
THE LATTICE OF QUASIVARIETES OF MODULES
OVER A DEDEKIND RING
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Abstract. In 1995 D. V. Belkin described the lattice of quasiva-
rieties of modules over principal ideal domains [1]. The following
paper provides a description of the lattice of subquasivarieties of
the variety of modules over a given Dedekind ring. It also shows
which subvarieties of these modules are deductive (a variety is de-
ductive if every subquasivariety is a variety).

1. Introduction

Until recently, the only known facts concerning quasivarieties of mod-
ules were provided by Belkin [1] who characterised all quasivarieties of
modules over principal ideal domains, effectively generalizing the result
of Vinogradov [12].

A natural question arises here: does Belkin’s result apply to prin-
cipal ideal domains only or can it be extended to a broader class of
domains? We cannot definitely hope to extend it to the class of all
domains since the structure of general domains could be very wild.
Nevertheless, it turned out that the key property that Belkin used was
the unique factorisation of principal ideals into a product of principal
prime ideals. If we drop the word “principal” then we naturally come
up with the notion of a Dedekind domain. Although it is true that the
structure of general modules over Dedekind rings is not well described,
we are actually interested in quasivarieties and they are always gen-
erated by finitely generated algebras. Hence what we really need are
finitely generated Dedekind modules only and their structure is well
understood.

The article has the following structure: Section 2 comes with basic
notions and facts of ring theory. In Section 3 we define Dedekind rings
and recall some of their basic properties. In Section 4 we recall proper-
ties of finitely generated modules over Dedekind rings and also Belkin’s
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result. In Section 5 we focus on deductive varieties. Finally, Section 6
is the core of the paper with the main result, namely Theorem 6.9,
describing the quasi-variety lattice of modules over Dedekind rings.

2. Basic definitions

In this paper we will assume that a ring R is commutative, with the
identity element 1 and 0 6= 1. Let us recall some definitions from ring
theory. A domain is a ring such that ab = 0 implies that either a = 0
or b = 0. For any ideals a, b in a ring R we define the product of ideals
ab as follows:

ab =

{
n∑
i=1

aibi, ai ∈ a, bi ∈ b, n ≥ 1

}
.

If a1, . . . , an are ideals, then their product a1 · . . . · an is analogously
the set of all finite sums Σi a1,i · . . . ·an,i where ak,i ∈ ak for k = 1, . . . , n.

The main tool in our study is, in fact, the divisibility lattice of ideals
in a ring R.

Definition 2.1. For ideals a and b in a commutative ring, write a | b
if b = ac for some ideal c and we say that the ideal a divides the ideal
b.

If a | b then for some ideal c, we have b = ac and ac ⊆ a, so a ⊇ b.
Divisibility implies containment. The converse may fail in some rings,
but in a Dedekind domain it will turn out that containment implies
divisibility. So it is useful to think about containment of ideals in any
ring as a preliminary form of divisibility: a ⊇ b is, in general, something
like a | b and in our case, these two notions coincide.

Let I(R) be the set of all ideals of the ring R. The set I(R) with the
relation | forms a partially ordered set which turns out to be a lattice:

a ∧ b = a ∩ b, a ∨ b = a + b,

where a + b is the smallest ideal containing a ∪ b.

Proposition 2.2. The algebra (I(R),∧,∨) is a complete modular lat-
tice.

In fact, in our case of Dedekind domains the lattice is distribu-
tive [11].

3. Dedekind rings

In this section we recall the definition and some main properties of
Dedekind domains.
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Definition 3.1. A proper ideal a of a ring R is called:

(1) prime if a · b ∈ a⇒ (a ∈ a or b ∈ a; )
(2) maximal if for any ideal b of the ring R if a ⊆ b ⊆ R then a = b

or b = R.

The ring Z[
√
−5] is not a principal ideal domain since it is not a

unique factorization domain. For example 9 = 3 · 3 = (2 +
√
−5) · (2−√

−5). Each factor is irreducible and any two different elements are not
associate. Then the principal ideal (9) is a product of principal ideals
(9) = (3) · (3) = (2 +

√
−5) · (2 −

√
−5). Nevertheless, the ideal (9)

is a unique product of prime ideals. Indeed, the ideals (3), (2 +
√
−5)

and (2−
√
−5) are not prime, but they are unique products of powers

of prime ideals. Moreover, (9) = (3, 2 +
√
−5)2 · (3, 2 −

√
−5)2 is the

unique factorization.
We will consider domains, where the unique factorization of elements

property is not required, but every nonzero proper ideal is a unique
product of prime ideals.

Definition 3.2. A ring R is said to be a Dedekind ring if it is an
integral domain and if every nonzero proper ideal of R is a product of
prime ideals.

Theorem 3.3. If R is a Dedekind ring then the product decomposition
is unique, up to permutation.

Lemma 3.4. Let a be an ideal of R and let p be a prime ideal of R.
Then p appears in the decomposition of a if and only if a ⊆ p.

Now we recall some basic properties of Dedekind rings. Let R be a
integral domain and let P be a subring of R.

Definition 3.5. We say that an element x ∈ R is integral over P if
there exist a positive natural number n and elements a1, . . . , an ∈ P
such that

xn + a1x
n−1 + . . .+ an−1x+ an = 0.

The set of all elements of the ringR integral over P is called the integral
closure of P in R and is denoted by CR(P).

We say that a ring R is integrally closed if CF(R) = R, where F is
the fraction field of R.

Theorem 3.6. An integral domain R is a Dedekind ring if and only
if the following conditions are satisfied:

(DR1) R is Noetherian;
(DR2) every non-zero prime ideal is maximal;
(DR3) R is integrally closed.
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Example 3.7. The following rings are Dedekind rings:

(1) A field,
(2) A principal ideal domain,
(3) The ring Z[

√
−n] where n is a square-free natural number and

n ≡ 1, 2 (mod 4).

Using the factorization of ideals, we can compute the greatest com-
mon divisor and the least common multiple of two nonzero ideals of a
Dedekind domain.

Lemma 3.8. Let a and b be ideals of a Dedeking ring R. Then

GCD(a, b) = a + b = a ∨ b;

LCM(a, b) = a ∩ b = a ∧ b.

A Dedeking domain is not a principal ideal domain but it is close to
it: every ideal has a two element generating set and, moreover, one of
the generators can be chosen freely.

Proposition 3.9. Let a be a nonzero ideal of the Dedekind domain,
and let r be any nonzero element of a. Then a can be generated by two
elements, one of which is r.

Proof. Since r ∈ a we have (r) ⊆ a. So a divides (r), hence (r) = ab
for some ideal b. The ideal b is a product pα1

1 . . . pαn
n , where pi are

distinct prime ideals. Let bi = pα1
1 . . . p

αi−1

i−1 p
αi+1

i+1 . . . pαn
n . Then abi ⊃ ab.

Choose an element si such that si ∈ abi and si /∈ ab. Then take
s = s1 + . . . + sn. We show that s ∈ a and s /∈ apαi

i for all i. First,
for all si ∈ abi ⊆ a, hence s ∈ a. Now si cannot belong to apαi

i ,
for if so, si ∈ api

αi ∩ abi = LCM(api
αi , abi). But now last common

multiple is ab. Hence si ∈ ab, a contradiction. We can write s as
s = (s1 + . . .+ si−1) + si + (si+1 + . . .+ sn). For i 6= j sj ∈ abj ⊆ apαi

i .
Hence the first and the third component of s are in apαi

i and the second
is not. Hence s /∈ apαi

i .
As s ∈ a, we have (s) ⊆ a and there exists an ideal a′ such that

(s) = aa′. If any pαi
i divides a′ then a′ = pαi

i a′′ and (s) = apαi
i a′′ hence

s ∈ apαi
i a contradiction. Finally we obtain that a′ is relatively prime

to b and GCD((r), (s)) = GCD(ab, aa′) = a, as a and a′ are relatively
prime. Then a = (r, s).

�

Proposition 3.10. If a Dedekind domain R has only finitely many
prime ideals, then it is a principal ideal domain.
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4. Modules over Dedekind rings

In this section we recall some properties of finitely generated modules
over a Dedekind domain. All rings considered here are thus Dedekind
domains.

Definition 4.1. Let M be an R-module. If x is any element of M,
then the set of all r in R with rx = 0 is called the annihilator of x.
If all elements of M have a nonzero annihilator, we call M a torsion
module. If all non-zero elements ofM have {0} as the annihilator then
M is called a torsion free module.

Theorem 4.2. [9, Theorem 1.41] Let M be a finitely generated non-
trivial torsion R-module. Then there exist prime ideals p1, . . . , pn in
R and positive natural numbers ki for i = 1, . . . , n, such that M is
isomorphic to the sum

M∼= R/pk11 ⊕ . . .⊕R/pknn .
Corollary 4.3. Let M be a finitely generated non-trivial torsion mod-
ule. Then every homomorphic image of M embeds into M.

Lemma 4.4. [9, Lemma 1.38] For every domain R any finitely gener-
ated and torsion-free R-module M is a submodule of a free R-module.

Lemma 4.5. Let M be a finitely generated non-trivial module over R
and let p be a prime ideal of R. We define Mp = {x ∈ M, pm(x) =
(0), for some m}. Then there exist k1 ≤ k2 ≤ . . . ≤ kn such that

Mp
∼= R/pk1 ⊕ . . .⊕R/pkn .

The structure of a finitely generated non-trivial R-moduleM is pre-
sented in the following theorem:

Theorem 4.6. [9, Theorem 1.32] Let M be a finitely generated non-
trivial R-module and MT be its submodule consisting of all torsion
elements, i.e., of all elements x ∈M, which, for some non-zero r ∈ R,
satisfy rx = 0. Then M is isomorphic to a direct sum

M∼= Rn ⊕ a⊕MT ,

where n ∈ N and a is an ideal of R.

In a variety of modules over PID every ideal, as an R-module, is
isomorphic to the free R-module R. This is not true for Dedekind
rings in general.

Example 4.7. In the variety of Z[
√
−5]-modules the following modules

are not isomorphic

(3, 2−
√
−5) � (3, 2 +

√
−5).
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For a Dedekind domain R which is not a PID, there are infin-
itely many non-isomorphic ideals and therefore infinitely many non-
isomorphic and torsion-free R-modules.

Lemma 4.8. [9, Lemma 1.38] For every domain R any finitely gener-
ated and torsion-free R-module M is a submodule of a free R-module.

The lattice of quasivarieties of modules over a principal ideal domain
was described in [1] as follows.

Let R be a principal ideal domain and P(R) be the set of all prime
elements of the ring R. The lattice Lq(ModR) of subquasivarieties of
ModR over R the principal ideals domain, may be characterized using
the lattice L(α) introduced by Belkin [1], and defined as follows: (recall
that a cardinal number is the least ordinal of the given cardinality and
also that an ordinal number is defined as the set of all smaller ordinal
numbers). For each cardinal number α, i ∈ α is an ordinal number.

Definition 4.9. [1] Let α+ denote the union α ∪ {∞}. Let L(α) be
the set of functions

f : α+ → ω+,

satisfying f(∞) ∈ {0,∞}, with f(∞) = 0 only if f(α) 63 ∞ and
f(i) = 0, for almost all i ∈ α. Then L(α) is a distributive lattice with
respect to the following operations:

(f ∨ g)(i) = max{f(i), g(i)}, (f ∧ g)(i) = min{f(i), g(i)},
where i <∞ for all i ∈ α.

Theorem 4.10. [1, Theorem 2.1] Let the ring R be a principal ideal
domain, and |P| = α, where P is the set of prime elements in the ring
R. Then the lattice of quasivarieties of the variety of modules over the
ring R is isomorphic to the lattice L(α), i.e.,

Lq(ModR) ∼= L(α).

5. Deductive subvarieties of the variety of modules over
a Dedekind ring

In Theorem 4.10, a part of the quasivarieties lattice consists of vari-
eties only, namely, the quasivarieties generated by finite modules. The
same happens in the Dedekind case, as we shall see in this section.
What are finite Dedekind modules? The variety corresponding to an
ideal a is generated by the module R/a and denoted by Va. As any
ideal a of a Dedekind domain has two generators r and p, it follows that
the subvariety corresponding to this ideal is defined by two identities
px = 0 and rx = 0.

The following result is well-known.
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Theorem 5.1. Let R be an arbitrary ring. The lattice of varieties
L(ModR) of the variety ModR of modules over the ring R is dually
isomorphic to the lattice of ideals of R.

Definition 5.2. We say that a variety V is deductive if each subqua-
sivariety of V is a variety.

We want to prove that every proper subvariety of ModR where R is
a Dedekind domain, is deductive. It is not difficult to prove this result
directly. However, it is easier to use a characterization of deductive
varieties provided by L. Hogben and C. Bergman [4].

Definition 5.3. An algebra P ∈ V is primitive if P is finite, subdirectly
irreducible and, for all A ∈ V , P ∈ H(A)⇒ P ∈ IS(A).

Theorem 5.4. [4, Theorem 3.4] Let V be residually finite and of finite
type, or residually and locally finite. Then V is deductive if and only if
every subdirectly irreducible algebra in VSI is primitive.

Corollary 5.5. Let R be a Dedekind domain. Each proper subvariety
of the variety ModR is deductive.

Proof. Every proper subvariety ofR is Va, for some ideal a. This variety
is locally finite. The subdirectly irreducible members of the variety Va
are R/pk, for some natural k such that pk|a and p is a prime ideal,
and hence Va is residually finite. According to Corollary 4.3, all the
homomorphic images of torsion modules are submodules and hence all
the subdirectly irreducibles are primitive. �

Example 5.6. Let p1, p2 be prime ideals, then the lattice of subquasi-
varieties Lq(Vp1p2) consists of the four members displayed in Figure 1

�
�
��

@
@

@@

•
Tr

Vp1•Vp2•
@

@
@@

�
�
��

Vp1p2
•

Figure 1. Subquasivarieties of Vp1p2

Theorem 5.7. Let R be a Dedekind domain and let a be an ideal of
this ring. The lattice Lq(Va) = L(Va) is isomorphic to the lattice of
divisors of a under divisibility.
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6. The lattice of subquasivarieties of the variety of
modules over a Dedekind ring

In this section we show that the lattice of quasivarieties of modules
over a Dedekind domain R depends on the number of prime ideals of
the ring R.

Let R be a Dedekind domain.

Lemma 6.1. For every Dedekind domain R and a finitely generated
torsion-free R-moduleM = Rn⊕a, where a is an ideal of R, we have:

Q(Rn ⊕ a) = Q(R).

Proof. According to Lemma 4.4, any finitely generated and torsion-
free R-module a is a submodule of a free R-module and therefore the
following inclusion holds:

Q(Rn ⊕ a) ⊆ Q(R⊕ a) ⊆ Q(R).

Let a, b ∈ R be generators of theR-module a = (a, b). Then a1 = (a)
is a submodule of the R-module a and the module a1 is isomorphic to
the free R-module R. Therefore:

Q(Rn ⊕ a) ⊇ Q(Rn ⊕ a1) ⊇ Q(Rn+1) = Q(R).

Both inclusions hold. �

Lemma 6.2. The quasivariety Q(R) generated by the R-module R is
the only minimal quasivariety which is not a variety. The R-module
R is relatively subdirectly irreducible in the quasivariety Q(R).

Proof. The only non-trivial submodules of R are non-trivial ideals of R
which contain submodules isomorphic to R. Hence Q(R) is minimal.
All quasivarieties contain either R or a or some quotient of R. �

If a Dedekind domain R is a PID then the R-module R is the only
relatively subdirectely irreducible in the quasivariety Q(R). If R is a
Dedekind domain which is not a PID then the quasivariety Q(R) con-
tains infinitely many non-isomorphic relatively subdirectly irreducible
modules.

Lemma 6.3. Each R-module a, for a an ideal of R, is relatively subdi-
rectly irreducible in the quasivariety Q(R,R/a1, . . . ,R/an) for some
ideals ai for i = 1, . . . , n, n ≥ 0. On the other hand, every finitely gen-
erated relatively subdirectly irreducible R-module in this quasivariety is
either finite subdirectly irreducible or isomorphic to an ideal a.

Proof. The Q-congruence lattice of a R-module a has the monolith:
the smallest non-trivial Q-ideal is a(a1 ∩ a2 ∩ · · · ∩ an). On the other
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hand, every finitely generated R-module is isomorphic to Rn ⊕ a ⊕
MT , according to Theorem 4.6. Hence every relatively subdirectly
irreducible is either isomorphic to a or finite torsion module. And a
quasivariety generated by a finite module is a variety hence all relatively
subdirectly irreducible are subdirectly irreducible. �

Lemma 6.4. The R-module R belongs to any quasivariety Q, con-
taining R/a1,R/a2, . . ., for infinitely many pairwise different ideals ai,
for i ∈ N. Moreover, the R-module R is not subdirectly irreducible
relatively to Q.

Proof. The ideal a1 ∩ a2 ∩ · · · is trivial and hence the Q-congruence
lattice of the R-module R does not have a monolith. And this means
that we have R ≤

∏
R/ai. �

Recall that each ideal in a Dedekind domain is generated by two
elements. In the sequel we will define quasi-identities that distinguish
specific prime ideals. In particular, we need to measure the valuation
of prime-ideals, optimally by a single element for each prime ideal. If
the prime ideal is principal then, naturally, we use the generator. If it
is not principal then an arbitrary generator may not do the job, as we
see in the next example:

Example 6.5. Let R = Z[
√
−5]. The prime ideal (3; 2 +

√
−5) can be

represented by many different pairs of generators, e.g. (9; 5 +
√
−5).

But here the number 9 is not good for our purposes since 9 ∈ (9; 5 +√
−5)2 = (3; 2 +

√
−5)2.

Lemma 6.6. Let p be a prime ideal of R. Let a ∈ p r p2. Then
ak ∈ pk r pk+1, for each k ∈ N.

Proof. According to Lemma 3.4, the decomposition of (a) is (a) =
p ·
∏

qni
i , for some prime ideals qi distinct from p and exponents ni,

since a ∈ p and a /∈ p2. Now (ak) = (a)k = pk ·
∏

qkni
i , showing the

claim. �

For the rest of the section we shall use the following notation: fix
a, an ideal of R and let a = pk1i1 . . . p

kn
in
, where pi1 , . . . , pin are prime

ideals. Each prime ideal pij , for i ∈ {1, 2, . . . , n}, has two generators.
We write

pij = (pij ,1; pij ,2)

(if pij is principal then pij ,2 can be arbitrary, e.g. 0) and we always
choose pij ,1 ∈ pij r p2ij . Such an element always exists since pij ) p2ij
due to the uniqueness of the decomposition.
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Now, since p
kj
ij ,1

lies in p
kj
ij

, there exists an element pij ,kj ,2 ∈ p
kj
ij

, such
that

p
kj
ij

= (p
kj
ij ,1

; pij ,kj ,2)

and analogously there exists an element p(ij),(kj),2, such that

a = pk1i1 . . . p
kn
in

=

 ∏
j∈{1,...,n}

p
kj
ij ,1

; p(ij),(kj),2

 .

The subvariety V(R/a) of ModR is defined by only two identities:

Mod

 ∏
j∈{1,...,n}

p
kj
ij ,1
x = 0; p(ij),(kj),2x = 0

 = V(R/a)

and by the Chinese remainder theorem

V(R/a) = V(
∏

j∈{1,...,n}

R/pkjij ) = V(R/pk1i1 ,R/p
k2
i2
, . . . ,R/pknin ).

Lemma 6.7. Let Q be the subquasivariety of the variety ModR and
let pk+1

i = (pk+1
i,1 , pi,k+1,2) be the k + 1-th power of a prime ideal pi =

(pi,1, pi,2) of the ring R, for some k ∈ N. If

Q |= (pk+1
i,1 x = 0 & pi,k+1,2x = 0 → pki,1x = 0),

then the module R/pk+1
i does not belong to the quasivariety Q and R/pki

belongs to the quasivariety Q.

Proof. Taking the element 1+pk+1 ∈ R/pk+1
i , we have pk+1

i,1 (1+pk+1) =

0 + pk+1 since pk+1
i,1 ∈ pk+1 and pki,1(1 + pk+1) 6= 0 + pk+1, according to

Lemma 6.6. Moreover pi,k+1,2(1 + pk+1
i ) = 0 + pk+1

i and therefore the
element 1 + pk+1

i satisfies the premises of the quasi-identity and does
not satisfy the conclusion. Hence

R/pk+1
i 2 (pk+1

i,1 x = 0 & pi,k+1,2x = 0→ pki,1x = 0).

On the other hand,

R/pki |= (pk+1
i,1 x = 0 & pi,k+1,2x = 0→ pki,1x = 0),

because each element of the module R/pki satisfies the conclusion of
the quasi-identity. �

Remark 6.8. If k = 0 in the previous lemma then the quasi-identity
is of the form:

pi,1x = 0 & pi,2x = 0→ x = 0

and each element of the moduleR/pi satisfies the premises of the quasi-
identity. However, only 0 satisfies the conclusion.
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Let |P(R)| = α be the cardinality of the set of the prime ideals in
the ring R. (Recall that a cardinal number is the least ordinal of the
given cardinality). Suppose that the set P(R) is well ordered, i.e., the
elements of P(R) are indexed by the elements of α. As in the case
of PID, the lattice Lq(ModR) is isomorphic to a lattice defined in
Definition 4.9.

Theorem 6.9. Let R be a Dedekind ring and let |P(R)| = α be the
cardinality of the set of the prime ideals in the ring R. Then the lattice
of quasivarieties of the variety of modules over the Dedekind ring R is
isomorphic to the lattice L(α)

Lq(ModR) ∼= L(α).

The isomorphism ϕ : L(α)→ Lq(ModR) is defined as follows:

ϕ(f) = ModΣf ,

where Σf is the set of quasi-identities:

(a) if f(∞) =∞, then Σf contains

(p
f(i)+1
i,1 x = 0 & pi,f(i)+1,2x = 0→ p

f(i)
i,1 x = 0),

for pi ∈ P(R), whenever f(i) 6=∞, (β
p
f(i)
i

)

(b) if f(∞) = 0, then Σf contains only the identities:∏
f(i) 6=0

p
f(i)
i,1 x = 0 & p(i),(f(i)),2x = 0, (γ

p
f(i)
i

)

where (
∏

f(i)6=0 p
f(i)
i,1 , p(i),(f(i)),2) is the generating pair of the ideal

I = p
f(i1)
i1
· . . . · pf(in)in

for each 0 6= f(ij) <∞, j ∈ {1, . . . , n}.

Proof. We show first that the function ϕ is surjective. Let Q be a
subquasivariety of ModR. Let us define a function f : α+ → ω∪+ as
follows

f(∞) =

{
∞ if R ∈ Q
0 if R /∈ Q

and for an ordinal number i ∈ α, f(i) = sup{k : R/pki ∈ Q)} for
i 6= ∞. The function f is well defined: we see f(∞) ∈ {0,∞} we
prove that f(∞) = 0 implies f(i) < ∞, for all i, and f(i) = 0, for
almost all i ∈ α. Suppose first, by contradiction, that f(∞) = 0 and
f(i) = ∞ for some i ∈ α. Then, according to Lemma 6.4, we obtain
R ∈ Q which contradicts f(∞) = 0. Suppose now, that the number
of elements of the set I = {i : f(i) 6= 0} is infinite. Then, according to
Lemma 6.4 again, R ∈ Q, a contradiction.

We show now that ModΣf = ϕ(f) = Q. Consider two cases:
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(a) f(∞) =∞: Let the moduleM∈ Q, f(i) 6=∞ and let there ex-

ists an element m ∈M such that p
f(i)+1
i m = 0 & pi,f(i)+1,2m =

0. Then the premises of the quasi-identity (β
p
f(i)
i

) hold and the

ideal (m) is a finitely generated R-module and therefore we can
use Lemma 4.5. We obtain

(m) = (m)pi
∼= R/pk1i ⊕ . . .⊕R/p

kn
i ,

for some k1 ≤ k2 ≤ . . . ≤ kn. Since, by definition, kn ≤ f(i),

according to Lemma 6.6, we obtain p
f(i)
i m = 0,M |= β

p
f(i)
i

and

Q ⊆ModΣf .
On the other hand, let M be a generator of ModΣf . Since

a quasivariety is generated by finitely generated modules, we
can assume M to be finitely generated. Then, according to
Theorem 4.6,

M∼= Rn ⊕ a⊕MT .

The torsion-free part, that means Rn⊕a, belongs to Q, accord-

ing to Lemma 6.1. NowMT ≡
⊕

i

⊕
ki,j
R/pki,ji and, according

to Lemma 6.6, ki,j ≤ f(i), for all i, j. Now the definition of the
function f yields MT ∈ Q and therefore ModΣf ⊆ Q.

(b) f(∞) = 0: The module R /∈ Q and f(α) < ∞ and f(i) = 0,
for almost all i ∈ α. Let M ∈ Q, be finitely generated. Then
M is torsion-free (otherwise R embeds in M) and, according
to Theorem 4.2, M is the sum of the modules R/pkii where
f(i) 6= 0 and ki ≤ f(i). Then

M |=

 ∏
f(i) 6=0

p
f(i)
i x = 0 & p(i),(f(i)),2x = 0

 .

Hence M∈ModΣf .

On the other hand, we define a = ∩i<∞pf(i)i . ClearlyModΣf =

V(R/a) = V(
⊕
R/pf(i)i ) ⊆ Q.

Finally, we prove injectivity. Let f(i) 6= g(i) for some f, g ∈ L(α).

If f(i) < g(i), then R/pg(i)i ∈ ModΣg and R/pg(i)i /∈ ModΣf . Then
ϕ(f) 6= ϕ(g) and ModΣf < ModΣg, ϕ(f) < ϕ(g).

Similarly, we can show that ϕ preserves the lattices order. �

Example 6.10. Let R = Z[
√
−p], then |P(Z[

√
−p])| = ω and

Lq(ModZ[√−p]) ∼= L(ω).
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