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COCYCLIC BRACES AND INDECOMPOSABLE COCYCLIC SOLUTIONS OF

THE YANG-BAXTER EQUATION

P�EMYSL JEDLI�KA, AGATA PILITOWSKA, AND ANNA ZAMOJSKA-DZIENIO

Abstract. We study indecomposable involutive set-theoretic solutions of the Yang-Baxter equa-
tion with cyclic permutation groups (cocyclic solutions). In particular, we show that there is no
one-to-one correspondence between indecomposable cocyclic solutions and cocyclic braces which
contradicts recent results in [19].

1. Introduction

The Yang-Baxter equation is a fundamental equation occurring in integrable models in statistical
mechanics and quantum �eld theory [13]. Let V be a vector space. A solution of the Yang�Baxter
equation is a linear mapping r : V ⊗ V → V ⊗ V such that

(id⊗ r)(r ⊗ id)(id⊗ r) = (r ⊗ id)(id⊗ r)(r ⊗ id).

Description of all possible solutions seems to be extremely di�cult and therefore there were some
simpli�cations introduced (see e.g. [9]).

Let X be a basis of the space V and let σ : X2 → X and τ : X2 → X be two mappings. We
say that (X,σ, τ) is a set-theoretic solution of the Yang�Baxter equation if the mapping x ⊗ y 7→
σ(x, y) ⊗ τ(x, y) extends to a solution of the Yang�Baxter equation. It means that r : X2 → X2,
where r = (σ, τ) satis�es the braid relation:

(1.1) (id× r)(r × id)(id× r) = (r × id)(id× r)(r × id).

A solution is called non-degenerate if the mappings σx := σ(x,_) and τy := τ(_ , y) are bijections,
for all x, y ∈ X. A solution (X,σ, τ) is involutive if r2 = idX2 . In the involutive case, the operation
τ can be expressed by means of the operation σ (see [16, Proposition 1]).

Convention 1.1. All solutions, we study in this paper, are set-theoretic, non-degenerate and
involutive so we will call them simply solutions.

The permutation group G(X) = 〈σx : x ∈ X〉 of a solution (X,σ, τ) is the subgroup of the sym-
metric group S(X) generated by mappings σx, with x ∈ X. The group G(X) is also called the
involutive Yang-Baxter group (IYB group) associated to the solution (X,σ, τ). A solution (X,σ, τ)
is indecomposable if the permutation group G(X) acts transitively on X.

It was already observed in [10] that indecomposable solutions form an important class of all
solutions. Since then, many articles on indecomposable solutions appeared, for instance (e.g. [22,
Problem 4], [2, 4, 12, 20]).

Solutions (X,σ, τ) with G(X) cyclic are called cocyclic. A classi�cation of such solutions was
recently given by Rump [19]. In this paper we focus on indecomposable cocyclic solutions. Among
the others, we reformulate the main result [19, Theorem 1] here as Theorem 2.8. According to
Rump's classi�cation, a complete system of invariants are: the size of the solution and the index
of a subgroup of G(X). In particular, this classi�cation claims that there exist, for each prime p,
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exactly two non-isomorphic indecomposable solutions with their permutation groups isomorphic
to Zp2 .

However, there is an earlier classi�cation by Castelli, Pinto and Rump [4] of all the indecomposable
solutions of size p2 with abelian permutation groups. For each prime p, there exist p+1 such solutions
up to isomorphism, among which one has its permutation group isomorphic to Z2

p and the other p
solutions have their permutation groups isomorphic to Zp2 . This result has been con�rmed by the
authors in [12] using a di�erent technique.

The main motivation for this paper was therefore to investigate the discrepancy between those
two results cited above. We analyzed several results about indecomposable solutions from the point
of view of their permutation groups and this has lead us to a �nal conclusion: our results are
summarized in Theorem 3.15. For an indecomposable cocyclic solution, to constitute a complete
system of invariants one needs three parameters not two and, as a consequence, there is no one-
to-one correspondence between cocyclic braces and indecomposable cocyclic solutions. This shows
that Theorem 1 and its Corollary in [19] are incorrect.

The paper is organized as follows: in Section 2 we give basic de�nitions used in contemporary
studies of involutive set-theoretic solutions of Yang-Baxter equation. We also investigate all the
9-element indecomposable solutions, as the smallest example where the two theories mentioned
above di�er. This investigation will eventually bring us to a trail of a mistake in [19]. In Section 3
we present a construction by Bachiller, Cedó and Jespers [1] that allows one to construct all the
solutions with a given permutation group. We �rst analyze prime power size solutions and then
we use Chinese remainder theorem to capture all �nite sizes. At the end, in Section 4, we use this
construction to enumerate all the indecomposable solutions with their permutation group cyclic.

2. Preliminaries

In this section we give all the necessary notions that we need to analyse both papers [19] and [4].
We give also an example where the results of both the papers di�er.

Rump in [17, De�nition 2] introduced the notion of a brace and showed the correspondence
between such structures and solutions. Here we use an equivalent de�nition formulated by Cedó,
Jespers and Okni«ski.

De�nition 2.1. [7, De�nition 2.2] An algebra (B,+, ◦) is called a left brace if (B,+) is an abelian
group, (B, ◦) is a group and the operations satisfy, for all a, b, c ∈ B,
(2.1) a ◦ b+ a ◦ c = a ◦ (b+ c) + a.

The inverse element to a in the group (B, ◦) shall be denoted by ā. Notice that identity elements
in both groups (B,+) and (B, ◦) coincide so we will indicate them by 0.

A left brace (B,+, ◦) is said to be abelian if its adjoint (or multiplicative) group (B, ◦) is abelian,
cyclic if the additive group (B,+) is cyclic and it is called cocyclic if its adjoint group (B, ◦) is
cyclic. In case that both groups are cyclic, the brace is then called bicyclic.

For a left brace (B,+, ◦) there is an action λ : (B, ◦)→ Aut (B,+), where λ(a) = λa and for all
b ∈ B, λa(b) = a ◦ b − a. The kernel of the group homomorphism λ is called the socle of the left
brace (B,+, ◦) and denoted by Soc(B), i.e.

Soc(B) = Ker(λ) = {a ∈ B : λa = id} = {a ∈ B : a ◦ b = a+ b for all b ∈ B}.
Soc(B) is a normal subgroup of the group (B, ◦) and is an ideal of the left brace. Hence the quotient
(B, ◦)/ Soc(B) of the multiplicative group is also the quotient of the additive group (B,+) and the
factor brace B/ Soc(B) := (B,+, ◦)/ Soc(B) by the ideal Soc(B) is well de�ned.

A right brace is de�ned similarly, replacing Property (2.1) by b ◦ a + c ◦ a = (b + c) ◦ a + a. If
(B,+, ◦) is both a left and a right brace then one says that it is a (two-sided) brace. A brace is
called trivial if a+ b = a ◦ b, for all a, b ∈ B.
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For a left brace (B,+, ◦) one can de�ne another operation ∗ as follows

a ∗ b = a ◦ b− a− b,

for a, b ∈ B. A brace (B,+, ◦) is two-sided if and only if (B,+, ∗) is a radical ring [7, Proposition
1]. In particular, every abelian left brace is two-sided.

The associated solution (B, σ, τ) to a left brace (B,+, ◦) is de�ned on a set B as follows: σx(y) :=
λx(y) and τy(x) := λ−1

λx(y)(x) for x, y ∈ B.
In [10, Section 3.2] Etingof, Schedler and Soloviev introduced, for each solution (X,σ, τ), the

equivalence relation ∼ on the set X: for each x, y ∈ X

x ∼ y ⇔ σx = σy.

They showed that the quotient set X/∼ can be again endowed with a structure of a solution. They
call such a solution the retraction of the solution (X,σ, τ) and denote it by Ret(X). One can
also de�ne iterated retraction in the following way: Ret0(X,σ, τ) := (X,σ, τ) and Retk(X,σ, τ) :=
Ret(Retk−1(X,σ, τ)), for any natural number k > 1. A solution (X,σ, τ) is called amultipermutation
solution of level m if m is the least nonnegative integer such that |Retm(X,σ, τ)| = 1. In such case,
we will also say that a solution is of a multipermutational level m.

Proposition 2.2. [17, Proposition 7] (see also [7, Lemma 3]) Let (B,+, ◦) be a nonzero left brace.
The solution associated to the factor left brace B/ Soc(B) is equal to the retraction of the solution
associated to (B,+, ◦).

There are many di�erent methods to construct braces. Etingof, Schedler and Soloviev in [10,
Appendix] introduced the notion of a T -structure on an abelian group A. By [10, Theorem A7]
one can deduce that cyclic braces correspond to T -structures on cyclic groups. Rump in [18] used
this result to obtain a wide family of cyclic braces constructed on rings with an identity and with
a cyclic additive group. See [18, Proposition 1] and [18, Theorem 1] for the particular case of the
ring (Zn,+, ·) = Z/(n).

By results of [10, Example 3, Appendix] Rump's construction can be easily generalized.
The ring multiplication in any ring (R,+, ·) will be consequently indicated by juxtaposition.

Proposition 2.3. Let (R,+, ·) be a ring with identity 1, J(R) be the Jacobson radical of the ring
and r ∈ J(R). Let for a, b ∈ R,

a ◦ b := a+ b+ arb.(2.2)

Then (R,+, ◦) is a two-sided brace with Soc(R) = Ann(r).

Proof. Directly by Etingof, Schedler and Soloviev [10], (R, ◦) is a group with 0 as the unit and
ā := −a(1 + ra)−1 as the inverse of an element a.

Straightforward calculations show that (R,+, ◦) is a two-sided brace:

a ◦ (b+ c) + a = a+ b+ c+ ar(b+ c) + a = a+ b+ arb+ a+ c+ arc = a ◦ b+ a ◦ c,

and

(b+ c) ◦ a+ a = b+ c+ a+ (b+ c)ra+ a = b+ a+ bra+ c+ a+ cra = b ◦ a+ c ◦ a.

Now, for all b ∈ R,

a ∈ Soc(R)⇔ λa(b) = b⇔ a+ b = a ◦ b⇔ arb = 0⇔ a ∈ Ann(r). �

Note that the construction from Proposition 2.3 is valid for any nilpotent element r ∈ R (see e.g.
[14, Lemma 4.4]).
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De�nition 2.4. [5] Let (B,+, ◦) be a left brace. It is left nilpotent if Bn = 0 for some positive

integer n, where Bn+1 = B ∗ Bn and it is right nilpotent if B(m) = 0 for some m ∈ Z+, where
B(1) = B and B(m+1) = B(m) ∗B.

The least n ∈ Z+ such that Bn+1 = 0 is called the left nilpotency degree of a left brace (B,+, ◦)
or one shortly says that (B,+, ◦) is a left n-nilpotent left brace. Similarly, if m ∈ Z+ is the least

number such that B(m+1) = 0, then (B,+, ◦) is a right m-nilpotent left brace or a left brace of
the right nilpotency degree equal to m. There is a direct connection between the right nilpotency
degree of a left brace and the multipermutational level of its associated solution.

Proposition 2.5. [5, Proposition 6] Let (B,+, ◦) be a nonzero left brace and let (B, σ, τ) be its
associated solution. Then (B, σ, τ) is a solution of a multipermutational level m if and only if
(B,+, ◦) is right m-nilpotent.

If a left brace is abelian, then the left nilpotency and the right nilpotency are the same notions
and we speak simply of nilpotency. In the �nite case, every abelian left brace is nilpotent ([7,
Proposition 3]).

Let (R,+, ·) be a commutative ring with identity 1 and J(R) the Jacobson radical of the ring. Let
(R,+, ◦) be the two-sided brace de�ned in Proposition 2.3 for some r ∈ J(R). Then, for a, b ∈ R
we have a∗ b = rab. Since the operation ∗ is commutative and associative this implies, for arbitrary
k ∈ N

Rk = R(k) = rk−1R.

We then immediately obtain:

Proposition 2.6. Let (R,+, ·) be a commutative ring with identity 1 and J(R) the Jacobson radical
of the ring. Let (R,+, ◦) be the brace de�ned in Proposition 2.3, for some r ∈ J(R). Then,

(1) The brace (R,+, ◦) is nilpotent if and only if the element r is nilpotent.
In such a case the nilpotency degrees of r and (R,+, ◦) are equal.

(2) The associated solution to the brace (R,+, ◦) is a multipermutation solution if and only if
the element r is nilpotent. The multipermutational level is equal to degree of nilpotency of r.

Our work focuses on �nite cocyclic solutions that are closely connected to the following example
of cyclic braces.

Example 2.7. (See also [15, 4.1].) Let n = pk11 · · · pkss for some prime pairwise distinct numbers
p1, . . . , ps and positive integers k1, . . . , ks. The nilradical nil(Zn) of the ring (Zn,+, ·) consists
precisely of the elements of the form rpt11 · · · ptss , for 1 ≤ t1 ≤ k1, . . . , 1 ≤ ts ≤ ks and r ∈ Z∗n.

Let t ∈ Z be such that t mod n ∈ nil(Zn). By Proposition 2.3, (Zn,+, ◦) with

a ◦ b = a+ b+ tab

is a two-sided brace with Soc(Zn) = n
t Zn ∼= Zt.

By Proposition 2.6, the associated solution to such brace is a solution of a multipermutational

level equal to max(dk1

t1
e, dk2

t2
e, . . . , dks

ts
e).

We will denote the brace (Zn,+, ◦), obtained as described above, by Bt(n).
Note that braces constructed for t = pt11 · · · ptss and rt, for r ∈ Z∗n, are isomorphic via the mapping
f(x) = r−1x. This justi�es the introduction of the notation:

N (Zn) := {pt11 · · · p
ts
s : ti ∈ {1, . . . ki} for i ∈ {1, . . . s}},

which we use in the following sections.
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Braces of the form Bt(n) are actually the only �nite abelian cyclic braces [18, Theorem 1]. By
[18, Proposition 6] this class contains almost all �nite cocyclic braces.

For each solution (X,σ, τ), Etingof, Schedler and Soloviev [10, Section 2] introduced its structure
group (G(X), ·) generated by elements of X with de�ning relations x · y = σx(y) · τy(x). G(X) has
also a natural structure of a left brace with an additive group being a free abelian group with basis
X (see e.g [7, 6]). This left brace is denoted by AX . Furthemore, let A(X) be the factor brace
AX/Soc(AX).

Cocyclic solutions have been recently studied in [19]. By construction, the adjoint group of A(X)
is isomorphic to the permutation group G(X). Then, knowing the permutation group of a solution
and using an algorithm described in [19, Section 1], one is able to reconstruct the solution (X,σ, τ)
from the brace A(X). This leads to the following classi�cation:

Theorem 2.8. [19, Theorem 1] For the isomorphism class of an indecomposable cocyclic solu-
tion (X,σ, τ), the order n and the socle index s = |A(X)/Soc(A(X))| form a complete system of
invariants. For a given order n, the possible socle indices are the divisors s of n which satisfy
p | n⇒ ps | n, for all primes p and 8 | n⇒ 4s | n.

An immediate consequence of the theorem is

Corollary 2.9. [19] Up to isomorphism, there is a one-to-one correspondence between �nite inde-
composable cocyclic solutions and �nite cocyclic braces.

This corollary was quite unexpected, as Rump himself admits in the introduction of [19]. Never-
theless, as we already announced in the introduction of this paper, both of the results are incorrect.
We illustrate it on the smallest counterexample.

Example 2.10. Consider the ring (Z9,+, ·). According to [4, Corollary 22] and [12, Corollary 4.8],
there exist three indecomposable 9-element solutions (X,σ, τ) with their permutation group cyclic,
namely for r ∈ {0, 3, 6}, the set X = {0, 1, . . . , 8} with

σx(y) = rx+ y + 1 and τy(x) = x− 1− r(y + 1).

They are not isomorphic since, for each x ∈ X, σσx(x) = σr+1
x .

It can be computed that the brace A(X) is then isomorphic to the brace B9−r(9) described in
Example 2.7. Of course, for r = 0, it is a trivial brace B9(9), whereas for r ∈ {3, 6} one obtains the
brace B3(9) ∼= B6(9) (see also Example 4.2).

This example indicates (a thorough proof comes in the next section though) that there is a
mistake in the proof of Theorem 2.8. Indeed, there is one, a very subtle one: on page 473 the autor
correctly supposes that the multiplicative group can be identi�ed with Zn. But then the proof of
the main theorem on page 475 starts with: �Up to isomorphism, the solution X is determined by
the cocyclic brace A(X)� (which is unique up to isomorphism). However, we cannot use the �up to
isomorphism� argument anymore since we have already chosen an isomorphism by identifying the
elements of A(X) with the elements of the group Zn.

The rest of the proof is correct. Therefore we can say that a cocyclic solution is uniquely deter-
mined by the brace A(X) and by the choice of the isomorphism (A(X), ◦) ∼= Zn, that means by the
choice of a generator of (A(X), ◦). Nevertheless, di�erent choices of the generators may still yield
isomorphic solutions. Finding a correct answer for the isomorphism question using the tools of [19]
does not seem to be straightforward and therefore, in the next section, we introduce results from
yet another paper.

3. Cocyclic braces and solutions

In this Section our aim is to construct all �nite indecomposable solutions with cyclic permutation
group. In [1] Bachiller, Cedó and Jespers present the construction of all �nite solutions (X,σ, τ) of
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the YBE such that the permutation group G(X) is isomorphic, as a left brace, to a given �nite left
brace (B,+, ◦). We shall not repeat their construction here, as our case is much less complicated
than the general one. If the permutation group G(X) is abelian and acts on X transitively, then it
acts regularly on X and therefore its order is equal to |X| and, simultaneously, to |B|.

By [21, Theorem 19], a �nite left brace of cardinality n = pk11 . . . pkss , for some pairwise distinct
prime numbers p1, . . . , ps and k1, . . . , ks ∈ Z+, with multiplicative group isomorphic to an abelian
group Zn is a direct product of left braces whose cardinalities are powers of prime numbers. By
[18, Section 5], every cyclic brace of a cardinality equal to a power of some odd prime is bicyclic.
On the other hand, by [1, Proposition 5.4], every cocyclic left brace (B,+, ◦) of order 4 6= n = pk,
for some prime p and k ≥ 1, has a cyclic additive group Zpk . According to Rump's classi�cation

[18, Theorem 1] (see also [1, Section 5]), such braces are equal to Bt(p
k) (up to isomorphism), for

t ∈ N (Zpk) with assumption that t 6= 2 when pk = 4. Four-element left braces form an exception
in the classi�cation: there exist two trivial ones, one cyclic which is not cocyclic and one cocyclic
which is not cyclic [19]. See also a clasi�cation of commutative radical rings given in [15, Proposition
4.1.7].

This implies (see [1, Remark 5.5]) that a cocyclic left brace of cardinality n = 2k1 ·pk22 . . . pkss with
0 ≤ k1 6= 2 is isomorphic to the following direct product

Bt1(2k1)×Bt2(pk22 )× . . .×Bts(pkss ),

with some ti ∈ N (Z
p
ki
i

), for 1 ≤ i ≤ s, where t1 6= 2 or k1 = 1.

Any such direct product is isomorphic to the brace described in Example 2.7.

Lemma 3.1. Let n = pk11 · · · pkss for some pairwise distinct prime numbers p1, . . . , ps and k1, . . . , ks ∈
Z+. Let 1 < ti ≤ pkii be a power of pi, for 1 ≤ i ≤ s, and let t = t1 · · · ts. Then the braces Bt(n)

and Bt1(pk11 )×Bt2(pk22 )× . . .×Bts(pkss ) are isomorphic.

Proof. Indeed, let f : Zn → Z
p
k1
1

× Z
p
k2
2

× . . .× Z
pkss

be such that

a 7→ (a
t

t1
(mod pk11 ), . . . , a

t

ti
(mod pkii ), . . . , a

t

ts
(mod pkss )).

Since for each 1 ≤ i ≤ s, the element t
ti

is a generator of the group Z
p
ki
i

, the mapping f is a

homomorphism of additive groups. Next, for a, b ∈ Zn

f(a) ◦ f(b) = (a
t

t1
(mod pk11 ), . . . , a

t

ts
(mod pkss )) ◦ (b

t

t1
(mod pk11 ), . . . , b

t

ts
(mod pkss )) =

(a
t

t1
(mod pk11 ) ◦ b t

t1
(mod pk11 ), . . . , a

t

ts
(mod pkss ) ◦ b t

ts
(mod pkss )) =

(a
t

t1
+ b

t

t1
+ t1 · a

t

t1
· b t
t1

(mod pk11 ), . . . , a
t

ts
+ b

t

ts
+ ts · a

t

ts
· b t
ts

(mod pkss )) =

((a+ b+ tab)
t

t1
(mod pk11 ), . . . , (a+ b+ tab)

t

ts
(mod pkss )) = f(a+ b+ tab) = f(a ◦ b).

Hence, f is a homomorphism of braces, too. Finally, if

f(a) = (a
t

t1
(mod pk11 ), . . . , a

t

ts
(mod pkss )) = (b

t

t1
(mod pk11 ), . . . , b

t

ts
(mod pkss )) = f(b)

we have

∀(1 ≤ i ≤ s) pkii |(a− b) ⇒ n|(a− b) ⇒ a = b,

and f is a bijection. �

As a corollary one obtains generalization of [1, Proposition 5.4] (see also [18, Proposition 6]).
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Corollary 3.2. Let n ∈ Z+ and t ∈ N (Zn) be such that 4|t whenever 4|n. Then the brace Bt(n) is
bicyclic.

Remark 3.3. The multiplicative group of the brace B2(2k+1), for k ∈ Z+, is isomorphic to the
(non-cyclic) group Z2 × Z2k .

A cocyclic left brace of cardinality n = 22 · pk22 . . . pkss also splits as a direct product, namely

B̃t1(4)×Bt2(pk22 )× . . .×Bts(pkss ),

with some ti ∈ N (Z
p
ki
i

), for 1 ≤ i ≤ s, where B̃t1(4) is a cocyclic brace obtained from Bt1(4) by

swapping the operations + and ◦.

To construct solutions with the permutation group isomorphic to the associated group of a given
left brace, it is enough to �nd two special mappings: η : X → B and % : B → S(X) as described
in [1, Section 2]. In the case when the left brace (B,+, ◦) is cocyclic of order pk, for some prime p
with k ∈ Z+, and solutions are indecomposable, this construction can be signi�cantly simpli�ed.

3.1. Indecomposable cocyclic solutions of order pk. First of all, the construction in [1], Sec-
tion 3, involves an intersection of subgroups

⋂
I

⋂
Ji

⋂
b bKi,jb

−1 = {0}. Since any subgroup K of the

abelian group (Bt(p
k), ◦) is normal we of course have bKi,jb

−1 = Ki,j , for any b ∈ B. Furthermore,

to obtain the trivial intersection of a family of subgroups of the cyclic group (Bt(p
k), ◦), we have to

assume that at least one Ki,j is equal to {0}.
Moreover, in [1], Theorem 3.1 starts with X = tI tJi B/Ki,j . Given the equality |B| = |G(X)| =

|X| and the fact Ki,j = {0}, for some i ∈ I and some j ∈ Ji, we necessarily have |I| = |Ji| = 1.
Since (B,+) has to be generated by

⋃⋃
I, there exists some a ∈ Z∗

pk
such that

η : Zpk → Zpk ; η(b) = λb(a),

and
% : Zpk → S(Zpk); %(c) : Zpk → Zpk ; %(c)(b) = c ◦ b.

Hence
%(η(b))(c) = %(λb(a))(c) = λb(a) ◦ c = (b ◦ a− b) ◦ c =

(b+ a+ tab− b) + c+ t(a+ tab)c = a+ tab+ c+ t(a+ tab)c.

This implies the following reformulation of [1, Theorem 3.1].

Theorem 3.4. Let p be a prime number and k ∈ Z+. Let t ∈ Z such that t mod pk ∈ nil(Zpk)

and (Bt(p
k),+, ◦) be a cocyclic brace of order pk.

For any indecomposable solution (X,σ, τ) with the permutation group G(X) isomorphic, as left
braces, to (Bt(p

k),+, ◦), there exists a ∈ Z∗
pk
, so that (X,σ, τ) is isomorphic to the solution de�ned

on the set Zpk with

σb(c) := a+ c+ tab+ tac+ t2abc

for all b, c ∈ Zpk .

Let us denote such a solution by K(pk, t, a).

Remark 3.5. (1) For k = 1 one obtains [10, Theorem 2.13]: the indecomposable solution with
a prime number of elements is a cyclic permutation solution, i.e. a multipermutation solution
of level 1 with σx being a cycle. There is only one (up to isomorphism) such solution for
each prime.

(2) If t ∈ N (Zpk) and r ∈ Z∗
pk

then, similarly as for braces in Example 2.7, we obtain an

isomorphic solutions K(pk, t, a) and K(pk, rt, ar−1) via the mapping Φ(x) = r−1x. Thus we
usually restrain our focus to t ∈ N (Zpk).
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[1, Theorem 4.1] characterizes when two solutions, with their permutation groups isomorphic to
the same brace, are isomorphic. Again, the assumptions |I| = 1 andKi,j = {0} simplify the theorem
substantially.

Theorem 3.6. Let a, a′ ∈ Z∗
pk
. The solutions K(pk, t, a) and K(pk, t, a′) are isomorphic if and only

if there exist an automorphism Ψ of the left brace (Bt(p
k),+, ◦) and an element z ∈ Zpk such that

Ψ(a) = λz(a
′).

Each automorphism Ψ of the cyclic group Zpk is of the form Ψ(x) = αx, where α ∈ Z∗
pk
. Moreover,

each automorphism Ψ of the left brace (Bt(p
k),+, ◦) must satisfy additionally, for every x, y ∈ Zpk ,

the following:

αx+ αy + α2txy = αx ◦ αy = Ψ(x) ◦Ψ(y) =

Ψ(x ◦ y) = α(x ◦ y) = α(x+ y + txy) = αx+ αy + αtxy.

This implies that, for any x, y ∈ Zpk , αtxy ≡ α2txy (mod pk) or equivalently, pk | txyα(α − 1).

Hence, for x = y = 1 and remembering that t = pw for some w ∈ {1, . . . , k}, pk−w|α(α − 1). Since
gcd(α, p) = 1 we obtain pk−w|(α − 1) which means that α ≡ 1 (mod pk−w). Finally, we obtain
that

∃(h ∈ Soc(Bt(p
k))) α = 1 + h.

Summarizing,

Corollary 3.7. The solutions K(pk, t, a) and K(pk, t, a′) are isomorphic if and only if there exist
h ∈ Soc(Bt(p

k)) and z ∈ Zpk such that

(3.1) (1 + h)a = a′(1 + zt).

In particular, for h = 0, a and a′ are in the same orbit of the action λ. Thus all solutions
K(pk, t, a) and K(pk, t, a′) with a and a′ in the same orbit of the action λ are isomorphic.

Corollary 3.8. The solutions K(pk, pw, a) and K(pk, pw, a′) are isomorphic if and only if

(1) a ≡ a′ (mod pw), for k ≥ 2w;
(2) a ≡ a′ (mod pk−w), for 2w > k > w,
(3) a and a′ are any, for w = k.

Proof. Recall that, for the brace Bpw(pk), the socle Soc(Zpk) = pk−wZpk and note that the equation
(3.1) is equivalent to the following one

a− a′ ≡ a′pwz − apk−wh (mod pk),

for some h, z ∈ Zpk .
Let a− a′ = pwr, for some r ∈ Z. Then, by choosing h = 0 and z = r(a′)−1, we obtain

a′pwz − apk−wh = a′pwr(a′)−1 = pwr = a− a′

and K(pk, pw, a) ∼= K(pk, pw, a′).
Let a− a′ = pk−wr, for some r ∈ Z. Then, by choosing h = −ra−1 and z = 0, we obtain

a′pwz − apk−wh = apk−wra−1 = pk−wr = a− a′

and K(pk, pw, a) ∼= K(pk, pw, a′) as well.
Now assume that solutions K(pk, pw, a) and K(pk, pw, a′) are isomorphic. Then

a− a′ ≡ a′pwz − apk−wh (mod pk)

for some h, z ∈ Zpk .
Thus if k − w ≥ w we have pw|(a− a′). Otherwise, pk−w|(a− a′). �
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It is known that �nite cocyclic solutions are multipermutation solutions. In general it is di�cult
to describe the retraction of the solution. But in the case of indecomposable cocyclic solutions of
the form K(pk, pw, a) we are able to give a precise description and also to compute their level.

Theorem 3.9. Let p be a prime number, k,w ∈ N and a ∈ Z∗
pk
. For arbitrary m ∈ N, the m-th

retraction Retm(X) of the solution (X,σ, τ) = K(pk, pw, a) is isomorphic to the solution:

K(pmax(k−mw,0), pw, a).

Proof. Suppose �rst k ≤ w. Then pw ≡ 0 (mod pk) and the solution K(pk, pw, a) is a permutation
solution. Hence Retm(K(pk, pw, a)) is, for all m > 0, the trivial solution K(1, 0, 0).

Suppose now k ≥ w. At �rst we want to prove that Ret(X) ∼= K(pk−w, pw, a). The relation ∼
on X = Zpk is de�ned as follows:

b ∼ c ⇔ σb = σc ⇔ b ≡ c (mod pk−w).

Our planned isomorphism Φ : Ret(X) → K(pk−w, pw, a) simply sends [b]∼ to b mod pk−w. Such a
mapping is clearly a bijection. Moreover, it is actually an identity on Zpk−w and both the operations

σ (in Ret(X) and inK(pk−w, pw, a)) are de�ned using the same [a]∼ and the same [pw]∼ and therefore
Φ is a homomorphism.

The rest of the proof goes easily by an induction on m. �

Corollary 3.10. The solution K(pk, pw, a) is a multipermutation solution of level dk/we.

Proof. By Theorem 3.9, the size of the retract Retm(X) is max(1, pk−mw). And the smallest num-
ber m such that k −mw ≤ 0 is m = d kwe. �

Question 3.11. We have presented two di�erent solutions based on the brace Bt(p
k), namely an

indecomposable solution K(pk, t, a) and the (decomposable) associated solution. Nevertheless, ac-
cording to Proposition 2.6, both the solutions have the same multipermutational level. We wonder
whether this is a coincidence or there is a more general mechanism hidden behind.

What remains is a description of indecomposable cocyclic solutions of size 4. According to [4]
or [12] there are only two such solutions: one of multipermutational level 1 and one of multiper-
mutational level 2. The latter one (X, σ̃, τ̃) can be constructed on the ring (Z4,+, ·) using the
operation

σ̃b(c) = a+ c+ 2ab,

for any chosen a ∈ {1, 3}. We will denote such a solution by K̃(4, 2, a). Similarly as in Remark 3.5,

K̃(4, 2, 1) and K̃(4, 2, 3) are isomorphic via the mapping Φ(x) = 3−1x = 3x.

3.2. Indecomposable cocyclic solutions of order n = pk11 . . . pkss . To obtain �nite indecompos-
able solutions with the permutation group G(X) isomorphic, as a left brace, to a �nite left brace
(Bt(n), ◦), for some pairwise distinct prime numbers p1, . . . , ps, k1, . . . , ks ∈ Z+ and 2 < t ∈ N (Zn),
we can proceed exactly in the same way as in Subsection 3.1. There is one di�erence however�to
get a trivial intersection of a family of subgroups of (Bt(n), ◦) it is not necessary to assume that at
least one of them is equal to {0}. But let us make such an assumption. In consequence, we obtain
some indecomposable cocyclic solutions (X,σ, τ) de�ned on the set X = Zn and being of the form

σb(c) := a+ c+ tab+ tac+ t2abc

for b, c ∈ Zn, t ∈ N (Zn) and a ∈ Z∗n. We will denote them by K(n, t, a).
On the other hand by [3, Corollary 12] each indecomposable solution (X,σ, τ) of order n =

pk11 . . . pkss and with cyclic permutation group G(X) is isomorphic to the product of indecomposable

solutions K(pkii , ti, ai), for i = 1, . . . , s. A precise description of the isomorphism is given as follows:
9



Theorem 3.12. Let n = pk11 · · · pkss for some pairwise distinct prime numbers p1, . . . , ps and
k1, . . . , ks ∈ Z+. Let t = t1 · · · ts ∈ N (Zn), for ti ∈ N (Z

p
ki
i

). Let a ∈ Z∗n and let ai ∈ Z∗
p
ki
i

be

such that ai ≡ t
ti
a (mod pkii ), for 1 ≤ i ≤ s. Then the solutions K(n, t, a) and K(pk11 , t1, a1) ×

K(pk22 , t2, a2)× . . .×K(pkss , ts, as) are isomorphic.

Proof. We show that the mapping Φ: Zn → Z
p
k1
1

× Z
p
k2
2

× . . .× Z
pkss

given by

x 7→ (
t

t1
x (mod pk11 ), . . . ,

t

ti
x (mod pkii ), . . . ,

t

ts
x (mod pkss ))

is a homomorphism of the solutions. By Chinese Remainder Theorem it is also an isomorphism.

σΦ(b)Φ(c) = σ
(b t

t1
(mod p

k1
1 ),...,b t

ts
(mod pkss ))

(c
t

t1
(mod pk11 ), . . . , c

t

ts
(mod pkss )) =

(σ
b t
t1

(mod p
k1
1 )

(c
t

t1
(mod pk11 )), . . . , σ

b t
ts

(mod pkss )
(c
t

ts
(mod pkss ))) =

(a1 +
t

t1
c+ t1 · a1 ·

t

t1
b+ t1 · a1 ·

t

t1
c+ t21 · a1 · b

t

t1
· c t
t1

(mod pk11 ), . . .) =

(
t

t1
a+

t

t1
c+ t · a · t

t1
b+ t · a · t

t1
c+ t1 · a · b · c

t3

t21
(mod pk11 ), . . .) =

((a+ c+ tab+ tac+ t2abc)
t

t1
(mod pk11 ), . . . , (a+ c+ tab+ tac+ t2abc)

t

ts
(mod pkss )) =

Φ(a+ c+ tab+ tac+ t2abc) = Φ(σb(c)). �

Corollary 3.13. Let d := gcd(t, nt ). The solutions K(n, t, a) and K(n, t, a′) are isomorphic if and
only if

a ≡ a′ (mod d).

Proof. We use here the notation of Theorem 3.12. According to Corollary 3.8 and Theorem 3.12,
the solutions K(n, t, a) and K(n, t, a′) are isomorphic if and only if, for each 1 ≤ i ≤ s, the numbers
ai = t

ti
a and a′i = t

ti
a′, are congruent modulo min(ti, p

ki
i /ti). Since t

ti
is coprime to pi and since

min(ti, p
ki
i /ti) = gcd(t, nt , p

ki
i ), this is equivalent to ai ≡ a′i (mod gcd(d, pkii )), for each 1 ≤ i ≤ s.

According to Chinese Remainder Theorem, this means a ≡ a′ (mod d). �

Theorem 3.12 describes all �nite indecomposable cocyclic solutions except for some non-trivial
ones of size 4n, with n odd. In this case we need to consider the four element solution which does
not originate from a bicyclic brace. In the following proposition we give an explicit construction of
the remaining solutions of size 4n. We are not able to apply the map Φ: Z4n → Z4 × Zn (from the
proof of Theorem 3.12) directly since there is that four element cocyclic brace which is not cyclic.
But we use a similar formula.

Proposition 3.14. Let n be an odd number and 2̄ be a number such that 2 · 2̄ ≡ 1 (mod n). Let
t ∈ N (Zn) and a ∈ Z∗4n. Then (Z4n, σ, τ) with

σb(c) = a+ c+ 2tab+ 4t2̄ac+ 4t2abc (mod 4n)

yields an indecomposable solution with its permutation group isomorphic to Z4n.

Proof. We will show that (Z4n, σ, τ) is isomorphic to the product of two solutions: one de�ned on
the set Z4 and the second one on Zn.

The mapping

Φ: Z4n → Z4 × Zn; Φ : x 7→ (tx (mod 4), 2x (mod n))
10



gives for b, c ∈ Z4n

Φ(σb(c)) = (t(a+c+2tab+4t2̄ac+4t2abc) (mod 4), 2(a+c+2tab+4t2̄ac+4t2abc) (mod n)) =

(ta+ tc+ 2t2ab (mod 4), 2a+ 2c+ 4tab+ 4tac+ 8t2abc (mod n)) =

(ta+ Φ(c) + 2taΦ(b) (mod 4), 2a+ Φ(c) + t2aΦ(b) + t2aΦ(c) + t22aΦ(b)Φ(c) (mod n)).

Since for any t ∈ N (Zn) and a ∈ Z∗4n, ta ∈ {1, 3} (mod 4) we obtain that Φ is a homomor-

phism between the solution (Z4n, σ, τ) and a product of solutions K̃(4, 2, ta (mod 4)) and K(n, t, 2a
(mod n)). Clearly, Φ is a bijection. �

Theorem 3.15. A complete set of invariants for �nite cocyclic indecomposable solutions are

• n ∈ N;
• t ∈ N such that

� t divides n,
� every prime p divides t whenever p divides n,
� if 8 divides n then 4 divides t;

• a ∈ {1, . . . , gcd(t, n/t)} coprime to n.

Proof. Existence of such solutions is given in Theorem 3.12 and Proposition 3.14. Moreover, we
know that such a solution splits as a product of prime-power size solutions. If n ≡ 4 (mod 8)
then there are two possibilities for the 2-primary component and they depend on t only, not on a.
Otherwise we use Corollary 3.13. �

Remark 3.16. Let n, t, a be invariants described in Theorem 3.15. Similar proof as in Theorem
3.9 shows that Ret(K(n, t, a)) ∼= K(n/t, t, a). In particular, the solution K(n, t, a) is then a multi-
permutation solution of level s, where s is the smallest number such that n divides ts. Moreover,
the solution (Z4n, σ, τ) is of multipermutational level equal to max(2, s).

4. Enumeration and examples

In the last section we compute the number of non-isomorphic indecomposable cocyclic solutions.
We give exact numbers for prime powers only as for composed numbers the enumeration is straight-
forward using the spliting onto their prime components. We, of course, omit the case n = p where
we have exactly one solution and the case n = 4 where we have two solutions.

Proposition 4.1. Let p be a prime number and k ∈ Z+. Then the number N of indecomposable
solutions of order pk and with the cyclic permutation group is equal to:

• N = pr + pr−1 − 1, for p 6= 2 and k = 2r ≥ 2
• N = 2pr − 1, for p 6= 2 and k = 2r + 1 ≥ 3
• N = 2r + 2r−1 − 2, for p = 2 and k = 2r ≥ 4
• N = 2r+1 − 2, for p = 2 and k = 2r + 1 ≥ 3

Proof. Directly by Corollary 3.8, for p 6= 2, we have

N =

bk2 c∑
w=1

(pw − pw−1) +

k−1∑
w=bk2 c+1

(pk−w − pk−w−1) + 1 =

p

⌊
k
2

⌋
− 1 + p

k−
⌊
k
2

⌋
−1 − 1 + 1 = p

⌊
k
2

⌋
+ p

k−
⌊
k
2

⌋
−1 − 1.
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Moreover, for p = 2

N =

bk2 c∑
w=2

(2w − 2w−1) +

k−1∑
w=bk2 c+1

(2k−w − 2k−w−1) + 1 =

2

⌊
k
2

⌋
− 2 + 2

k−
⌊
k
2

⌋
−1 − 1 + 1 = 2

⌊
k
2

⌋
+ 2

k−
⌊
k
2

⌋
−1 − 2. �

At the end we give some examples to illustrate Theorem 3.4.

Example 4.2. For p = 3 and k = 2 we have two non-isomorphic braces: (B3(9),+, ◦) and
(B9(9),+, ◦).

Let us consider the brace (B3(9),+, ◦) with the multiplication

x ◦ y = x+ y + 3xy.

In this case Soc(B3(9)) = {0, 3, 6}. Since Z∗9 = {1, 2, 4, 5, 7, 8} then using the construction described
in Theorem 3.4 we obtain six indecomposable solutions:

K(9, 3, 1), with σb(c) = 1 + 3b+ 4c, K(9, 3, 2), with σb(c) = 2 + 6b+ 7c,

K(9, 3, 4), with σb(c) = 4 + 3b+ 4c, K(9, 3, 5), with σb(c) = 5 + 6b+ 7c,

K(9, 3, 7), with σb(c) = 7 + 3b+ 4c, K(9, 3, 8), with σb(c) = 8 + 6b+ 7c.

By Corollary 3.8, the solutions K(9, 3, 1), K(9, 3, 4) and K(9, 3, 7) are isomorphic. In particular,
the solutions K(9, 3, 1) and K(9, 3, 4) are isomorphic by the mapping Φ(x) = 7−1x = 4x, i.e. by
the permutation (147)(285). Similarly, the solutions K(9, 3, 2), K(9, 3, 5) and K(9, 3, 8) are also
isomorphic. Finally, again by Corollary 3.8 solutions K(9, 3, 1) and K(9, 3, 2) are non-isomorphic.
Note that they are isomorphic to solutions from Example 2.10 for r = 3 and r = 6, respectively.
The isomorphisms are given by permutations: (285) and (184572)(36), respectively.

For the trivial brace (B9(9),+, ◦) we have six isomorphic indecomposable solutions of multiper-
mutational level 1: K(9, 0, a), with σb(c) = a+ c, for a ∈ {1, 2, 4, 5, 7, 8}.

By Corollary 3.10 and Proposition 4.1 one can easily check how many indecomposable cocyclic
solutions of each multipermutational level one can de�ne on a set X of cardinality pk. Note that
the highest possible level in this case does not exceed k. In particular, for each 2 6= p there exists
at least one solution of level k, but for p = 2 and k > 2 there is none. Then the smallest example
of the indecomposable solution of multipermutational level 3 with cyclic permutation group can be
constructed for |X| = 27.

Example 4.3. There are �ve non-isomorphic indecomposable solutions with |X| = 27 � two of
multipermutational level 3: K(27, 3, 1) and K(27, 3, 2) which originate from the brace B3(27), two
of multipermutational level 2: K(27, 9, 1) and K(27, 9, 2) which are obtained from the brace B9(27)
and one of multipermutational level 1: K(27, 0, 1) constructed from the trivial brace B27(27).

Using Corollary 3.13 and Remark 3.16 we can quickly calculate the number of solutions and their
permutational level in the case n is product of powers of two primes.

Remark 4.4. Let p and q be two distinct prime numbers, k, l ∈ Z+ and n = pkql. For t = pk
′
ql
′

with 1 ≤ k′ ≤ k, 1 ≤ l′ ≤ l there are

(pmin(k′,k−k′) − pmin(k′,k−k′)−1)(qmin(l′,l−l′) − pmin(l′,l−l′)−1)

non-isomorphic solutions K(pkql, pk
′
ql
′
, a) with a ∈ Z∗d and d = pmin(k′,k−k′)qmin(l′,l−l′).

By Remark 3.16 they are of multipermutational level equal to max(d k
k′
e, d l

l′
e).
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Example 4.5. Consider a set X with |X| = 33 · 52 = 675. All indecomposable cocyclic solutions
constructed on X originate from bicyclic braces. By Lemma 3.1 there are 6 such braces (up to
isomorphism). By Remark 4.4 there are 25 indecomposable cocyclic solutions and they are of
multipermutational level at most 3.

We focus now on multipermutation solutions of level 3 since there are not many examples in the
literature. We have 10 non-isomorphic such solutions: K(675, 3 · 5, a) for a ∈ {1, 2, 4, 7, 8, 11, 13, 14}
and K(675, 3 · 52, b) for b ∈ {1, 2}.

In particular, by Theorem 3.12 combined with Corollary 3.8 we obtain the following sequence of
isomorphisms:

K(27 · 25, 3 · 5, 1) ∼= K(27, 3, 5)×K(25, 5, 3) ∼= K(27, 3, 2)×K(25, 5, 3) ∼= K(27 · 25, 3 · 5, 76).

By Remark 3.16 we can describe now the retracts of K(27 · 25, 3 · 5, 1) in each step, i.e.
Ret(K(27 · 25, 3 · 5, 1)) ∼= K(45, 15, 1), Ret(K(45, 15, 1)) ∼= K(3, 0, 1) and |Ret(K(3, 0, 1))| = 1.

Moreover we have 14 non-isomorphic solutions of multipermutational level 2: K(675, 32 · 5, a) for
a ∈ {1, 2, 4, 7, 8, 11, 13, 14}, K(675, 32 · 52, b) for b ∈ {1, 2}, K(675, 33 · 5, c) for c ∈ {1, 2, 3, 4} and
one solution K(675, 0, 1) of multipermutational level 1.

Example 4.6. We construct all (up to isomorphism) indecomposable cocyclic solutions on set X
of cardinality |X| = 36 = 4 · 9. By Remark 3.16 they are multipermutation solutions of level
at most 2. By [12, Corollary 4.8] there are 6 such solutions. Using Theorem 3.12 we obtain 3
of them - those originating from bicyclic braces. There will be 1 of multipermutational level 1:
K(36, 0, 1) ∼= K(4, 0, 1) × K(9, 0, 4) ∼= K(4, 0, 1) × K(9, 0, 1). Note that K(36, 0, 1) ∼= K(36, 0, a) for
any a ∈ Z∗36. We also have 2 non-isomorphic solutions of multipermutational level 2:

(1) for a ∈ {1, 7, 13, 19, 25, 31}: K(36, 12, a) ∼= K(4, 0, 1)×K(9, 3, 1);
(2) for a ∈ {5, 11, 17, 23, 29, 35}: K(36, 12, a) ∼= K(4, 0, 1)×K(9, 3, 2).

By Proposition 3.14 we obtain 3 non-isomorphic solutions with cyclic permutation group but not
originating from the construction presented in Theorem 3.4. They are of multipermutational level 2.

(1) for t = 9 and any a ∈ Z∗36 we have a solution with σb(c) = a + c + 18b (mod 36). It is

isomorphic to K̃(4, 2, 1)×K(9, 0, 1);
(2) for t = 3 and a ∈ {1, 7, 13, 19, 25, 31} we have a solution with σb(c) = a+25c+6b (mod 36).

It is isomorphic to K̃(4, 2, 1)×K(9, 3, 2);
(3) for t = 3 and a ∈ {5, 11, 17, 23, 29, 35} we have a solution with σb(c) = a + 13c + 30b

(mod 36). It is isomorphic to K̃(4, 2, 1)×K(9, 3, 1).

Proposition 4.1 together with Theorem 3.12 and Proposition 3.14 allow us to compute the pre-
cise number of all non-isomorphic indecomposable cocyclic solutions of arbitrary size n. Table 1
shows that this number grows rapidly as n increases. Comparing even with the number of all non-
isomorphic left braces (see [11, Table 5.4] for example for n = 25 or n = 49) one can see that these
computations con�rm Theorem 3.15.

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p = 2 2 2 4 6 10 14 22 30 46 62 94 126 190 254
p = 3 3 5 11 17 35 53 107 161 323 485 971 1457 2915 4373
p = 5 5 9 29 49 149 249 749 1249 3749 6249 18749 31249 93749 156249
p = 7 7 13 55 97 391 685 2743 4801 19207 33613 134455 235297 941191 1647085

Table 1. The number of indecomposable cocyclic solutions of order pk, up to isomorphism.

Finally, let us mention the in�nite indecomposable solutions (X,σ, τ) with G(X) ∼= Z. By [8,
Theorem 5.5] a left brace with multiplicative group isomorphic to the group Z is trivial. Then,
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by [3, Theorem 14] there is, up to isomorphism, unique cocyclic in�nite indecomposable solution
(Z, σ, τ) of multipermutational level 1 such that σx(y) = y + 1. (See also [12, Proposition 2].)
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