi,1 are injective.

By Corollary 6.6, we can assume that, for each 1 6= i ∈ I, the orbit Ai is an R-submodule of A1,
ϕi,i = ϕ1,1, and ϕi,1 = 1Ai . Furthermore, by (M3) it follows that for each 1 < i, j ∈ I

ϕ1,i = ϕ1,iϕi,1 = ϕ2
i,i = ϕ2

1,1,

ϕi,j = ϕj,1ϕi,j = ϕ1,1ϕi,1 = ϕ1,1.

Each fiber Ai can be structurally viewed either as an R-module or as a permutation group acting
on Q. We need both the features and therefore the fibres will be treated either as modules or as
permutation groups, according to our needs.

Let, for each j ∈ I, denote by 0j the neutral element of Aj .

Lemma 6.7. For each 1 < i 6= j ∈ I, ci,1 6= cj,1.
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Proof. Suppose, that there are 1 < i 6= j ∈ I such that ci,1 = cj,1. Then for all x ∈ A1, 0i ·x = 0j ·x.
Hence, by Lemma 6.5, 0i = 0j , a contradiction. �

Lemma 6.8. For each 1 < i 6= j ∈ I, the constants ci,j are uniquely determined only by the
constants ci,1 ∈ A1.

Proof. It straightforwardly follows by (M4) that, for any i, j, k ∈ I, ϕj,k(ci,j) = ϕk,k(ci,k − cj,k).
Hence, for k = 1 and j 6= 1 we obtain

ci,j = ϕj,1(ci,j) = ϕ1,1(ci,1 − cj,1).
In particular, for j 6= 1 and i = 1

c1,j = ϕ1,1(c1,1 − cj,1) = −ϕ1,1(cj,1).

�

Let ϕ := ϕ1,1. Corollary 6.6 and Lemma 6.8 directly imply

Lemma 6.9. For each 1 6= i ∈ I, Ai = ϕ(A1).

Proof. Let 1 6= j ∈ I. By indecomposability, for each 1 6= i ∈ I, the group Ai is generated by sets:
ϕ1,i(A1) = ϕ2(A1), ϕj,i(Aj) = ϕ(Aj) and all elements c1,i = −ϕ(ci,1) and cj,i = ϕ(cj,1− ci,1). Since
each Aj is a subgroup of A1, it it evident that Ai ⊆ ϕ(A1).

On the other hand, the group A1 is generated by sets: ϕ1,1(A1) = ϕ(A1), ϕj,1(Aj) = Aj and
all constants cj,1. Hence, ϕ(A1) is generated by ϕ2(A1), ϕ(Aj) and ϕ(cj,1), which shows that
Ai = ϕ(A1) for each 1 6= i ∈ I. �

Lemma 6.10. For i 6= j, ci,1 − cj,1 /∈ ϕ(A1).

Proof. Assume ci,1 − cj,1 ∈ ϕ(A1) = Aj , for some i 6= j ∈ I. Then there exists a ∈ Aj such that
ci,1 = cj,1 + a. But, for each b ∈ A1, 0i · b = (1− ϕ)(b) + ci,1 = (1− ϕ)(b) + a+ cj,1 = a · b. Then,
by Lemma 6.5, 0i = a, a contradiction with Lemma 6.7. �

Lemma 6.10 gives the upper bound for the number of orbits in a non-connected SI quasi-reductive
medial quandle.

Corollary 6.11. Let κ = |A1/ϕ(A1)|. The number of orbits in Q is at most κ+ 1.

Now we are ready to describe the structure of non-connected SI quasi-reductive medial quandles.

Theorem 6.12. Let Q be a non-connected quasi-reductive medial quandle. Then Q is subdirectly
irreducible if and only if it is isomorphic to the sum of the affine mesh

((A,ϕ(A), ϕ(A), . . .︸ ︷︷ ︸
ν−times

);


ϕ ϕ2 ϕ2 ... ϕ2 ...
1 ϕ ϕ ... ϕ ...
1 ϕ ϕ ... ϕ ...
...
...

...
...

...
...

1 ϕ ϕ ... ϕ ...
...
...

...
...

...
...

 ;



0 −ϕ(c2,1) ... −ϕ(ci,1) ... −ϕ(cj,1) ...
c2,1 0 ... ϕ(c2,1−ci,1) ... ϕ(c2,1−cj,1) ...
...

...
...

...
...

...
...

ci,1 ϕ(ci,1−c2,1) ... 0 ... ϕ(cj,1−ci,1) ...
...

...
...

...
...

...
...

cj,1 ϕ(cj,1−c2,1) ... ϕ(cj,1−ci,1) ... 0 ...
...

...
...

...
...

...
...

),

where

(1) A is a subdirectly irreducible Z[x, x−1]-module,
(2) ϕ = 1− x,
(3) 0 < ν ≤ κ, where κ = |A/ϕ(A)|,
(4) ci,1 − cj,1 /∈ ϕ(A), for each 1 < i 6= j ∈ I,
(5) A is generated by the set ϕ(A) ∪ {ci,1 | i ∈ I}.
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Proof. It is easy to check that (Ai;ϕi,j ; ci,j) is an irreducible affine mesh.
“⇒” Let Q be a non-connected SI quasi-reductive medial quandle. The proof that Q has the

form described in the theorem follows from Lemmas 6.4, 6.7, 6.8, 6.9, 6.10, Corollaries 6.6, and
6.11.

“⇐” Now let Q be a sum of the affine mesh described in the theorem. Then, by assumption,
A1 = A is a subdirectly irreducible Z[x, x−1]-module. Let M be the smallest non-trivial submodule
of the module A1. Since Ker(ϕ) is a non-zero submodule of A, clearly M ⊆ Ker(ϕ). By Example
3.4, the relation Υ ⊆ Q×Q defined as follows:

a Υ b if and only if a = b or (a, b ∈ A1 and a ≡M b)

is a congruence of the quandle Q.
To prove that Q is subdirectly irreducible we will show that for any a 6= b ∈ Q the congruence

Θ(a, b) generated by a and b contains the congruence Υ.
It is obvious for a, b ∈ A1. Now we will show that for a or b in Q \A1, the congruence Θ(a, b)|A1

is non-trivial. We will divide the proof into several cases.
Case 1. Let a, b ∈ Ai = ϕ(A) for 1 6= i ∈ I. It is easy to notice that for any x ∈ A1

a · x = ci,1 + ϕi,1(a) + (1− ϕ1,1)(x) = ci,1 + a+ (1− ϕ1,1)(x) 6=
ci,1 + b+ (1− ϕ1,1)(x) = ci,1 + ϕi,1(b) + (1− ϕ1,1)(x) = b · x.

Case 2. Let a ∈ Ai = ϕ(A) and b ∈ Aj = ϕ(A) for 1 < i 6= j ∈ I. Then there are a1, b1 ∈ A1

such that a = ϕ(a1) and b = ϕ(b1). Furthermore, by the assumption, the constants ci,1 and cj,1
belong to different cosets of ϕ(A), and hence we have that ci,1 /∈ cj,1 + ϕ(A). This implies that
ci,1 6= cj,1 + ϕ(b1)− ϕ(a1). Hence for any x ∈ A1

a · x = ci,1 + ϕi,1(a) + (1− ϕ1,1)(x) = ci,1 + a+ (1− ϕ1,1)(x) = ci,1 + ϕ(a1) + (1− ϕ1,1)(x) 6=
cj,1 + ϕ(b1) + (1− ϕ1,1)(x) = cj,1 + b+ (1− ϕ1,1)(x) = cj,1 + ϕj,1(b) + (1− ϕ1,1)(x) = b · x.

Case 3. Let a ∈ A1, b ∈ Ai = ϕ(A) for 1 6= i ∈ I and ci,1 /∈ ϕ(A). Then there is b1 ∈ A1 such
that b = ϕ(b1) and ci,1 6= ϕ(a)− ϕ(b1). In consequence, for any x ∈ A1, we obtain

a · x = ϕ1,1(a) + (1− ϕ1,1)(x) = ϕ(a) + (1− ϕ1,1)(x) 6=
ci,1 + ϕ(b1) + (1− ϕ1,1)(x) = ci,1 + b+ (1− ϕ1,1)(x) =

ci,1 + ϕi,1(b) + (1− ϕ1,1)(x) = b · x.

Case 4. Let a ∈ A1, b ∈ Ai = ϕ(A) for 1 6= i ∈ I and ci,1 ∈ ϕ(A). Since, by assumption, the
group A is generated by the set ϕ(A) ∪ {ci,1 | i ∈ I}, there is j ∈ I, such that 1 6= j 6= i, with
cj,1 /∈ ϕ(A). Then cj,1 6= ϕ2(a)− ϕ(ci,1 − cj,1)− ϕ(b). Hence

a · 0j = c1,j + ϕ1,j(a) + (1− ϕj,j)(0j) = c1,j + ϕ1,j(a) = −cj,1 + ϕ2(a) 6=
ϕ(ci,1 − cj,1) + ϕ(b) = ci,j + ϕi,j(b) = ci,j + ϕi,j(b) + (1− ϕj,j)(0j) = b · 0j .

Since a · 0j , b · 0j ∈ Aj , by Case 1 we have that for any x ∈ A1, (a · 0j) · x 6= (b · 0j) · x.
Hence, by Cases 1–4, for any a 6= b with a or b in Q \A1, Θ(a, b)|A1 is indeed non-trivial, which

shows that Q is subdirectly irreducible. �

Corollary 6.13. Let Q be a subdirectly irreducible m-reductive medial quandle. Then

• |Q| = 2, if m = 1;
• Q is constructed in Theorem 6.12 where A is a subdirectly irreducible Z[x, x−1]/(1−x)m−1-

module, if m ≥ 2.

Example 6.14. Let A = Zp∞ × Zp∞ and let x · (a, b) = (a, b − a). Then A is a subdirectly
irreducible Z[x, x−1]-module since the smallest submodule is {(0, c/p), for c ∈ Zp}. Let now ϕ be
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the multiplication by 1−x, i.e. ϕ((a, b)) = (0, a). Clearly ϕ2 = 0. We obtain a SI medial reductive
quandle with infinitely many orbits as the sum of

((Zp∞ × Zp∞ ,Zp∞ ,Zp∞ , . . .);

 ϕ 0 0 ···
1 ϕ ϕ ···
1 ϕ ϕ ···
...
...
...
. . .

 ;

 0 (0,−1/p) (0,−1/p2) ···
(1/p,0) 0 (0,(p−1)/p2) ···
(1/p2,0) (0,(1−p)/p2) 0 ···

...
...

...
. . .

).

It remains to decide which of the sums of affine meshes described in Theorem 6.12 are isomorphic.
Let us start with homologous affine meshes introduced in [7].

Definition 6.15. We call two affine meshes A = (Ai;ϕi,j ; ci,j) and A′ = (A′i;ϕ
′
i,j ; c

′
i,j), over the

same index set I, homologous, if there is a permutation σ of the set I, group isomorphisms ψi :
Ai → A′σi, and constants di ∈ A′σi, such that, for every i, j ∈ I,

(H1) ψjϕi,j = ϕ′σi,σjψi, i.e., the following diagram commutes:

Ai
ϕi,j−−−−→ Ajyψi yψj

A′σi
ϕ′σi,σj−−−−→ A′σj

(H2) ψj(ci,j) = c′σi,σj + ϕ′σi,σj(di)− ϕ′σj,σj(dj).

Theorem 6.16. [7] Let A = (Ai;ϕi,j ; ci,j) and A′ = (A′i;ϕ
′
i,j ; c

′
i,j) be two indecomposable affine

meshes, over the same index set I. Then the sums of A and A′ are isomorphic quandles if and
only if the meshes A, A′ are homologous.

Let A = (Ai;ϕi,j ; ci,j) be an indecomposable affine mesh described in Theorem 6.12. We have
the following sequence of lemmas.

Lemma 6.17. For each i ∈ I, let c′i,1 ∈ A be such that c′i,1 ∈ ci,1 + ϕ(A). Then the sum of A is

isomorphic to the sum of the indecomposable affine mesh A′ = (Ai;ϕi,j ; c
′
i,j).

Proof. Let σ = id, ψ1 = id, d1 = 0 and for every 1 6= i ∈ I, ψi = id and di = ci,1−c′i,1 ∈ ϕ(A) = Ai.

Hence, condition (H1) is satisfied trivially. Moreover,

ci,1 = c′i,1 + di − 0 = c′i,1 + ϕi,1(di)− ϕ1,1(0),

which shows that the condition (H2) is also satisfied. �

Lemma 6.18. Let A/ϕ(A) be a cyclic group and κ = |A/ϕ(A)| > 1. Then

• there is exactly one, up to isomorphism, SI quasi-reductive medial quandle with two orbits;
• there is exactly one SI quasi-reductive medial quandle with three orbits, such that c3,1 ∈
ϕ(A);
• if κ < ω then there is exactly one SI quasi-reductive medial quandle with κ+ 1 orbits.

Proof. Since A is generated by the set ϕ(A) ∪ {ci,1 | i ∈ I}, at least one constant must be a
generator of the group A/ϕ(A). Hence, if Q has only two orbits, the constant c = c2,1 /∈ ϕ(A)
and c + ϕ(A) is one of the generators of A/ϕ(A). Therefore, there exists an isomorphism ψ :
A → A such that, for any other d /∈ ϕ(A), where d + ϕ(A) is a generator of A/ϕ(A), we have
ψ(c) = d. Hence, for σ = id, ψ1 = ψ2 = ψ and d1 = d2 = 0, the conditions (H1) and (H2) are

satisfied for affine meshes: ((A,ϕ(A));
(
ϕ ϕ2

1 ϕ

)
;
(

0 −ϕ(c)
c 0

)
) and ((A,ϕ(A));

(
ϕ ϕ2

1 ϕ

)
;
(

0 −ϕ(d)
d 0

)
). In

consequence, they are isomorphic.
The same arguments works in the case of three orbits with c3,1 = 0. So by Lemma 6.17 all SI

quasi-reductive medial quandles with 3 orbits, where c3,1 ∈ ϕ(A) are isomorphic.
16



Finally, in the case of κ + 1 orbits, the required condition that, for each 1 < i 6= j ∈ I,
ci,1 /∈ cj,1 +ϕ(A), implies (by Lemma 6.17) that there is only one way for choosing constants in A.
So, the statement is obvious. �

Lemma 6.19. Suppose that for some 1 6= i ∈ I, ci,1 = 0. Then the sum of A is not isomorphic to
the sum of the indecomposable affine mesh A′ = (Ai;ϕi,j ; c

′
i,j) with c′i,1 /∈ ϕ(A) for each 1 6= i ∈ I.

Proof. Let ci,1 = 0 for some 1 6= i ∈ I. Since 0 ∈ ϕ(A) and c′i,j +ϕ(A) 6= ϕ(A), for any isomorphism

ψ : A→ A, every d1 ∈ A and di ∈ ϕ(A), we have

ψ(ci,1) = 0 6= c′i,j + ϕi,1(di)− ϕ1,1(d1) = c′i,j + di − ϕ(d1) ∈ c′i,j + ϕ(A).

This means that the condition (H2) fails for any isomorphism ψ : A→ A. �

By Lemmas 6.17 and 6.19 we immediately obtain

Corollary 6.20. Let ci,1 ∈ ϕ(A) for some 1 6= i ∈ I. Then the sum of A is not isomorphic to the
sum of the indecomposable affine mesh A′ = (Ai;ϕi,j ; c

′
i,j) with c′i,1 /∈ ϕ(A) for each 1 6= i ∈ I.

Example 6.21. Let ϕ = ( 0 0
1 0 ) : Z2 × Z2 → Z2 × Z2 and c = ( 1

0 ).
It was shown in [7], that up to isomorphism, there are exactly two reductive, but not 2-reductive

medial quandles of size 6: ((Z22 , 2Z22); ( 2 0
1 2 ) ;

(
0 −2
1 0

)
) and ((Z2×Z2, ϕ(Z2×Z2));

(
ϕ 0
1 ϕ

)
;
(

0 −ϕ(c)
c 0

)
).

By Theorem 6.12 both of them are subdirectly irreducible.
Further, there are nine reductive, but not 2-reductive medial quandles of size 8. Only two of

them are subdirectly irreducible: ((Z22 , 2Z22 , 2Z22);
(

2 0 0
1 2 2
1 2 2

)
;
(

0 −2 0
1 0 2
0 −2 0

)
) and

((Z2 × Z2, ϕ(Z2 × Z2), ϕ(Z2 × Z2));

(
ϕ 0 0
1 ϕ ϕ
1 ϕ ϕ

)
;

(
0 −ϕ(c) 0
c 0 ϕ(c)
0 −ϕ(c) 0

)
).

Note that all of them are strictly 3-reductive.

7. Subdirectly irreducible quandles with cyclic orbits

It is clear that each congruence of a cyclic group A is a congruence of the Z[x, x−1]-module A.
Consequently, a Z[x, x−1]-module A with the underlying group cyclic is subdirectly irreducible if
and only if A is subdirectly irreducible as an abelian group. The only cyclic SI groups are groups
Zps of order ps, for some prime number p.

Moreover, the only non-zero nilpotent endomorphisms of the group Zps are of the form ϕ = pka,

for some 0 < k < s and a coprime with p, and the quandles Aff(Zps , 1− pka) are strictly (
⌈
s
k

⌉
+ 1)-

reductive.
Consider now 2-reductive medial quandles. Since Z[x, x−1]/(1−x) ∼= Z and each finite subdirectly

irreducible Z-module is a cyclic group, Theorem 6.12 immediately gives the known characterization
of finite SI 2-reductive medial quandles which was presented by Romanowska and Roszkowska
in [11].

Theorem 7.1. [11, Theorem 3.1] A finite strictly 2-reductive medial quandle Q is subdirectly irre-
ducible if and only if Q is isomorphic to the sum of an affine mesh

((Zpk ,Z1, . . . ,Z1︸ ︷︷ ︸
n−times

); 0; (ci,j)),

where pk, for k > 0, is a prime power, 1 ≤ n ≤ pk, and ci,1 ∈ Zpk are pairwise different elements
such that Zpk = 〈ci,1 : i ∈ I〉.

Moreover, we are now able to describe all SI 2-reductive quandles.
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Theorem 7.2. All infinite subdirectly irreducible 2-reductive medial quandles are sums of

((Zp∞ ,Z1,Z1, . . .︸ ︷︷ ︸
ω−times

); 0; (ci,j)),

where p is a prime and ci,1 are pairwise different elements of Zp∞. There is 2ω isomorphism classes
of such quandles.

Proof. Consider Q an infinite subdirectly irreducible 2-reductive medial quandle. We construct Q
as the sum of the mesh from Theorem 6.12. If A1 is finite than the number of orbits is finite too.
Hence A1 is an infinite SI abelian group. According to [2, Theorem 3.29] such are only Prüfer groups
Zp∞ . Since these groups are not finitely generated, there has to be infinitely many constants. Any
infite subset of Zp∞ already generates the group.

There is 2ω possibilities how to choose the set {ci,1 | i ∈ I}. According to Theorem 6.16, each
such a mesh is homologous to at most |Aut(Zp∞)| meshes since the constants di play no role here.
And |Aut(Zp∞)| = ω. �

A binary algebra Q is called involutory if L2
a = 1, for every a ∈ Q, i.e., if it satisfies

x(xy) = y.

We know (see [7, Proposition 7.2]) that an involutory medial quandle has orbits that are modules
over Z[x]/(1 + x) ∼= Z and therefore, when considering congruences, we just look at subgroups.
Hence, in a SI finite involutory medial quandle, each orbit is cyclic. Moreover, since 1 − x ≡(1+x)

2 then Theorem 6.12 confirms the result of Roszkowska:

Theorem 7.3. [13, Theorem 4.3] A finite involutory and reductive medial quandle Q is subdirectly
irreducible if and only if Q is isomorphic to the sum of one of the following affine meshes:

((Z2k , 2Z2k); ( 2 4
1 2 ) ;

(
0 −2
1 0

)
), ((Z2k , 2Z2k , 2Z2k);

(
2 4 4
1 2 2
1 2 2

)
;
(

0 −2 0
1 0 2
0 −2 0

)
),

where k ≥ 1.

Moreover, we can tell something about infinite subdirectly irreducibles.

Theorem 7.4. An infinite involutory, non-connected and quasi-reductive medial quandle Q is
subdirectly irreducible if and only if Q is isomorphic to the sum of

((Z2∞ ,Z2∞); ( 2 4
1 2 ) ; ( 0 0

0 0 )).

Proof. The only infinite subdirectly irreducible abelian group, where the multiplication by 2 is not
1-1, is Z2∞ . Since 2 ·Z2∞ = Z2∞ , there are at most two orbits and the constants are not important,
according to Lemma 6.17. �

Clearly, each pair of endomorphisms of a cyclic group conjugates if and only if they are equal.
Hence, by Theorem 6.16, for a group Zps and two different nilpotent endomorphisms of Zps we
always obtain non-isomorphic quandles. So, in non-isomorphic sums of affine meshes with cyclic
orbits, constants must play a crucial role.

Now we give the characterization of non-isomorphic SI finite reductive medial quandles with each
orbit cyclic.

Theorem 7.5. Let n ≥ 1, I = {1, 2, . . . , n, n+1} and K = {2, . . . , n, n+1}. Let A = (Ai; ϕi,j ; ci,j)
and A′ = (Ai; ϕi,j ; c

′
i,j) be two indecomposable affine meshes over I described in Theorem 6.12 with

A = Zps, for some prime power ps, and ϕ = pka, for some 0 < k < s and a coprime with p. Assume
that ci,1, c

′
i,1 /∈ ϕ(A), for each i ∈ K, or there is (exactly one) i ∈ K such that ci,1, c

′
i,1 ∈ ϕ(A).
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Then the sums A and A′ are isomorphic if and only if n ≤
⌈
s
k

⌉
or there is a permutation σ of the

set K such that, for any i, j ∈ K, the constants satisfy the following condition:

ci,1c
′
σ(j),1 − cj,1c

′
σ(i),1 = 0.(7.1)

Proof. By Theorem 6.16, two indecomposable affine meshes over the same index set I are isomorphic
if and only if the meshes are homologous. Hence, to show that the meshes A and A′ are isomorphic
it is enough to check the condition (H2) only for constants ci,1 ∈ A, i ∈ I, (the condition (H1) is
trivially satisfied). So, we have to check whether there are a permutation σ of the set K, a group
isomorphism ψ : A→ A and constants d1 ∈ A and di ∈ Aσ(i) such that for every i ∈ K,

ψ(ci,1) = c′σ(i),1 + ϕσ(i),1(di)− ϕ1,1(d1) = c′σ(i),1 + di − ϕ(d1).

Since for i 6= 1, di ∈ ϕ(A), then there is ai ∈ A such that di = ϕ(ai) and di − ϕ(d1) = ϕ(ai − d1) ∈
ϕ(A). Therefore our problem can be reformulated in the following way: Are there a permutation σ
of the set K, a group isomorphism ψ : A→ A and constants ri ∈ ϕ(A) such that for every i ∈ K,

ψ(ci,1) = c′σ(i),1 + ri?

The condition r ∈ ϕ(Zps) is equivalent to the fact that there is z ∈ Zps such that r = pkz. Further,

each isomorphism of the group Zps is defined in the way: 1 7→ y + plb, where y ∈ {1, . . . , pl − 1}
and b ∈ {0, . . . , pl − 1}.

Hence, the problem reduces to the question about existing solutions of the following system of
n linear equations:

ci,1y + ci,1p
lb+ pkxi = c′σ(i),1,(7.2)

with 2 ≤ i ≤ n+1 and (n+2) unknowns: y ∈ {1, . . . , pl−1}, b ∈ {0, . . . , pl−1} and x2, . . . , xn+1 ∈
Zps , for some permutation σ of the set K.

Let B =

 c2,1 c2,1pl pk 0 ... 0

c3,1 c3,1pl 0 pk ... 0
...

...
...

...
...
...

cn+1,1 cn+1,1pl 0 0 ... pk

 and C =


c′
σ(2),1

c′
σ(3),1

...
c′
σ(n+1),1

.

The system (7.2) is solvable if and only if rk(B) = rk(B|C), where rk denotes the rank of a
matrix. Let m =

⌈
s
k

⌉
. Since the sums A and A′ are strictly (m + 1)-reductive and there is i ∈ K

such that ci,1 /∈ ϕ(Zps), then in the case n ≤ m, rk(B) = rk(B|C) = n and the system (7.2) always
has a solution.

On the other hand, if n > m, then rk(B) = m. In this case, the system has a solution if and
only if there is a permutation σ of the set K and ci,1c

′
σ(j),1 − cj,1c

′
σ(i),1 = 0 for any i, j ∈ K. This

completes the proof. �

Example 7.6. Using Theorem 7.5 it is easy to check that the sums of the following two strictly
3-reductive affine meshes with 4 orbits:

((Z72 , 7Z72 , 7Z72 , 7Z72);

(
7 0 0 0
1 7 7 7
1 7 7 7
1 7 7 7

)
;

(
0 42 28 21
1 0 35 28
3 14 0 42
4 21 7 0

)
), ((Z72 , 7Z72 , 7Z72 , 7Z72);

(
7 0 0 0
1 7 7 7
1 7 7 7
1 7 7 7

)
;

(
0 14 35 7
5 0 21 42
2 28 0 21
6 7 28 0

)
)

are not isomorphic. But their lattices of congruences are (to compute the lattice of congruences we
used [3]).

On the other hand, for each module Zps such that ϕ2(Zps) = 0 and |Zps/ϕ(Zps)| ≥ 3, there are
exactly two non-isomorphic sums of the following affine meshes with 3 orbits:

((Zps , ϕ(Zps), ϕ(Zps));
(
ϕ 0 0
1 ϕ ϕ
1 ϕ ϕ

)
;

(
0 −ϕ(1) 0
1 0 ϕ(1)
0 −ϕ(1) 0

)
) and

((Zps , ϕ(Zps), ϕ(Zps));
(
ϕ 0 0
1 ϕ ϕ
1 ϕ ϕ

)
;

(
0 −ϕ(1) −ϕ(c)
1 0 ϕ(1−c)
c ϕ(c−1) 0

)
), where c ∈ Zps \ ϕ(Zps).
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8. Discussion

The optimal outcome of our work would be a complete classification of subdirectly irrreducible
medial quandles. We have not achieved the goal so far, what we know is that

• Subdirectly irreducible medial quandles are either quasi-affine or of set type.
• Finite quasi-affine quandles are connected affine quandles. Classification of connected affine

quandles depends on the classification of subdirectly irreducible Z[x, x−1]-modules. This
classification is still open.
• It is unknown whether there exist infinite quasi-affine SI medial quandles that are not

connected. Proposition 4.5 only excludes the possibility of affine non-connected ones.
• In the finite case, all SI medial quandles of set type are reductive and they are described in

Corollary 6.13 modulo the missing description of irreducible Z[x, x−1]-modules.
• Infinite SI medial quandles of set type need not be reductive, as we saw in Theorem 7.4.

Here we used an auxiliary notition called quasi-reductivity but there is no evidence whether
this definition includes all SI medial quandles of set type, that means whether or not there
exist infinite SI medial quandles that are neither quasi-affine nor quasi-reductive.

Acknowledgement. We would like to thank David Stanovský for his valuable comments and
fruitful discussion.
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