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Abstract. Automorphic loops are loops where all inner mappings are auto-

morphisms. We study when a semidirect product of two abelian groups yields

a commutative automorphic loop such that the normal subgroup lies in the
middle nucleus. With this description at hand we give some examples of such

semidirect products.

A loop is a quasigroup with a neutral element, that means an algebra (Q, ·, 1)
satisfying 1 ·x = x · 1 = x and the mappings La : x 7→ a ·x and Ra : x 7→ x · a being
bijective. The multiplication group Mlt(Q) is the permutation group on Q generated
by all the La and Ra. The inner mapping group Inn(Q) is the stabiliser of 1 within
Mlt(Q). A loop is called automorphic (or an A-loop) if Inn(Q) ⊆ Aut(Q). A subset
of Q is called a subloop if it is closed on the binary operation and if it is a loop. A
subloop S of Q is called normal if every inner mapping of Q sends S to S.

The commutative automorphic loops have been studied intensively in recent
years [5] and a few examples were constructed too [6], [3]. Some of these exam-
ples are in fact semidirect products and this brought the idea, how the semidirect
product of commutative A-loops look like.

The answer in the full generality is probably difficult, given how complicated
already the semidirect product of Moufang loops is [4]. This is why focus on a
special case, called the nuclear semidirect product. The middle nucleus of a loop Q
is Nµ(Q) = {x ∈ Q; a(xb) = (ax)b, ∀a, b ∈ Q}. Here we consider only those
semidirect products Q = K oH, satisfying K ⊆ Nµ(Q) and H abelian.

The semidirect product can be viewed as two different notions—on one hand, it
is a special configuration of subalgebras in an algebra and on the other hand it is
a construction giving a larger object from two smaller ones. In section 1 we start
with a given configuration (that means K /Q, H < Q, K ∩H = {1} and KH = Q)
and we deduce how can it be described externally, that means using some mapping
ϕ : H2 → Aut(K).

In Section 2 we give some examples that were already known before, only the
fact of being semidirect products was not emphasised. In Section 3 we study what
loops can be obtained if the normal subgroup is cyclic with less than 5 elements;
a construction found there is subsequently generalized for larger subgroups. In
Section 4 we study the situation from Section 3 in deeper details giving a more
general description.

As a byproduct, we show that, for each prime p, all but two commutative A-loops
of order p3 can be obtained as semidirect products and we give their descriptions.
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1. Analysis of the semidirect product

In this section we give a description of the semidirect product we want to un-
derstand. Let us first recall what a semidirect product of groups is. There is an
internal semidirect product, that means a configuration of two subgroups, K / G
and H < G such that KH = G and K ∩ H = {1}. On the other hand, external
semidirect product is a construction (K oϕ H, ∗) on the set K × H given by the
law (a, i) ∗ (b, j) = (aϕj(b), ij), for some ϕ : H 7→ Aut(K).

In the loop case, a loop Q is a semidirect product, if we find two subloops K
and H of Q such that K is normal and K ∩H = {1} and K ·H = Q. However, as
we said before, the description in the full generality is complicated and this is why
we decided to restrain the area of our interest and focus on the case where

• K and H are abelian groups,
• K 6 Nµ(Q).

To see that this restriction is not general, see the next example.

Example 1.1. There exists only one non-associative commutative Moufang loop
on 81 elements. Denote it by Q. It is well-known [9] that all commutative Moufang
loops are automorphic. There exists a normal subgroup, let us say K, of Q with
27 elements. Since Q is of exponent 3, the loop Q is a semidirect product of K
and 〈x〉, for any x /∈ K. Nevertheless K 6⊆ Nµ(Q) as the nucleus contains only
3 elements. This calculation can be easily verified using GAP [8].

From now on, we will be dealing with an internal semidirect product, i.e., we
consider the following situation: we have a commutative automorphic loop Q with
two subgroups K and H, where K / Q and K 6 Nµ(Q). Both groups are abelian
and, in the sequel, they will often serve as additive groups of rings. This is why
we shall use the additive notation rather than the multiplicative one. Hence, the
conditions of the semidirect product are written as K ∩H = {0} and K +H = Q.

When working with quasigroups, there are usually two parastrophic operations
defined: a/b as the solution of the equation ax = b and a\b as the solution of the
equation xa = b. Here we consider commutative quasigroups with the additive
notation and therefore it is natural to denote the (one) associated operation by −.

Lemma 1.2. For each element x of Q, there exists a unique expression x = a+ i,
for a ∈ K and i ∈ H.

Proof. Existence follows from K + H = Q. Suppose now a + i = b + j. Then
i = (j + b)− a = j + (b− a) since b ∈ Nµ(Q). This implies (b− a) ∈ H and a = b.
The rest follows. �

This lemma did not need the assumption of automorphicity. This will definitely
not be the case of other statements and hence we have to recall some basic properties
of commutative A-loops from [2]. The inner mapping group of a commutative loop
is generated by mappings

Rx,y = R−1
x+y ◦Rx ◦Ry.

The left nucleus of a loop is the set Nλ(Q) = {x ∈ Q; x+(y+z) = (x+y)+z, ∀y, z ∈
Q}. In general there is no connection between the left and the middle nucleus but
in the case of commutative loops, the inclusion Nλ(Q) ⊆ Nµ(Q) was proved in [2].

Turning back to the semidirect product: a semidirect product of groups is de-
scribed by a mapping ϕ : H → Aut(K) and, in fact, each automorphism from Imϕ
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is a restriction of an inner automorphism of K oϕ H, that means of a mapping
k 7→ h−1kh. In the case of commutative automorphic loops, inner automorphisms
come into play too.

Lemma 1.3. Let i, j ∈ H. Then there exists an automorphism ϕi,j ∈ Aut(K) such
that, for all a, b ∈ K,

(a+ i) + (b+ j) = ϕi,j(a+ b) + (i+ j).

Proof. Let us denote qa,b = ((a + i) + (b + j)) − (i + j). Since a and b lie in the
middle nucleus, we have

(a+ i) + (b+ j) = ((a+ i) + b) + j = ((i+ a) + b) + j

= (i+ (a+ b)) + j = ((a+ b) + i) + j.

Hence we have qa,b = (((a+ b) + i) + j)− (i+ j) = R−1
i+jRjRi(a+ b) = Ri,j(a+ b).

Since Ri,j is an inner mapping, it sends K onto K. Since Q is automorphic, Ri,j
has to be an automorphism of K. �

Unlike for groups, here the generators of the inner automorphism group are the
mappings Rx,y and this is why we need two parameters for the mapping ϕ.

Proposition 1.4. Let H and K be abelian groups and let us have a mapping
ϕ : H2 → Aut(K). We define an operation ∗ on Q = K ×H as follows:

(a, i) ∗ (b, j) = (ϕi,j(a+ b), i+ j) .

Let us denote ϕi,j,k = ϕi,j+k ◦ϕj,k. Then Q is a commutative A-loop if and only if
the following properties hold:

ϕi,j = ϕj,i(1)

ϕ0,i = idK(2)

ϕi,j ◦ ϕk,n = ϕk,n ◦ ϕi,j(3)

ϕi,j,k = ϕj,k,i = ϕk,i,j(4)

ϕi,j+k + ϕj,i+k + ϕk,i+j = idK + 2 · ϕi,j,k(5)

Moreover, K × 0 is a normal subgroup of Q, 0 ×H is a subgroup of Q and (K ×
0) ∩ (0×H) = 0× 0 and (K × 0) + (0×H) = Q.
Q is associative if and only if ϕi,j = idK , for all i, j ∈ H. The nuclei are

Nµ(Q) = K × {i ∈ H; ∀j ∈ H : ϕi,j = idK} and Nλ = {a ∈ K; ∀j, k ∈ H :
ϕj,k(a) = a} × {i ∈ H; ∀j ∈ H : ϕi,j = idK}.

Proof. “⇒” Properties (1) and (2) encode a commutative loop. The other three
should encode a right automorphic loop. Let us denote by (a, i)/(b, j) the solution
of the equation (a, i) ∗ (x, y) = (b, j). We see that

(a, i)/(b, j) = (ϕ−1
i−j,j(a)− b, i− j)

Then we calculate the inner mapping. We already use (1) implicitly.

[(u,m) ∗ [(v, n) ∗ (a, i)]/[(u,m) ∗ (v, n)] =

[(u,m) ∗ (ϕn,i(v + a), n+ i)]/[(u,m) ∗ (v, n)]

=
(
ϕm,n+i(u+ ϕn,i(v + a)),m+ n+ i

)
/(ϕm,n(u+ v),m+ n)

=
(
ϕ−1
m+n,iϕm,n+i(u+ ϕn,i(v + a))− ϕm,n(u+ v), i

)
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We want the inner mapping to be a homomorphism and hence we compare

(6) [(u,m) ∗ [(v, n) ∗ [(a, i) ∗ (b, j)]]/[(u,m) ∗ (v, n)] =(
ϕ−1
m+n,i+jϕm,n+i+j(u+ ϕn,i+j(v + ϕi,j(a+ b)))− ϕm,n(u+ v), i+ j

)
and

(7) [(u,m) ∗ [(v, n) ∗ (a, i)]/[(u,m) ∗ (v, n)]∗
[(u,m) ∗ [(v, n) ∗ (b, j)]/[(u,m) ∗ (v, n)] =

(
ϕi,j

(
ϕ−1
m+n,iϕm,n+i(u+

ϕn,i(v + a)) + ϕ−1
m+n,jϕm,n+j(u+ ϕn,j(v + b))− 2ϕm,n(u+ v)

)
, i+ j

)
A commutative loop is automorphic if and only if all inner mappings are homomor-
phisms, i.e., if (6)=(7). Setting b = u = v = 0 and i = 0 we obtain

(8) ϕ−1
m+n,jϕm,n+jϕn,j(a) = ϕm,n(a)

which is actually a slightly different version of (4). Now, setting b = u = v = 0 in
(6) and using (8) we obtain

ϕ−1
m+n,i+jϕm,n+i+jϕn,i+jϕi,j(a) = ϕm,nϕi,j(a)

and in (7) we get

ϕi,jϕ
−1
m+n,iϕm,n+iϕn,i(a) = ϕi,jϕm,n(a).

Hence the automorphisms commute and we proved (3). Moreover, combining (8)
and (3) we prove (4). Finally we set a = b = v = 0 in (6) obtaining

ϕ−1
m+n,i+jϕm,n+i+j(u)−ϕm,n(u) = ϕm,nϕ

−1
n,i+j(u)−ϕm,n(u) = ϕm,n(ϕ−1

n,i+j(u)−u)

and then in (7) to get

ϕi,j(ϕ
−1
m+n,iϕm,n+i(u) + ϕ−1

m+n,jϕm,n+j(u)− 2ϕm,n(u)) =

ϕi,j(ϕm,nϕ
−1
n,i(u) +ϕm,nϕ

−1
n,j(u)− 2ϕm,n(u)) = ϕm,nϕi,j(ϕ

−1
n,i(u) +ϕ−1

n,j(u)− 2u).

Thus we have by cancelling ϕm,n

ϕ−1
n,i+j(u)− u = ϕi,j(ϕ

−1
n,i(u) + ϕ−1

n,j(u)− 2u)

ϕn,i+j(ϕ
−1
n,i+j(u) + ϕi,j(2u)) = ϕn,i+j(ϕi,j(ϕ

−1
n,i(u) + ϕ−1

n,j(u)) + u)

u+ ϕn,i,j(2u) = ϕn,i,jϕ
−1
n,i(u) + ϕn,i,jϕ

−1
n,j(u) + ϕn,i+j(u)

u+ 2ϕn,i,j(u) = ϕn+i,j(u) + ϕn+j,i(u) + ϕn,i+j(u)

and this is the last of the necessary conditions, namely (5).
“⇐” In order to prove that the conditions are sufficient, we simplify both expres-

sions of the left inner mapping. The first coordinate of the left hand side simplifies
to

ϕm,nϕ
−1
n,i+j(u+ ϕn,i+j(v + ϕi,j(a+ b)))− ϕm,n(u+ v)

= ϕm,n(ϕ−1
n,i+j(u)− u) + ϕm,nϕi,j(a+ b)

while the other side is

ϕi,j(ϕm,nϕ
−1
n,i(u+ ϕn,i(v + a) + ϕm,nϕ

−1
n,j(u+ ϕn,j(v + b)− 2ϕm,n(u+ v)

= ϕm,n(ϕi,j(ϕ
−1
n,i(u) + v + a+ ϕ−1

n,j(u) + v + b− 2u− 2v)

= ϕm,nϕi,j(ϕ
−1
n,i(u) + ϕ−1

n,j(u)− 2u+ a+ b)
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and both sides are equal if ϕ−1
n,i+j(u)− u = ϕi,j(ϕ

−1
n,i(u) + ϕ−1

n,j(u)− 2u). However,

this is equivalent to (5) as we proved in the previous paragraph.
Now we compute the middle nucleus.

((a, i) ∗ (b, j)) ∗ (c, k) =

(ϕi+j,k(ϕi,j(a+ b) + c), i+ j + k) = (ϕi,j,k(a+ b+ ϕ−1
i,j (c)), i+ j + k),

(a, i) ∗ ((b, j) ∗ (c, k)) =

(ϕi,j+k(a+ ϕj,k(b+ c)), i+ j + k) = (ϕi,j,k(ϕ−1
j,k(a) + b+ c)), i+ j + k).

Since ϕi,j,k is an automorphism, both the expressions are equal if and only if

a+ϕ−1
i,j (c) = ϕ−1

j,k(a) + c. An element (b, j) lies in the middle nucleus if and only if

the equality holds for all elements, in particular for c = 0. This yields ϕj,k(a) = a,
for all a ∈ K and k ∈ H. The same argument gives that (a, i) ∈ Nλ(Q) if and only
if ϕi,j = idK and ϕj,k(a) = a, for all j, k ∈ H. �

2. Known examples

In this section we recapitulate the already known constructions of commutative
A-loops that are nuclear semidirect products.

Suppose |H| = 2 first. All commutative A-loops with the middle nucleus of
index 2 were analysed in [6] hence we cannot discover anything new here. Never-
theless, this case is very simple and therefore we show how such semidirect products
look like.

If H = Z2 then the semidirect product is described by the automorphism ϕ1,1

since the others are trivial by (2). Properties (1), (3) and (4) are then fulfilled
trivially and the non-trivial one is (5). More precisely, the only choice that is not
automatically satisfied is

3 · idK = 3 · ϕ1,0 = idK + 2 · ϕ1,1,1 = idK + 2ϕ1,1 ◦ ϕ1,0 = idK + 2ϕ1,1.

From this we obtain 2a = 2ϕ1,1(a) = ϕ1,1(2a), for each a ∈ K. On the other
hand, it was proved in [6] that choosing any automorphism of K that satisfies
ϕ1,1(2a) = 2a yields a commutative automorphic loop and two different construc-
tions are isomorphic if and only if the chosen automorphisms are similar.

Another semidirect product was presented in [7], based on a more complicated
construction by Drápal [3]. Using the properties (1)–(5) it is easier now to show
that the loop so constructed is a commutative A-loop and we can even generalize
the construction a little bit.

Proposition 2.1. Let M be a faithful module over a ring R, char(R) 6= 2, and let
r ∈ R∗ be of a multiplicative order k ∈ N ∪ {∞}. Suppose that (ri + 1) ∈ R∗, for
each i ∈ Z. Then the set M × Zk equipped with the operation

(a, i) ∗ (b, j) =

(
(ri + 1) · (rj + 1)

2 · (ri+j + 1)
· (a+ b), i+ j

)
is a commutative A-loop.

Proof. We prove that the construction is a semidirect product given by the mapping

ϕi,j : x 7→ (ri+1)·(rj+1)
2·(ri+j+1) · x. Indeed, a multiplication by an invertible ring element is

an automorphism of M . From now on we will not be making a distinction between
an element of R and its multiplication endomorphism.
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When we prove properties (1)–(5), we shall know that the semidirect product
yields a commutative A-loop. The ring itself is not commutative in general but the
subring of R generated by r is commutative and hence we have (1). Properties (2)

and (3) are evident. For (4) we compute ϕi,j,k = (ri+1)·(rj+1)·(rk+1)
4·(ri+j+k+1)

and this does

not depend on the ordering of the elements.
Property (5) has to be computed manually. The left hand side is

(ri + 1) · (rj+k + 1)

2 · (ri+j+k + 1)
+

(rj + 1) · (ri+k + 1)

2 · (ri+j+k + 1)
+

(rk + 1) · (ri+j + 1)

2 · (ri+j+k + 1)

=
3 + ri + rj + rk + ri+j + ri+k + rj+k + 3 · ri+j+k

2 · (ri+j+k + 1)

while the right hand side is

1 + 2 · (ri + 1) · (rj + 1) · (rk + 1)

4 · (ri+j+k + 1)
=

2(ri+j+k + 1) + (ri + 1)(rj + 1)(rk + 1)

2 · (ri+j+k + 1)

=
2ri+j+k + 2 + 1 + ri + rj + rk + ri+j + ri+k + rj+k + ri+j+k

2 · (ri+j+k + 1)

Both sides are equal, which proves (5). �

This construction was presented in [7] for R a field. To justify the generalisation,
we need to bring an example where R is not a field.

Corollary 2.2. Let V be a vector space over a field F , char F 6= 2, dimV = n.
Let A be a regular matrix of size n, satisfying Ak = I, for some odd k. Then the
set V × Zk equipped with the operation

(~u, i) ∗ (~v, j) =
(

1
2 · (~u+ ~v) · (Ai + I) · (Aj + I) · (Ai+j + I)−1, i+ j

)
is a commutative A-loop.

Proof. The vector space is a faithful module over the ring of matrices and hence the
only thing to prove is that (Ai+I) is regular, for each i. Suppose, by contradiction,
that (Ai + I) is singular. Then −1 is an eigenvalue of Ai. Hence there exists λ,
an eigenvalue of A in the closure field F , such that λi = −1. But we know that
Ak = I and hence λk = 1 which is a contradiction since k is odd. �

Example 2.3. Let F be a field of an odd characteristic p. Let A =
1 1 0

0 1 1
0 0 1

.

Then Ap = I and we obtain a commutative A-loop on the set F 3 × Zp. This loop

is not associative because ϕ1,1 =
1 0 −1/4

0 1 0
0 0 1

.

3. Small cyclic normal subgroup

In this section we study how the semidirect product looks if the normal subgroup
is small, that means less than five elements, and cyclic. We still keep the notation
from Section 1 and we add one more—since End(K) ∼= K, for K cyclic, we shall
not distinguish the elements of K and the elements of End(K). It will be clear from
the context whether we work with an element a of K itself or with the mapping
x 7→ a · x. It turns out that the only small interesting cyclic case is the group Z4.

Proposition 3.1. If |K| ≤ 3 then Q is associative.
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Proof. If |K| < 3 then there exists only one automorphism of K. Suppose hence
|K| = 3.

We analyse Property (5). First we put i = j and k = −i and we obtain
ϕ2i,−i + 2ϕ0,i = 1 + 2ϕi,i,−i and therefore ϕ2i,−i = 2ϕi,i,−i − 1. Since 0 is not
an automorphism, this equation has only one solution: ϕi,i,−i = ϕ2i,−i = 1. More-
over, 1 = ϕi,i,−i = ϕ2i,−i ◦ ϕi,i = ϕi,i.

Now we put k = i. This yields ϕi,i,j = ϕ2i,j ◦ ϕi,i and hence ϕi,i,j = ϕ2i,j .
Finally, from ϕ2i,j + 2ϕi,i+j = 1 + 2ϕi,i,j we cancel the same automorphisms,
obtaining 2ϕi,i+j = 1 + ϕi,i,j . Once again, this equation has only one solution,
namely ϕi,i+j = 1, for all i, j ∈ H. Hence Q is associative. �

We shall focus on the case K ∼= Z4. The automorphisms of Z4 are the multipli-
cation by 1 and the multiplication by 3. We study the conditions under which these
two mappings satisfy Property (5). It turns out that many things can be proved in
a broader generality, like the following lemma.

Lemma 3.2. Let m,n ∈ N. Let a ≡ b ≡ c ≡ 1 (mod mn). Then ab + bc + ca ≡
1 + 2abc (mod mn2). In particular, if a, b and c are odd then a + b + c ≡ abc + 2
(mod 4).

Proof. We write a = a′mn+ 1, b = b′mn+ 1 and c = c′mn+ 1. Then

ab+ bc+ ca = a′b′m2n2 + a′mn+ b′mn+ 1 + b′c′m2n2 + b′mn+ c′mn+ 1

+ a′c′m2n2 + a′mn+ c′mn+ 1

≡ 2(a′ + b′ + c′)mn+ 3 (mod mn2)

1 + 2abc = 1 + 2
(
a′b′c′m3n3 + a′b′m2n2 + b′c′m2n2 + a′c′m2n2

+ a′mn+ b′mn+ c′mn+ 1
)

≡ 2(a′ + b′ + c′)mn+ 3 (mod mn2)

In particular, if m = 1, n = 2 and a, b, c are odd then ab+bc+ca ≡ 1+2abc (mod 4).
We then multiply both sides of the equivalence by abc and obtain c+a+b ≡ abc+2
(mod 4) since odd squares are congruent to 1 modulo 4. �

Lemma 3.3. If K ∼= Z4 then ϕi+j,k = ϕi,k ◦ ϕj,k.

Proof. We analyse Property (5). Since both automorphisms are involutory, when
multiplying both sides by ϕi,j,k, we obtain ϕi,j+ϕi,k+ϕj,k = ϕi,j,k+2. Lemma 3.2
gives us ϕi,j +ϕi,k +ϕj,k = ϕi,jϕj,kϕk,i + 2. Therefore we get ϕi,j,k = ϕi,jϕi,kϕj,k.

Now ϕi,jϕi,kϕj,k = ϕi,j,k = ϕi,jϕi+j,k and cancelling ϕi,j we obtain the claim.
�

If K ∼= Z4, a necessary condition is ϕi+j,k = ϕi,k ◦ ϕj,k, that means that ϕ is
a bilinear mapping. It turns out that the condition is sufficient too. Moreover,
this result can be generalized for other cyclic groups. We recall that radical of a
symmetric bilinear form α is the set Radα = {x; α(x, y) = 0, ∀y}.
Proposition 3.4. Let K = Zmn2 , for some m,n ∈ N. Let H be an abelian group
and let α : H2 → Zn be a symmetric bilinear form. We define ϕi,j : x 7→ (α(i, j) ·
mn+1) ·x. Then KoϕH is a commutative A-loop. Moreover Nµ(Q) = K×Radα
and Nλ(Q) ∼= Ann(mn Imα)× Radα.
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Proof. We have to remark first that (a ·mn+ 1) · (b ·mn+ 1) ≡ ((a+ b) ·mn+ 1)
(mod mn2), for all a, b ∈ Z, and hence ϕi+j,k = (α(i+ j, k) ·mn+ 1) = ((α(i, k) +
α(j, k)) ·mn+ 1) = ϕi,kϕj,k.

Now, properties (1)–(3) are clearly satisfied. Property (4) follows from ϕi,j,k =
ϕi,jϕi,kϕj,k. Property (5) is then shown in Lemma 3.2.

Ad nuclei: ϕi,j = 1 for all j ∈ H if and only of α(i, j) = 0 for all j ∈ H. From
this we get the middle nucleus. The left nucleus contains those (a, i) ∈ Nµ(Q), such
that (α(j, k) ·mn+ 1) · a = a and hence α(j, k) ·mna=0, for all j, k ∈ H. �

We assumed α to be arbitrary but it turns out that, in the case of vector spaces,
only non-degenerate forms give interesting results.

Lemma 3.5. Suppose all the assumptions of Proposition 3.4. Let H = H1 × H2

such that α(H,H2) = 0. Then K oϕ H ∼= (K oϕ H1)×H2.

Proof. The isomorphism K oϕH1×H2 7→ K oϕH is γ : (a, i, j) 7→ (a, i+ j). This
mapping is clearly a bijection, we verify that it is a homomorphism.

γ((a, i, j) ∗ (b, k, l)) = γ(((α(i+ k) + 1)mn(a+ b), i+ k, j + l))

= ((α(i+ k) + 1)mn(a+ b), i+ j + k + l))

γ((a, i, j)) ∗ γ((b, k, l)) = (a, i+ j) ∗ (b, k + l)

= ((α(i+ j, k + l)mn+ 1)(a+ b), i+ j + k + l)

and both expressions are equal since α(i + j, k + l) = α(i, k) + α(i, l) + α(j, k) +
α(j, l) = α(i, k). �

A natural question is the isomorphism type of the loops so obtained. In the case
of vector spaces, the answer is as expected.

Proposition 3.6. Let K = Zmp2 , for some prime p, and let H be an elementary
abelian p-group. Let us have two bilinear forms α1, α2 : H2 → Zp. Let Q1 and Q2

be two loops obtained via the construction in Proposition 3.4, using the forms α1

resp. α2. Then Q1
∼= Q2 if and only if α1 and α2 are equivalent.

Proof. “⇐” Let there exist β, an automorphism of H such that α2(β(i), β(j)) =
α1(i, j), for all i, j ∈ H. Define γ : Q1 → Q2, (a, i) 7→ (a, β(i)). We claim that γ is
an isomorphism.

γ((a, i) ∗1 (b, j)) = γ(((α1(i, j) ·mp+ 1) · (a+ b), i+ j))

= (((α1(i, j) ·mp+ 1) · (a+ b), β(i+ j)))

γ(a, i) ∗2 γ(b, j) = (a, β(i)) ∗2 (b, β(j)) = ((α2(β(i), β(j))mp+ 1)(a+ b),

β(i) + β(j)) = (((α1(i, j) ·mp+ 1) · (a+ b), β(i+ j)))

and γ is a homomorphism. The bijection is clear.
“⇒” Let α1 and α2 be nonequivalent symmetric bilinear forms. If the dimensions

of the radicals of the forms αi are not equal, we get, by Proposition 3.4, different
sizes of middle nuclei and thus non-isomorphic corresponding loops. Thus we can
assume that the dimensions of the radicals of the forms αi are equal. Moreover, by
Lemma 3.5 the loop is then a direct product of the radical and of a smaller loop.
We can hence suppose that α1 and α2 are non-degenerate.

Let γ be an isomorphism Q1 → Q2. Since α1 and α2 are non-degenerate,
Nµ(Q1) = Nµ(Q2) = K × 0. And therefore γ restricted on K × 0 is an auto-
morphism (we shall thus understand γ as an automorphism of K). On the other
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hand γ(H) 6= H in general. Let us write γ((0, i)) = (δ(i), β(i)), for i, β(i) ∈ H and
δ(i) ∈ K. We thus have γ((a, i)) = (γ(a), 0)∗2 (δ(i), β(i)) = (γ(a)+δ(i), β(i)). Now

γ((a, i) ∗1 (b, j)) = γ(((α1(i, j) ·mp+ 1) · (a+ b), i+ j))

= (γ(((α1(i, j) ·mp+ 1) · (a+ b)) + δ(i+ j), β(i+ j)))

γ(a, i) ∗2 γ(b, j) = (γ(a) + δ(i), β(i)) ∗2 (γ(b) + δ(j), β(j))

= ((α2(β(i), β(j))mp+ 1)((γ(a) + δ(i)) + (γ(b) + δ(j)))), β(i) + β(j))

Since γ is an automorphism, β has to be an automorphism of H. Now, putting
a = b = 0, we get

δ(i+ j) = (α2(β(i), β(j))mp+ 1)(δ(i) + δ(j)) (?)

Plugging (?) into the calculation, we obtain

γ(a, i)∗2 γ(b, j) = ((α2(β(i), β(j))mp+ 1)((γ(a) +γ(b)) + (δ(i) + δ(j)))), β(i+ j))

= ((α2(β(i), β(j))mp+ 1)(γ(a) + γ(b))) + δ(i+ j), β(i+ j))

from which

γ(((α1(i, j) ·mp+ 1) · (a+ b) = (α2(β(i), β(j))mp+ 1)(γ(a) + γ(b)).

Since all automorphisms of Zmp2 commute, we obtain

α1(i, j) ·mp = α2(β(i), β(j)) ·mp
and the bilinear forms are equivalent. �

When we know equivalence classes, we can enumerate loops, up to isomorphism.

Corollary 3.7. Let K = Zmp2 , for some prime p, and let H ∼= Zkp, for some k ∈ N.
The number of loops, up to isomorphism, that can be constructed by Proposition 3.4
is

• 2k + 1, if p is odd;
• b 3

2kc+ 1, if p = 2.

Proof. It is well known that, if the characteristics of the vector space is different
from 2, every symmetric bilinear form is equivalent to a diagonal form. For every
nonzero dimension of H there are up to equivalence precisely two non-degenerate
symmetric forms. Possible representatives of the two classes are diagonal forms
(1, 1, . . . , 1) and (1, 1, . . . , d), where d is a non-square element of the field.

If the characteristic is 2 then there are two possibilities: a symmetric form is
either equivalent to a diagonal form or an alternating one. There are k + 1 non-
equivalent diagonal forms. A non-degenerate form exists on even dimensions only
and is unique up to equivalence. If we count degenerate forms too, there are bk2 c+1
alternating forms (including one trivial). �

Remark 3.8. The previous corollary did enumerate all possible commutative A-
loops but did not give a hint how to distinguish them structurally, especially those
coming from non-degenerate forms. If p is odd and the dimension is 2k, we get by
Witt’s theorem that the two non-equivalent forms differ in the dimension of (any)
maximal isotropic subspace (usually called index or Witt index). One of the forms
has index k and the other k−1 and thus the size of any maximal associative subloop
of Q containing K differ for the two loops obtained by the construction. On the
other hand, if the dimension is odd, the two non-equivalent forms are similar (one is
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a multiple of the other) and thus the structure of the corresponding loops is similar
(see Example 3.9).

If p = 2 then the two loops obtained from the non-degenerate forms on even
dimension can also be distinguished by their structure. Let i be an element of H
and consider the subloop Si generated by the middle nucleus Nµ(Q) = K and an
element (a, i). Since the middle nucleus contains the element (−a, 0), the definition
of Si does not depend on a and thus we can assume a = 0. If α is alternating then
any Si is a group because α ≡ 0 on the set 〈i〉 × 〈i〉. If α is not alternating then
there exists i ∈ H satisfying α(i, i) 6= idK and we get Si non-associative:

((1, i) ∗ (0, i)) ∗ (0, i) = (ϕi,i(1), 0) ∗ (0, i) = (ϕi,i(1), i),

(1, i) ∗ ((0, i) ∗ (0, i)) = (1, i) ∗ (0, 0) = (1, i)

Example 3.9. All commutative A-loops of order p3, for p prime, were presented
in [6]. It was then proved in [1] that they form exactly seven isomorphism classes.
Two of them (respectively three, if p = 3) have their middle nucleus cyclic of
order p2. Both the loops, for p > 5, are structurally very similar and the articles
did not explain how and why these two loops differ. Here we give a new point of
view at these loops. They can be constructed using Proposition 3.4, with those two
nonequivalent forms.

In the case of characteristic 2, there exists only one non-trivial bilinear form on
dimension 1. The other loop of order 8, as well as the third loop of order 27, cannot
be obtained as a semidirect product; they contain no element of order p outside of
the middle nucleus.

4. Bilinear mappings

In Section 3, we found examples of semidirect products where the mapping ϕ
is bilinear. In this section, we shall investigate this phenomenon further on, and
find a general condition when ϕ happens to be bilinear. In that case we have
ϕi,j,k = ϕi,jϕi,kϕj,k and Property (5) rewrites as

ϕi,kϕj,k + ϕj,iϕj,k + ϕi,kϕj,k = idK + 2ϕi,jϕi,kϕj,k.

We start the section by investigating when could such a situation happen.

Lemma 4.1. Let R be a commutative ring. Let G be a subgroup of R∗. Then the
following properties are equivalent

• for all a, b, c ∈ G, we have ab+ bc+ ca = 1 + 2abc;
• for all a, b, c ∈ G, we have a+ b+ c = abc+ 2;
• for all a, b ∈ G, we have ab = a+ b− 1.

Proof. (i)⇒(ii) We have a−1b−1 + b−1c−1 + c−1a−1 = 1 + 2a−1b−1c−1. Multiplying
this equality by abc, we obtain c+ a+ b = abc+ 2.

(ii)⇒(iii): 2 + ab = 2 + ab · 1 = a+ b+ 1.
(iii)⇒(i) 1 + 2abc = 1 + 2(a+ b− 1)c = 1 + 2(ac+ bc− c) = 1 + 2(a+ c− 1 + b+

c−1− c) = 2a+2b+2c−3 = (a+ b−1)+(b+ c−1)+(c+a−1) = ab+ bc+ ca �

Lemma 4.2. Let R be a unitary ring and let n ∈ N. Then the following properties
are equivalent:

• there exists a generating subset {x1, . . . , xk} of R such that nxi = 0 and
xixj = 0, for all i, j;
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• R is a commutative ring and there exists G, a subgroup of R∗ generating R,
such that, for all a, b, c ∈ G, we have na = n and ab+ bc+ ca = 1 + 2abc.

Proof. (i)⇒(ii): R is commutative since the generators commute. Let G = 〈xi + 1〉.
For the generators of G, we have n(xi + 1) = nxi + n = n and (xi + 1)(xj + 1) =
0 + xi + xj + 1 = (xi + 1) + (xj + 1)− 1 and we use Lemma 4.1. The products and
inverses are then straightforward.

(ii)⇒(i): Let X = {x ∈ R; x + 1 ∈ G}. Now, R is generated by X and
nx = n(x + 1) − n = n − n = 0, for each x ∈ R. Finally, for all x, y ∈ R, we have
(x + 1)(y + 1) = x + 1 + y + 1 − 1 = x + y + 1 due to (ii). On the other hand
(x+ 1)(y + 1) = xy + x+ y + 1, which yields xy = 0. �

The construction given in Proposition 3.4 was based on the assumption that ϕ is a
bilinear form. We can generalize the construction, assuming bilinear mappings and
results from Lemma 4.2. Proposition 3.4 can be then obtained from Theorem 4.3
putting K = Zmn2 and X = {mn}. In the sequel, Z0 means Z and kernel of a set
of homomorphisms means the intersection of all the kernels.

Theorem 4.3. Let K be an abelian group and let n ∈ N . Let X be a subset
of End(K) satisfying nX = X2 = 0. Denote G = 〈X + idK〉AutK . Then G is a
Zn module. Let ϕ be a symmetric bilinear mapping H2 7→ G. Then K oϕ H is a
commutative A-loop.
Nµ(K oϕ H) = K × Radϕ and Nλ(K oϕ H) = Ker(Imϕ− idK)× Radϕ.

Proof. G is an abelian group by Lemma 4.2. G is of exponent dividing n because
(x + 1)n = nx + 1 = 1, for each x ∈ X. Property (1) comes from the symmetry.
Property (3) from the commutativity of G. Properties (2) and (4) come from the
bilinearity of ϕ. Property (5) is guaranteed by Lemma 4.2.

By Proposition 1.4, (a, i) ∈ Nµ(Q) if and only if ϕi,j = idK , for each j ∈ H which
is equivalent to i ∈ Radϕ. And (a, i) ∈ Nλ(Q) if (a, i) ∈ Nµ(Q) and ϕj,k(a) = a, for
all j, k ∈ H, the latter being equivalent to a ∈ Ker(x− idK), for each x ∈ Imϕ. �

Example 4.4. Let K and H be vector spaces over a field F of characteristic n.
Denote by Mi,j the matrix with 1 on position i, j and 0 elsewhere. Let X be a
subset of {Mi,j} satisfying that Mi,j and Mk,l lie in X only if i 6= l and j 6= k.
Then nX = X2 = 0. Moreover, G = 〈X + 1〉AutK is an elementary abelian n-group
and therefore ϕ can be viewed as a symmetric bilinear vector space homomorphism
from H2 to G.

In the end we focus on a specific case of Example 4.4, namely |X| = 1. The
reason is that we want to describe all commutative A-loops of order p3 that can be
constructed as semidirect products.

Lemma 4.5. Let K and H be vector spaces over a field F , dimH = 1. Let
x, y ∈ End(K) such that x2 = y2 = 0. Let there exist g, an automorphism of K,
such that gx = yg. Let ϕ : H2 7→ 〈x+ idK〉 and ψ : H2 7→ 〈y + idK〉 be two
nontrivial bilinear mappings. Then K oϕ H ∼= K oψ H.

Proof. We define q, r as follows: ϕ1,1 = qx+idK and ψ1,1 = ry+idK . Then clearly
ϕi,j = qijx+ idK and ψi,j = rijy + idK . We define an automorphism f on K as

f =

{
r · g on Kerx
q · g on a complement of Kerx
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We claim that qfx = ryf . Indeed, qfx = qrgx = rqyg since Imx ⊆ Kerx.
And qyg = yf since Ker y = f(Kerx). Now γ : (a, i) 7→ (f(a), i) is the searched
automorphism.

γ((a, i) ∗ (b, j)) = γ((ϕi,j(a+ b), i+ j)) = γ(((qijx+ 1)(a+ b), i+ j))

= (f(qijx+ idK)(a+ b), i+ j)

γ((a, i)) ∗ γ((b, j)) = (f(a), i) ∗ (f(b), j) = (ψi,j(f(a+ b)), i+ j)

= ((rijy + idK)(f(a+ b)), i+ j) �

Example 4.6. Let K = Z2
p, H = Zp and X = {x}, for some x ∈ End(K) with

x2 = 0. The corresponding semidirect product is associative if and only if x is
the zero endomorphism. If x is non-trivial than different choices of x and ϕ yield
isomorphic loops—all the usable nonzero endomorphisms of K are ( 0 a

0 0 ), ( 0 0
a 0 ),

( a a
−a −a ) and

(
a −a
a −a

)
, for some a ∈ K, and it is easy to check that all these matrices

are similar and give isomorphic loops due to Lemma 4.5.

Finally comes the classification of all commutative A-loops of order p3 that can
be obtained as semidirect products. We summarise results of Examples 3.9 and 4.6.

Proposition 4.7. For each prime p, there exists at least five non-isomorphic com-
mutative A-loops of order p3 that are semidirect products:

(1) Groups Zp2 × Zp and Z3
p,

(2) Loop constructed from Theorem 4.3 using K = Zp2 , H = Zp X = {p} and
ϕ = I;

(3) Loop constructed from Theorem 4.3 using K = Zp2 , H = Zp X = {p} and
ϕ non-equivalent to I, for p odd;

(4) Loop constructed from Theorem 4.3 using K = Z2
p, H = Zp, X = {x},

where x is a non-zero endomorphisms with x2 = 0;
(5) Semidirect product of K = Z2

2, H = Z2 and ϕ1,1 = ( 1 1
1 0 ).

Proof. It was shown earlier that all these constructions are commutative A-loops
of order p3. It remains to prove that they are not isomorphic. (5) has trivial left
nucleus, unlike all the others. (2) and (3) have middle nuclei isomorphic to Zp2 and
(4) has middle nucleus isomorphic to Z2

p. (2) and (3) are not isomorphic due to
Proposition 3.6. �

Actually, there are exactly five commutative A-loops of order p3 constructable as
semidirect products and therefore the list is complete. The reason is the following:
it was proved in [1] that there are exactly 7 commutative A-loops of order p3.
One of them is the cyclic group Zp3 that is obviously not a semidirect product.
Moreover, for each prime p, there exists one more loop that is not a semidirect
product. However, we do not prove it here as it is out of the scope of this paper.
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