SEMIDIRECT EXTENSIONS OF THE KLEIN GROUP LEADING TO AUTOMORPHIC LOOPS OF EXPONENT 2

PŘEMYSL JEDLIČKA

Abstract

In this paper we study automorphic loops of exponent 2 which are semidirect products of the Klein group with an elementary abelian group. It turns out that they fall into two classes: extensions of index 2 and extension using a symmetric bilinear form.

A loop is called automorphic if all inner mappings are automorphisms. An automorphic loop of exponent 2 is always commutative due to the anti-automorphic inverse property [7]. There are several papers dealing with the structure of commutative automorphic loops, e.g. [1], [4] or [6]. It turns out that the structure of commutative automorhic 2-loops differs much from the theory of commutative automorphic p-loops, for odd primes p, and it is less understood.

The structure of commutative automorhic 2-loops is based on the structure of automorphic loops of exponent 2. It is already known that they are solvable [2] and that they need not be nilpotent [5]. Some constructions of automorphic loops of exponent 2 appeared in [5] or [8].

In this paper we construct automorphic loops of exponent 2 via the nuclear semidirect product defined in [3]. More precisely, we describe all the automorphic loops of exponent 2 that are nuclear semidirect extensions of the Klein group by an elementary abelian 2-group.

Theorem 1. Let Q be an automorphic loop of exponent 2 , let $K \triangleleft Q$ be a 4-element subgroup of $N_{\mu}(Q)$ and let H be a subgroup of Q such that $K H=Q$ and $|K \cap H|=1$. Then one of the following situations occurs:
(a) Q is a group;
(b) $\left[Q: N_{\mu}(Q)\right]=2$ and we can use Proposition 3;
(c) Q is a semidirect product based on a symmetric bilinear form described in Proposition 4.

The paper is organized as follows: in Section 1 we present the notion of the nuclear semidirect product of automorphic loops and also two situations when the semidirect product gives a loop of exponent 2. In Section 2 we analyze the semidirect product in the case when the image of the auxiliary mapping is a three-element group. Finally, in Section 3 we focus on the case when the image is a subgroup of order 2.

[^0]
1. Preliminaries

We start our paper by recalling the notion of the nuclear semidirect product defined in [3] and by presenting two constructions that yield loops of exponent 2. Unlike in most of loop theory papers, we shall use the additive notation here rather than the multiplicative one; the reason is that subgroups of our loops will appear as additive groups of vector spaces.

A semidirect product is a configuration of subloops in a loop $(Q,+)$: we have $H<Q$ and $K \triangleleft Q$ such that $K+H=Q$ and $K \cap H=0$. In [3] an external point of view was given, assuming additionally that $K \leqslant N_{\mu}(Q)$ and K being an abelian group. Such loops can be constructed given a special mapping φ.

Proposition 2 ([3]). Let H and K be abelian groups and let us have a mapping $\varphi: H^{2} \rightarrow \operatorname{Aut}(K)$. We define an operation $*$ on $Q=K \times H$ as follows:

$$
(a, i) *(b, j)=\left(\varphi_{i, j}(a+b), i+j\right)
$$

This loop is denoted by $K \rtimes_{\varphi} H$. Let us denote $\varphi_{i, j, k}=\varphi_{i, j+k} \circ \varphi_{j, k}$. Then Q is a commutative A-loop if and only if the following properties hold:

$$
\begin{align*}
\varphi_{i, j} & =\varphi_{j, i} \tag{1}\\
\varphi_{0, i} & =\operatorname{id}_{K} \tag{2}\\
\varphi_{i, j} \circ \varphi_{k, n} & =\varphi_{k, n} \circ \varphi_{i, j} \tag{3}\\
\varphi_{i, j, k} & =\varphi_{j, k, i}=\varphi_{k, i, j} \tag{4}\\
\varphi_{i, j+k}+\varphi_{j, i+k}+\varphi_{k, i+j} & =\operatorname{id}_{K}+2 \cdot \varphi_{i, j, k} \tag{5}
\end{align*}
$$

Moreover, $K \times 0$ is a normal subgroup of $Q, 0 \times H$ is a subgroup of Q and $(K \times$ $0) \cap(0 \times H)=0 \times 0$ and $(K \times 0)+(0 \times H)=Q$.
Q is associative if and only if $\varphi_{i, j}=\operatorname{id}_{K}$, for all $i, j \in H$. The nuclei are $N_{\mu}(Q)=K \times\left\{i \in H ; \forall j \in H: \varphi_{i, j}=\operatorname{id}_{K}\right\}$ and $N_{\lambda}=\{a \in K ; \forall j, k \in H:$ $\left.\varphi_{j, k}(a)=a\right\} \times\left\{i \in H ; \forall j \in H: \varphi_{i, j}=\operatorname{id}_{K}\right\}$.

On the other hand, if Q is a commutative automorphic loop, $K \triangleleft Q$ is a subgroup of $N_{\mu}(Q)$ and H is a subgroup of Q such that $K+H=Q$ and $K \cap H=\{0\}$ then there exists $\varphi: H^{2} \rightarrow$ Aut K such that $Q \cong K \rtimes_{\varphi} H$.

The conditions (1)-(5) are not too transparent and therefore it is worth to present some special cases which are easier to describe. The simplest such a situation is probably the middle nucleus of index 2 which was described already in [5], not using the notion of a semidirect product.

Proposition 3 ([5], [3], exponent 2 version). Let K be an elementary abelian 2group and let H be a two-element group. Then a mapping $\varphi: H^{2} \rightarrow$ Aut K satisfies the conditions (1)-(5) if and only if φ satisfies (2).

On the other hand, if an automorphic loop Q has exponent 2 and $\left[Q: N_{\mu}(Q)\right]=2$ then there exists such a φ with $Q \cong K \rtimes_{\varphi} H$.

In this paper, we are interested in loops of exponent 2. Among several configurations described in [3], there is one more that yields loops of exponent two: when the mapping φ is a symmetric bilinear form.

Proposition 4 ([3], exponent p version). Let K and H be elementary abelian p groups and let $f \in$ Aut K be an automorphism of order p. Let $\varphi: H^{2} \rightarrow\langle f\rangle$ be a symmetric bilinear form. Then φ satisfies conditions (1)-(5).

In the rest of the paper we analyze the mapping φ when K is the Klein group. It will eventually turn out that all the possible solutions of φ are already described in Propositions 3 and 4.

2. Order 3 Case

The automorphism group of the Klein group has only two non-trivial commutative subgroups, up to conjugacy. Both the cases are going to be analyzed separately, in this section we shall suppose that some of $\varphi_{i, j}$ is an automorphism of order 3 . All the results can be proved under more general conditions.

Lemma 5. Let K and H be elementary abelian 2-groups and let $\varphi: H^{2} \rightarrow$ Aut K satisfy (1)-(5). Then, for all $i, j \in H$,

$$
\begin{align*}
\varphi_{i, i}+\varphi_{j, j}+\varphi_{i+j, i+j} & =\mathrm{id}_{K} \tag{6}\\
\varphi_{i, i+j} & =\varphi_{i, i} \circ \varphi_{i, j}^{-1} \tag{7}\\
\varphi_{i, j}^{2} & =\varphi_{i, i} \circ \varphi_{j, j} \circ \varphi_{i+j, i+j}^{-1} \tag{8}
\end{align*}
$$

Proof. (6) is obtained from (5) via $k=i+j$. Then (4) gives

$$
\varphi_{i, i} \circ \operatorname{id}_{K}=\varphi_{i, i} \circ \varphi_{0, j}=\varphi_{i, i, j}=\varphi_{i, j} \circ \varphi_{i, i+j}
$$

which is (7). Finally (4) again gives

$$
\varphi_{i+j, i+j} \circ \varphi_{i, j}=\varphi_{i, j, i+j}=\varphi_{i, i+j} \circ \varphi_{j, j}
$$

and substituting (7) yields (8).
If an automorphism of order 3 is contained within $\operatorname{Im} \varphi$, it turns out that the whole mapping φ is determined by its behavior on the planes of H.

Lemma 6. Let K and H be elementary abelian 2-groups and let $\varphi: H^{2} \rightarrow$ Aut K satisfy (1)-(5). Let $\operatorname{Im} \varphi \subseteq\left\{\operatorname{id}_{K}, f, f^{2}\right\}$, for some $f \in$ Aut K with $f^{3}=\operatorname{id}_{K}$, $f \neq \mathrm{id}_{K}$. Then, for all $i, j \in H$,
(i) $\left|\left\{\alpha \in\left\{\varphi_{i, i}, \varphi_{j, j}, \varphi_{i+j, i+j}\right\} ; \alpha=f\right\}\right| \in\{0,2\}$;
(ii) there exists $k \in\langle i, j\rangle$ and $g \in\left\{\operatorname{id}_{K}, f, f^{2}\right\}$ such that, for all $v, w \in\langle i, j\rangle$,

$$
\varphi_{v, w}= \begin{cases}\operatorname{id}_{K} & \text { if } v \in\langle k\rangle \text { or } w \in\langle k\rangle \\ g & \text { if } v \notin\langle k\rangle \text { and } w \notin\langle k\rangle\end{cases}
$$

Proof. (i) We find all the possible solutions of (6) within $\left\{\operatorname{id}_{K}, f, f^{2}\right\}$. They are, up to reordering, $\left(\mathrm{id}_{K}, \mathrm{id}_{K}, \mathrm{id}_{K}\right),\left(\mathrm{id}_{K}, f, f\right)$ and $\left(\mathrm{id}_{K}, f^{2}, f^{2}\right)$.
(ii) We know from (i) all the possible choices of $\varphi_{i, i}, \varphi_{j, j}$ and $\varphi_{i+j, i+j}$. We put g to be that automorphism that appears at least twice within $\varphi_{i, i}, \varphi_{j, j}$ and $\varphi_{i+j, i+j}$ and we choose $k \in\{i, j, i+j\}$ such that $\varphi_{k, k}=\mathrm{id}_{K}$.

Then (8) gives

$$
\varphi_{k, u}^{2}=\varphi_{k, k} \circ \varphi_{u, u} \circ \varphi_{k+u, k+u}^{-1}=\operatorname{id}_{K}
$$

for each $u \in\langle i, j\rangle$, since $\varphi_{u, u}=\varphi_{k+u, k+u}=g$ and hence $\varphi_{k, u}=\mathrm{id}_{K}$. On the other hand, if $u, v \notin\langle k\rangle$ then

$$
\varphi_{u, v}^{2}=\varphi_{u, u} \circ \varphi_{v, v} \circ \varphi_{u+v, u+v}^{-1}=g^{2}
$$

for each $u \in\langle i, j\rangle$, since $u+v \in\langle k\rangle$ and therefore $\varphi_{u, v}=g$.

Proposition 7. Let K and H be elementary abelian 2-groups and let $\varphi: H^{2} \rightarrow$ Aut K satisfy (1)-(5). Let $\operatorname{Im} \varphi \subseteq\left\{\operatorname{id}_{K}, f, f^{2}\right\}$, for some $f \in$ Aut K with $f^{3}=\operatorname{id}_{K}$. Then
(i) $\varphi_{i, j} \neq \operatorname{id}_{K}$ if and only if $\varphi_{i, i}=\varphi_{j, j} \neq \mathrm{id}_{K}$ and then $\varphi_{i, j}=\varphi_{i, i}$;
(ii) $|\operatorname{Im} \varphi|<3$;
(iii) the set $M=\left\{k ; \varphi_{k, k}=\operatorname{id}_{K}\right\}$ is a subspace of H of Co-dimension at most 1 ;
(iv) the middle nucleus of $K \rtimes_{\varphi} H$ is a subloop of index at most 2 .

Proof. For (i) we can restrain our focus to the subspace of dimension 2 and this was solved in Lemma 6.
(ii) Suppose $\varphi_{i, j}=f$ and $\varphi_{k, m}=f^{2}$. Due to (i) we can suppose $j=i$ and $m=k$. But this situation contradicts Lemma 6 (ii).
(iii) The set M is closed on addition due to Lemma 6 (ii). Moreover, every 2dimensional subspace of H intersects M non-trivially and hence M is a hyperplane or $M=H$.
(iv) According to to Proposition 2, we have $N_{\mu}\left(K \rtimes_{\varphi} H\right)=K \times M$.

3. Involutory case

In this section we analyze the second case, namely some $\varphi_{i, j}$ being an involution. Most lemmas can be pronounced in a more general setting again.

Lemma 8. Let K and H be elementary abelian 2-groups and let $\varphi: H^{2} \rightarrow$ Aut K satisfy (1)-(5). Moreover, let $\varphi_{i, j}^{2}=\mathrm{id}_{K}$, for each $i, j \in H$. Then, for all $i, j, k \in H$,

$$
\begin{align*}
\varphi_{i, j}+\varphi_{i, k}+\varphi_{j, k} & =\varphi_{i, j, k} \tag{9}\\
\varphi_{i, j+k} & =\left(\varphi_{i, j}+\varphi_{i, k}+\varphi_{j, k}\right) \circ \varphi_{j, k} \tag{10}
\end{align*}
$$

Proof. When we multiply (5) by $\varphi_{i, j, k}$, we obtain

$$
\varphi_{i, j, k} \circ \varphi_{i, j+k}+\varphi_{i, j, k} \circ \varphi_{j, i+k}+\varphi_{i, j, k} \circ \varphi_{k, i+j}=\varphi_{i, j, k}
$$

which is (9) since $\varphi_{i, j, k} \circ \varphi_{i, j+k}=\varphi_{j, k}$ due to (4). And plugging (9) into (4), namely $\varphi_{i, j+k}=\varphi_{i, j, k} \circ \varphi_{j, k}$, gives (10).

Corollary 9. Let K and H be elementary abelian 2-groups and let B be a basis of H. Suppose that we have a mapping $\varphi^{\prime}: B^{2} \rightarrow$ Aut K such that $\left(\varphi_{i, j}^{\prime}\right)^{2}=\mathrm{id}_{K}$, for each $i, j \in B$. Then there exists at most one mapping $\varphi: H^{2} \rightarrow$ Aut K, satisfying (1)-(5) such that $\varphi_{i, j}^{2}=\mathrm{id}_{K}$, for each $i, j \in H$, and $\left.\varphi\right|_{B^{2}}=\varphi^{\prime}$.

Proof. By an induction using (10).

Corollary 9 claims that φ is uniquely determined whenever we know its values on a basis. It need not exist though, e.g. conditions (1) or (3) may be violated already by φ^{\prime}. But it exists if φ^{\prime} is a symmetric matrix with two different entries.

Proposition 10. Let K and H be elementary abelian 2-groups and let $\varphi: H^{2} \rightarrow$ Aut K satisfy (1)-(5). Suppose that $\operatorname{Im} \varphi=\left\{\mathrm{id}_{K}, f\right\}$, for some involutory $f \in$ Aut K. Then φ is a bilinear mapping.

Proof. Let us take a basis B of the space H. The restriction $\left.\varphi\right|_{B^{2}}$ is symmetric and hence induces a symmetric bilinear form, let us say φ^{\prime}, from H^{2} to $\left\{\operatorname{id}_{K}, f\right\} \cong \mathbb{Z}_{2}$. According to Proposition 4, the mapping φ^{\prime} satisfies the conditions (1)-(5). Since $\left.\varphi^{\prime}\right|_{B^{2}}=\left.\varphi\right|_{B^{2}}$, Corollary 9 gives $\varphi=\varphi^{\prime}$.

We are finally ready to prove Theorem 1.
Proof of Theorem 1. Conditions of Proposition 2 are met and hence there exists a mapping $\varphi: H^{2} \rightarrow$ Aut K satisfying (1)-(5).

If $\varphi_{i, j}$ is an involution, for some $i, j \in H$, then $|\operatorname{Im} \varphi|=2$, due to (1), since involutions in Aut \mathbb{Z}_{2}^{2} commute only with themselves and with the identity. Then Proposition 10 gives that φ is bilinear.

On the other hand, if no involution appears in $\operatorname{Im} \varphi$ then $\operatorname{Im} \varphi \subseteq\left\{\operatorname{id}_{K}, f, f^{2}\right\}$, where f and f^{2} are the automorphisms of order 3. And Proposition 7 states that the middle nucleus is a subgroup of index at most 2 .

What if K is a larger elementary abelian group? There are three more types of subgroups even in Aut \mathbb{Z}_{2}^{3} and therefore it is likely that some new construction type will be needed.

References

[1] R. H. Bruck, L. J. Paige: Loops whose inner mappings are automorphisms, Ann. of Math. (2) 63 (1956), 308-323
[2] A. Grishkov, M. K. Kinyon, G.P. Nagy: Solvability of commutative automorphic loops, Proceedings AMS 142,9 (2014) 3029-3037
[3] J. Hora, P. Jedlička: Nuclear semidirect product of commutative automorphic loops, J. Alg. Appl. 13, 1 (2014)
[4] P. Jedlička, M. Kinyon, P. Vojtěchovský: Structure of commutative automorphic loops, Trans. of AMS 363,1 (2011), 365-384
[5] P. JedličKa, M. Kinyon, P. VojtěChovský: Constructions of commutative automorphic loops, Commun. in Alg. 38, 9 (2010), 3243-3267
[6] P. Jedlička, M. Kinyon, P. Vojtěchovský: Nilpotency in automorphic loops of prime power order, J. Alg. 350 (2012), 64-76
[7] K. W. Johnson, M. K. Kinyon, G. P. Nagy, P. Vojtěchovský: Searching for small simple automorphic loops, LMS J. Comput. Math. 14 (2011), 200-213
[8] G. P. NAGY: On centerless commutative automorphic loops, Comment. Math. Univ. Carol. 55,4 (2014), 485-491

Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21, Prague 6 - Suchdol, Czech Republic

E-mail address: jedlickap@tf.czu.cz

[^0]: 2000 Mathematics Subject Classification. 20N05 Quasigroups and loops.
 Key words and phrases. automorphic loop, semidirect product, middle nucleus, exponent 2.

