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1. Introduction

Quandles are self-distributive structures that appear naturally in the context
of knots, braids and in many other situations [4]. Affine quandles (also called
Alexander quandles) play a prominent role in quandle theory. From the alge-
braic perspective, they constitute an important building block [1, 3, 9], and
it has been observed that many small connected quandles are affine [5, 6]. In
knot theory, there is a close connection between the Alexander invariant and
coloring by affine quandles [2, 12].

In the present paper, we focus on quandles that are homomorphic im-
ages (or quotients) of affine quandles. The paper is, in a way, a blueprint
of our recent writeup [10] on quandles that embed into affine quandles. The
similarities and differences are outlined below, and explained in detail in
Section 3.

Affine quandles are medial, and so are their subquandles and homomor-
phic images. Therefore, one can use the representation developed in [9], where
medial quandles are described using certain heterogeneous affine structures,
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called affine meshes. For both classes, we have a two-fold characterization
(Theorems 3.1 and 3.3): one by a property of the displacement group, the
other one by a property of the corresponding affine mesh.

In both cases, the characterizing conditions are both algorithmically
efficient and fairly easy to check for concrete small examples, given either by
a mesh, or by a multiplication table. In both proofs, the hard step is to find
an affine quandle such that a given quandle embeds into, resp. projects onto
it. There is, however, one significant difference: for embeddings, our proof
is not constructive and we do not know an efficient way to construct such
an affine quandle; for quotients, our proof is constructive and turns into a
polynomial-time algorithm that constructs the affine quandle.

The two characterization theorems, and several examples illustrating
the similarities and differences, are formulated in Section 3. The final Section
4 contains the proof of the main theorem and an explicit statement of the
algorithms based on the proof.

2. Preliminaries

2.1. Quandles

For a general introduction to quandle theory we refer to [1, 4]. The proofs of
all statements in this subsection can be found in the introductory part of [8]
(and also elsewhere, in various notation systems).

We will write mappings acting on the left, hence conjugation in groups
will be denoted by xy = yxy−1, and consequently, the commutator will be
defined as [x, y] = yxy−1 = xyx−1y−1.

A quandle is an algebraic structure (Q, ∗) which is idempotent (it satis-
fies the identity x∗x = x) and in which all left translations, Lx(y) = x∗y, are
automorphisms. The unique y such that x ∗ y = z will be denoted y = x\z.
There are two important permutation groups associated to every quandle:
the (left) multiplication group, generated by all left translations,

LMlt(Q) = 〈La : a ∈ Q〉 ≤ Aut(Q),

and its subgroup, the displacement group, defined by

Dis(Q) = 〈LaL−1b : a, b ∈ Q〉 ≤ LMlt(Q).

It is easy to see that Dis(Q) = 〈LaL−1e : a ∈ Q〉 for any fixed e ∈ Q. Both
groups have the same orbits of the natural action on Q, to be called orbits
of the quandle Q, and denoted

Qe = {α(e) : α ∈ LMlt(Q)} = {α(e) : α ∈ Dis(Q)}.
Orbits are subquandles of Q. They form a block system, to be called the orbit
decomposition of Q.

Observe that Lα(x) = (Lx)α for every automorphism α. Consequently,
both LMlt(Q) and Dis(Q) are normal in Aut(Q).

Let λ = {(a, b) : La = Lb} denote the Cayley kernel of a quandle
Q. This is always a congruence on Q, since it is the kernel of the quandle
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homomorphism a 7→ La from Q into the symmetric group SQ under the
conjugation operation.

A quandle is called medial if it satisfies the identity (x ∗ y) ∗ (u ∗ v) =
(x ∗ u) ∗ (y ∗ v). A quandle is medial if and only if its displacement group is
abelian.

Let (A,+) be an abelian group, f its automorphism, and define an
operation on the set A by

a ∗ b = (1− f)(a) + f(b).

Then (A, ∗) is a medial quandle, to be denoted Aff(A, f), and called affine
over the group (A,+). Here 1 refers to the identity mapping, hence g = 1−f
is the mapping g(x) = x− f(x).

Let Q = Aff(A, f). Then Dis(Q) ' Im(1 − f), where a ∈ Im(1 − f)
corresponds to the mapping x 7→ a+x (indeed, LaL

−1
b (x) = (1−f)(a−b)+x).

Hence, the orbits of Q are the cosets of Im(1− f).

2.2. Affine meshes

In [9], we developed a representation of medial quandles by affine meshes.
Here we recall the essential constructions and results.

Definition 2.1. An affine mesh over a non-empty set I is a triple

A = ((Ai)i∈I ; (ϕi,j)i,j∈I ; (ci,j)i,j∈I)

where Ai are abelian groups, ϕi,j : Ai → Aj homomorphisms, and ci,j ∈ Aj
constants, satisfying the following conditions, for every i, j, j′, k ∈ I:

(M1) 1− ϕi,i is an automorphism of Ai;
(M2) ci,i = 0;
(M3) ϕj,kϕi,j = ϕj′,kϕi,j′ , i.e., the following diagram commutes:

Ai
ϕi,j−−−−→ Ajyϕi,j′

yϕj,k

Aj′
ϕj′,k−−−−→ Ak

(M4) ϕj,k(ci,j) = ϕk,k(ci,k − cj,k).

The mesh is called indecomposable if, for every j ∈ I, the group Aj is gener-
ated by all the elements ci,j , ϕi,j(a) with i ∈ I and a ∈ Ai.

If the index set is clear from the context, we shall write briefly A =
(Ai;ϕi,j ; ci,j).

Definition 2.2. The sum of an affine mesh (Ai;ϕi,j ; ci,j) is an algebraic struc-
ture (A, ∗) defined on the disjoint union of the sets Ai by

a ∗ b = ci,j + ϕi,j(a) + (1− ϕj,j)(b).

for every a ∈ Ai and b ∈ Aj .
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The sum of any affine mesh is a medial quandle, with

a\b = (1− ϕj,j)−1(b− ϕi,j(a)− ci,j).

The fibers Ai form subquandles which are affine, namely, Aff(Ai, 1−ϕi,i). If
the mesh is indecomposable, the fibers coincide with the orbits.

Theorem 2.3. [9] A binary algebraic structure is a medial quandle if and only
if it is the sum of an indecomposable affine mesh.

3. The two characterization theorems

The key to recognition of quandles that embed into an affine quandle is the
lack of fixed points (i.e., semiregularity) in the displacement group, which
translates into a certain form of homogenity of the underlying meshes. The
following is a reformulation of the main result of [10] (the special type of
meshes in condition (3) was called a semiregular extension).

Theorem 3.1. [10] The following statements are equivalent for a quandle Q:

(1) Q embeds into an affine quandle;
(2) Dis(Q) is abelian and semiregular;
(3) there is an abelian group A, its automorphism ψ and elements di ∈ A

such that Q is isomorphic to the sum of an affine mesh ((Ai); (ϕi,j); (ci,j))
where Ai = A for every i, and ϕi,j = 1− ψ and ci,j = di − dj for every
i, j ∈ I.

Given a multiplication table of a quandle Q, it is easy to verify condition
(2). Given an affine mesh, it is easy to verify condition (3). However, in either
case, we do not know how to find efficiently an abelian group A and its
automorphism f such that Q embeds into Aff(A, f).

The key to recognition of quandles that are quotients of affine quandles
is the size of the displacement group, which translates into a certain form of
linearity of the underlying meshes.

Definition 3.2. We will say that a quandle Q has a tiny displacement group
if, for some e ∈ Q,

Dis(Q) = {LxL−1e : x ∈ Q}.

Note that if Dis(Q) is tiny, then Dis(Q) = {LxL−1f : x ∈ Q} for every

f ∈ Q: to express LxL
−1
e as LyL

−1
f for some y, consider LxL

−1
e LfL

−1
e ∈

Dis(Q) and take y such that LyL
−1
e = LxL

−1
e LfL

−1
e .

The following is the main result of the present paper.

Theorem 3.3. The following statements are equivalent for a quandle Q:

(1) Q is a homomorphic image of an affine quandle;
(2) Dis(Q) is abelian and tiny;
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(3) Q is the sum of an affine mesh ((Ai); (ϕi,j); (ci,j)) such that

{(ϕi,j(a) + ci,j)j∈I : i ∈ I, a ∈ Ai} ⊆
∏
j∈I

Aj

is a coset of a subgroup of
∏
Aj.

Given a multiplication table of a quandle Q, it is easy to verify condition
(2). Given an affine mesh, it is easy to verify condition (3) (a subset X of a
group G is a coset if and only if, for any h ∈ X, −h + X is a subgroup of
G). As we shall see in the next section, the proof of Theorem 3.3 provides an
efficient algorithm that constructs an abelian group A and its automorphism
f such that Aff(A, f) maps homomorphically onto Q.

Condition (3) is particularly easy to use for 2-reductive medial quandles,
i.e., quandles given by meshes with ϕi,j = 0 for all i, j [9, Section 6]. Indeed,
the sum of a mesh (Ai, 0, (ci,j)) is a homomorphic image of an affine quandle
if and only if the rows of the matrix (ci,j) form a coset in the group

∏
Aj .

Example 3.4. All of the following properties are easy to verify using conditions
(3) in Theorems 3.1 and 3.3.

• The sum of the affine mesh(
(Z2,Z2,Z2);

(
0 0 0
0 0 0
0 0 0

)
;
(

0 0 1
0 0 1
1 1 0

))
both embeds into an affine quandle (for instance into Aff(Z8, 5) as
{0, 4, 2, 6, 1, 5}), and is a homomorphic image of an affine quandle (for
example of Aff(Z8, 5) under the congruence 0 | 2 | 4 | 6 | 1, 3 | 5, 7).
However, it is not affine, since it has three orbits, unlike either of the
two 6-element affine quandles.
• The sum of the affine mesh

((Z3,Z3); ( 0 0
0 0 ) ; ( 0 1

1 0 ))

embeds into an affine quandle (e.g., into Aff(Z9, 4) as {0, 3, 6, 1, 4, 7}),
but it is not a homomorphic image of an affine quandle.
• The sum of the affine mesh

((Z2,Z1); ( 0 0
0 0 ) ; ( 0 0

1 0 ))

is a homomorphic image of an affine quandle (for example of Aff(Z4,−1)
under the congruence {0}, {2}, {1, 3}), but does not embed into an affine
quandle since it has orbits of different sizes.

Example 3.5. We calculate all 2-reductive quandles with two orbits that are
homomorphic images of affine quandles. Such quandles are sums of indecom-
posable affine meshes of type

((A,B); ( 0 0
0 0 ) ; ( 0 b

a 0 ))

where A = 〈a〉 and B = 〈b〉. Condition (3) of Theorem 3.3 states that the
rows of the matrix (ci,j) form a coset in A × B. The coset is necessarily
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(a, 0) + 〈(−a, b)〉, hence 2a = 2b = 0, A,B ∈ {Z1,Z2} and there are only
three options, up to isomorphism:

((Z1,Z1); ( 0 0
0 0 ) ; ( 0 0

0 0 )) , ((Z2,Z1); ( 0 0
0 0 ) ; ( 0 0

1 0 )) , ((Z2,Z2); ( 0 0
0 0 ) ; ( 0 1

1 0 )) .

Remark 3.6. For a class of quandles C, denote S(C) the class of all sub-
quandles of members of C, and H(C) the class of all homomorphic images of
members of C. It is easy to see that SH(C) ⊆ HS(C) for any class C. The-
orems 3.1 and 3.3 describe the classes S(A) and H(A) where A is the class
of affine quandles. What are the classes SH(A) and HS(A)? The latter one
coincides with the class of all medial quandles, since the free medial quandles
embed into affine quandles [11]. We do not know whether SH(A) = HS(A).

4. The proof and the algorithm

Informally, a multiset is a generalization of the notion of a set where elements
can repeat. Tuples can be considered as multisets, forgetting the indexing. A
multitransversal for a block system is a multiset which takes the same number
of elements from each block (i.e., a multiset T such that |T ∩B1| = |T ∩B2|,
for every pair of blocks B1, B2). The multiplicity of a multitransversal is the
cardinality of each such T ∩Bi.

Proof of Theorem 3.3. (1) ⇒ (2) Affine quandles satisfy (2) and both prop-
erties carry over to homomorphic images.

(2) ⇒ (1) We shall construct a group A and an automorphism f such
that Aff(A, f) maps homomorphically onto Q. Let T be a multitransversal
to the block system of the Cayley kernel λ = {(a, b) : La = Lb} which
contains at least one element from each orbit of Q (take a transversal, add
a representative of every orbit, and increase multiplicity of selected elements
to obtain a multitransversal). Let κ be the multiplicity of T .

We will treat the elements of T as formally different and construct an
abelian group operation on T . Choose an element e ∈ T which will play the
role of zero. Consider an arbitrary abelian group K = (K,+,−, 0) of order κ
and an arbitrary mapping ν : T → K which is bijective on every block of the
equivalence T 2 ∩ λ and satisfies ν(e) = 0. Define an operation ⊕ on T by

a⊕ b = c ⇔ LaL
−1
e Lb = Lc and ν(a) + ν(b) = ν(c).

The operation is well defined: α = LaL
−1
e LbL

−1
e is in Dis(Q) which is tiny,

hence there exists c ∈ Q such that α = LcL
−1
e and among the κ candidates

for c in T , there is a unique one with ν(c) = ν(a) + ν(b).
Clearly, e is a unit element for ⊕. An inverse to a is an element b such

that LaL
−1
e Lb = Le and ν(a) + ν(b) = 0, that is, b such that LbL

−1
e =

(LaL
−1
e )−1 and ν(b) = −ν(a); such b exists because Dis(Q) is tiny. The oper-

ation ⊕ is commutative because both Dis(Q) and K are abelian. It is associa-
tive, because d = a⊕(b⊕c) if and only if Ld = LaL

−1
e Lb⊕c = LaL

−1
e LbL

−1
e Lc

and ν(d) = ν(a)+ν(b⊕c) = ν(a)+ν(b)+ν(c); the two rightmost expressions
do not depend on the bracketing.
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Now, let

A = Dis(Q)× (T,⊕)

and consider the mapping

f : A→ A, (α, a) 7→ (LeαL
−1
a , a).

Then f is an endomorphism of A, because

f((α, a)) + f((β, b)) = (LeαL
−1
a , a) + (LeβL

−1
b , b) = (LeαβL

−1
a LeL

−1
b , a⊕ b)

= (LeαβL
−1
e (LbL

−1
e LaL

−1
e )−1, a⊕ b)

= (LeαβL
−1
e (Lb⊕aL

−1
e )−1, a⊕ b) = f(αβ, a⊕ b).

The kernel of f is trivial: Ker(f) = {(α, a) : LeαL
−1
a = 1 and a = e} =

{(1, e)}. To show that f is onto, notice that (α, a) = f((L−1e αLa, a)) where
L−1e αLa = L−1e (αLaL

−1
e )Le ∈ Dis(Q) since it is normal in LMlt(Q). Hence

f is an automorphism of A.

Finally, consider

ψ : Aff(A, f)→ Q, (α, a) 7→ α(a).

We have

ψ((α, a) ∗ (β, b)) = ψ((α, a)f((α, a))−1f((β, b)))

= ψ((αLaα
−1L−1e LeβL

−1
b , b)) = αLaα

−1βL−1b (b)

= Lα(a)β(b) = α(a) ∗ β(b),

hence ψ is a homomorphism. It is onto, because each orbit of Q contains at
least one element in T .

(2)⇔ (3) Assume thatQ is the sum of an affine mesh ((Ai); (ϕi,j); (ci,j)).

The displacement mapping LaL
−1
b with a ∈ Ai, b ∈ Aj can be expressed as

LaL
−1
b (x) = x+ ϕi,k(a)− ϕj,k(b) + ci,k − cj,k whenever x ∈ Ak.

We will prove that Dis(Q) is tiny if and only if {(ϕi,k(a) + ci,k)k∈I : i ∈
I, a ∈ Ai} is a coset in

∏
Ak, that is, if and only if, for some e ∈ Aj , the set

Se = −(ϕj,k(e) + cj,k)k∈I + {(ϕi,k(a) + ci,k)k∈I : i ∈ I, a ∈ Ai}

is a subgroup of
∏
Ak.

Fix e ∈ Aj . Then the set Λe = {LaL−1e : a ∈ Q} is in 1-1 correspondence
with the set Se, where LaL

−1
e corresponds to the tuple

(−ϕj,k(e)− cj,k + ϕi,k(a) + ci,k)k∈I .

Moreover, composition of mappings from Λe corresponds to addition of the
corresponding elements of Se. Therefore, Λe is closed with respect to compo-
sition and inversion if and only if Se is closed with respect to addition and
subtraction.

Consequently, Dis(Q) is tiny if and only if Dis(Q) = Λe for some e,
which is equivalent to Se ≤

∏
Ak. �
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From an algorithmic point of view, the size of the multitransversal T
is important. Indeed, |T | = |Q/λ| · κ, and we can always take κ at most the
number of orbits. Both values are bounded by the size of Q, hence we can
always find T such that |T | ≤ |Q|2. The following example shows that there
is also a quadratic lower bound.

Example 4.1. Let n, k be natural numbers such that 2k < n. Consider the
affine mesh An,k = (Z; 0;C) where Z = (Z2, . . . ,Z2,Z1, . . . ,Z1) contains k
copies of Z2 and n− k copies of Z1, 0 is the matrix of zero homomorphisms,
and

C =

(
D 0
0 0

)
where D is an arbitrary 2k×k matrix over Z2 whose set of row vectors equals
Zk2 . To simplify notation, assume that the zero vector is in the last row.

Clearly, An,k is an indecomposable affine mesh and using Theorem 3.3,
we see that its sum, Q, is a homomorphic image of an affine quandle. The
quandle Q has n orbits and |Q| = n+ k.

Observe that the Cayley kernel of Q consists of all pairs (a, b) where a
is in the i-th orbit, b is in the j-th orbit, and the i-th and j-th row in C are
equal. Therefore, λ has 2k blocks. Most of them have 1 or 2 elements, and
there is one large block B of size n − 2k + 1, consisting of singleton orbits
with indices 2k, . . . , n. Consequently, any multitransversal T intersecting all
orbits must choose all elements from B, thus its multiplicity κ must be at
least n− 2k + 1 and we get

|T | ≥ |Q/λ| · κ = 2k · (n− 2k + 1)

(the lower bound can be achieved). In particular, if n = 2k+1, we have

|T | ≥ n

2
·
(n

2
+ 1
)
≈ |Q|2/4.

In the rest of the section, we present two algorithms. The input is a finite
quandle, in any form that allows efficient calculation of left translations (for
example, the multiplication table, or the corresponding affine mesh). In the
first one, we are asked to decide whether it is a homomorphic image of an
affine quandle. In the second one, we are asked to find such an affine quandle.

Algorithm 4.2.
In: a finite quandle Q
Out: is Q a homomorphic image of an affine quandle?

1. pick e ∈ Q
2. D := {LxL−1e : x ∈ Q}
3. for each α, β ∈ D do
4. if αβ 6= βα or αβ 6∈ D then return false
5. return true

On line 2, we define the group Dis(Q). On lines 3 and 4, we verify
condition (2) of Theorem 3.3: if we find a non-commuting pair, or if we find
a pair whose composition is not inside D, the algorithm reports a failure.
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Proposition 4.3. Algorithm 4.2 runs in a polynomial time with respect to
n = |Q|, namely O(n4 log n) (i.e., in a quadratic time with respect to the
input size).

Proof. All operations performed with permutations on Q (comparison, com-
position) can be calculated in O(n log n) time. The set D has at most n
elements, hence the loop on lines 3–5 performs at most n2 steps. Checking
commutativity takes O(n log n) time (two compositions, one comparison),
checking containment in D takes O(n2 log n) time (one composition, at most
n comparisons). �

Algorithm 4.4.
In: a finite quandle Q
Out: (A, f) such that Q ' Aff(A, f), or failure if it does not exist

1. pick e ∈ Q
2. D := {LxL−1e : x ∈ Q} = {α0, . . . , αm−1} where α0 = 1
3. for each α, β ∈ D do
4. if αβ 6= βα or αβ 6∈ D then stop with failure
5. x0,0 = e
6. for each 0 < i < m do
7. find all xi,0, . . . , xi,ki−1 such that Lxi,j

L−1e = αi
8. κ := max{ki}
9. for each 0 ≤ i < m and 0 ≤ j < κ do
10. Ti·κ+j := xi,j mod ki

11. for each 0 ≤ i, i′ < m and 0 ≤ j, j′ < κ do
12. set Ti·κ+j ⊕ Ti′·κ+j′ := Ti′′·κ+((j+j′) mod κ) such that

Lxi′′,0L
−1
e = Lxi,0

L−1e Lxi′,0L
−1
e

13. return (D × T, f) where f(α, Ti·κ+j) = (LeαL
−1
xi,j

, Ti·κ+j)

On lines 5–7 we calculate the blocks of the Cayley kernel λ. To keep
things simple and to avoid calculation of the orbits of Q, we put every element
of Q in T (occasionally several times). We implicitly choose the group K to
be the cyclic group Zκ. The construction of the group (T,⊕) with T = {Tk :
k = 0, . . . ,mκ− 1} on lines 11 and 12 follows the proof of Theorem 3.3.

Proposition 4.5. Algorithm 4.4 runs in a polynomial time with respect to
n = |Q|, namely O(n6 log n) (i.e., in a cubic time with respect to the input
size).

Proof. The most costly part is the cycle on lines 11 and 12 requiring m2κ2

steps, each of complexity m · n log n (search for a permutation in a list of
length m). In the worst case, we have to assume both m,κ = Θ(n). �

Our choice of T is simple, but often not optimal in terms of size. Here
we outline a better approach. First, construct a subset S ⊆ Q which is a
transversal of the orbit decomposition, and minimizes the maximal number
of elements taken from any single block of λ; shortly,

min
S

max
B∈Q/λ

|B ∩ S|.
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Given S, we obtain T by adding a proper quantity of arbitrarily chosen ele-
ments from each block of λ. Finding the optimal set S can be formulated as
an instance of integer linear programming. Let A1, . . . , An be the orbits of Q,
and B1, . . . , Bm the blocks of λ. Let xi,j be the indeterminates that tell how
many elements we choose from Ai ∩ Bj . We set xi,j = 0 whenever the two
sets are disjoint. The constraints are xi,j ≥ 0 and

∑m
j=1 xi,j = 1 for every

i = 1, . . . , n (thus we choose exactly one element from each Ai). We mini-
mize c such that

∑n
i=1 xi,j ≤ c for every j = 1, . . . ,m. While integer linear

programming is a difficult problem in general, there are efficient heuristics
for finding good solutions.

For the quandle from Example 4.1, our choice of T is optimal. Therefore,
the worst case asymptotic complexity of our algorithm cannot be improved
by a better choice of T .

Remark 4.6. In [10] we described an efficient algorithm to recognize quan-
dles isomorphic to affine quandles, but we do not know how to find efficiently
the actual affine representation (i.e., the group and its automorphism). The
construction from the proof of Theorem 3.3 does not help either. The ho-
momorphism ψ : Aff(A, f) → Q constructed in the proof is bijective if and
only if the multitransversal T has precisely one element from each orbit of
Q. However, many affine quandles do not admit such T : for example, every
affine latin quandle Q has only one orbit, but |T | ≥ |Q|.
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