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TO AUTOMORPHIC LOOPS OF EXPONENT 2
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ABSTRACT. In this paper we study automorphic loops of exponent 2 which are
semidirect products of the Klein group with an elementary abelian group. It
turns out that they fall into two classes: extensions of index 2 and extension
using a symmetric bilinear form.

A loop is called automorphic if all inner mappings are automorphisms. An au-
tomorphic loop of exponent 2 is always commutative due to the anti-automorphic
inverse property [7]. There are several papers dealing with the structure of com-
mutative automorphic loops, e.g. [1], [4] or [6]. It turns out that the structure
of commutative automorhic 2-loops differs much from the theory of commutative
automorphic p-loops, for odd primes p, and it is less understood.

The structure of commutative automorhic 2-loops is based on the structure of
automorphic loops of exponent 2. It is already known that they are solvable [2]
and that they need not be nilpotent [5]. Some constructions of automorphic loops
of exponent 2 appeared in [5] or [8].

In this paper we construct automorphic loops of exponent 2 via the nuclear
semidirect product defined in [3]. More precisely, we describe all the automorphic
loops of exponent 2 that are nuclear semidirect extensions of the Klein group by an
elementary abelian 2-group.

Theorem 1. Let @ be an automorphic loop of exponent 2, let K<Q be a 4-element
subgroup of N,,(Q) and let H be a subgroup of QQ such that KH = Q and |KNH| = 1.
Then one of the following situations occurs:

(a) Q is a group;

(b) [Q: N,(Q)] =2 and we can use Proposition 3;

(¢) @ is a semidirect product based on a symmetric bilinear form described in
Proposition 4.

The paper is organized as follows: in Section 1 we present the notion of the
nuclear semidirect product of automorphic loops and also two situations when the
semidirect product gives a loop of exponent 2. In Section 2 we analyze the semidi-
rect product in the case when the image of the auxiliary mapping is a three-element
group. Finally, in Section 3 we focus on the case when the image is a subgroup of
order 2.
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1. PRELIMINARIES

We start our paper by recalling the notion of the nuclear semidirect product
defined in [3] and by presenting two constructions that yield loops of exponent 2.
Unlike in most of loop theory papers, we shall use the additive notation here rather
than the multiplicative one; the reason is that subgroups of our loops will appear
as additive groups of vector spaces.

A semidirect product is a configuration of subloops in a loop (Q,+): we have
H < @ and K <@ such that K + H = Q and K N H = 0. In [3] an external point
of view was given, assuming additionally that K < N,(Q) and K being an abelian
group. Such loops can be constructed given a special mapping ¢.

Proposition 2 ([3]). Let H and K be abelian groups and let us have a mapping
0 H? — Aut(K). We define an operation x on Q = K x H as follows:

(aai) * (baj) = (@i,j(a+b)’i+j)'

This loop is denoted by K %, H. Let us denote @; j 1, = @i j+k © @jk. Then Q is a
commutative A-loop if and only if the following properties hold:

(1) Pij = Pji

(2) w0, = 1dx

(3) Pij © Phn = Ph,n O Pij

(4) Pi,gk = Piki = Phyi,j
(5) Pijrk + Phitk + Privs = 1dix + 2 @i jk

Moreover, K x 0 is a normal subgroup of Q, 0 x H is a subgroup of Q and (K X
0)N(O0Ox H)=0x0and (K x0)+(0x H)=Q.

Q is associative if and only if ¢;; = idg, for all i,7 € H. The nuclei are
N,(Q)=Kx{ie H Vje H: ¢;; =idg} and N\ = {a € K; Vj,k € H :
ij}k(a) = Cl} X {’L S ]‘I7 V] c H : ©ij = ldK}

On the other hand, if Q is a commutative automorphic loop, K <Q is a subgroup
of N.(Q) and H is a subgroup of Q such that K + H = Q and K N H = {0} then
there exists ¢ : H> — Aut K such that Q = K %, H.

The conditions (1)—(5) are not too transparent and therefore it is worth to present
some special cases which are easier to describe. The simplest such a situation is
probably the middle nucleus of index 2 which was described already in [5], not using
the notion of a semidirect product.

Proposition 3 ([5], [3], exponent 2 version). Let K be an elementary abelian 2-
group and let H be a two-element group. Then a mapping ¢ : H?> — Aut K satisfies
the conditions (1)—(5) if and only if ¢ satisfies (2).

On the other hand, if an automorphic loop Q has exponent 2 and [Q : N,(Q)] = 2
then there exists such a ¢ with Q@ = K x, H.

In this paper, we are interested in loops of exponent 2. Among several configu-
rations described in [3], there is one more that yields loops of exponent two: when
the mapping ¢ is a symmetric bilinear form.

Proposition 4 ([3], exponent p version). Let K and H be elementary abelian p
groups and let f € Aut K be an automorphism of order p. Let o : H*> — (f) be a
symmetric bilinear form. Then ¢ satisfies conditions (1)—(5).
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In the rest of the paper we analyze the mapping ¢ when K is the Klein group.
It will eventually turn out that all the possible solutions of ¢ are already described
in Propositions 3 and 4.

2. ORDER 3 CASE

The automorphism group of the Klein group has only two non-trivial commuta-
tive subgroups, up to conjugacy. Both the cases are going to be analyzed separately,
in this section we shall suppose that some of ¢; ; is an automorphism of order 3.
All the results can be proved under more general conditions.

Lemma 5. Let K and H be elementary abelian 2-groups and let ¢ : H> — Aut K
satisfy (1)—~(5). Then, for alli,j € H,

(6) Pii + @5+ Pivsits = dk
(7) Pijitj = Piyi © 80;]-1
(8) ‘Pf,j = Qi 0 ;5 0 <pi_+1j,i+j

Proof. (6) is obtained from (5) via k =i+ j. Then (4) gives
Pii 01dK = 9ii 0 Q0.j = Piij = Pij © Piiti
which is (7). Finally (4) again gives
Pitjiti © Pij = Pigiti = Piiti © Pjj
and substituting (7) yields (8). O

If an automorphism of order 3 is contained within Im ¢, it turns out that the
whole mapping ¢ is determined by its behavior on the planes of H.

Lemma 6. Let K and H be elementary abelian 2-groups and let ¢ : H?> — Aut K
satisfy (1)~(5). Let Im¢ C {idxk, f, f?}, for some f € Aut K with f3 = id,
f #idg. Then, for alli,j € H,

(1) Ha €{pii, 0ij, Piriivits = [} €{0,2};
(i1) there exists k € (i,j) and g € {idk, f, f*} such that, for all v,w € (i, ),
~)idg  ifv e (k) orw e (k)
=g o (k) andw ¢ (k)

Proof. (i) We find all the possible solutions of (6) within {idx, f, f2}. They are,
up to reordering, (idg,idx,idr), (idg, f, f) and (idg, f2, f?).

(#7) We know from (¢) all the possible choices of ¢; ;, ¢, ; and ;44 We put g
to be that automorphism that appears at least twice within ¢; ;, ¢;; and @;qjitj
and we choose k € {7, 7,7+ j} such that ¢ ; = idk.

Then (8) gives

@i,u = Pk,k © Pu,u © gpl;iu,k:+u = ldKa
for each u € (4,7), since @y = Cktu k+u = g and hence @y, = idg. On the other
hand, if u,v ¢ (k) then

(pi,v = SOU,U © QPUJJ o 907:-11-1/,114-1; = 927

for each u € (i,7), since u + v € (k) and therefore ¢, , = g. O
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Proposition 7. Let K and H be elementary abelian 2-groups and let ¢ : H? —
Aut K satisfy (1)~(5). Let Im o C {idg, f, 2}, for some f € Aut K with f3 = idg.
Then

) wij #1dx if and only if v;; = @;; # idx and then ; ;j = ;i;

) | Imep| < 3;

) the set M = {k; @ = idk} is a subspace of H of Co-dimension at most 1;
) the middle nucleus of K x, H is a subloop of index at most 2.

(i
(i
(4t

(iv

Proof. For (i) we can restrain our focus to the subspace of dimension 2 and this
was solved in Lemma 6.

(i) Suppose ¢;; = f and @k, = f2. Due to (i) we can suppose j = i and
m = k. But this situation contradicts Lemma 6 (ii).

(#4i) The set M is closed on addition due to Lemma 6 (ii). Moreover, every 2-
dimensional subspace of H intersects M non-trivially and hence M is a hyperplane
or M =H.

(tv) According to to Proposition 2, we have N, (K x, H) = K x M. O

3. INVOLUTORY CASE

In this section we analyze the second case, namely some ¢; ; being an involution.
Most lemmas can be pronounced in a more general setting again.

Lemma 8. Let K and H be elementary abelian 2-groups and let ¢ : H?> — Aut K
satisfy (1)—~(5). Moreover, let cp%j =idg, foreachi,j € H. Then, foralli,j k € H,
(9) Pij T ik + ik = Pijk

(10) Cij+k = (Pij + Pik + i) © ik

Proof. When we multiply (5) by ¢; ; &, we obtain

Pijk © Pij+k T Pijk © Phitk T Pijk O Phiti = Pijk
which is (9) since ¢; j 0 @i j+k = @;k due to (4). And plugging (9) into (4), namely
Qi j+k = Pi.jk © Pik, gives (10). O

Corollary 9. Let K and H be elementary abelian 2-groups and let B be a basis of
H. Suppose that we have a mapping ¢’ : B> — Aut K such that (gog)j)2 = idg, for
each i,j € B. Then there erists at most one mapping ¢ : H?> — Aut K, satisfying
(1)—(5) such that galz’j =idg, for each i,j € H, and p|pg2 = ¢'.

Proof. By an induction using (10). O

Corollary 9 claims that ¢ is uniquely determined whenever we know its values
on a basis. It need not exist though, e.g. conditions (1) or (3) may be violated
already by ¢’. But it exists if ¢’ is a symmetric matrix with two different entries.

Proposition 10. Let K and H be elementary abelian 2-groups and let o : H? —
Aut K satisfy (1)—(5). Suppose that Imyp = {idk, f}, for some involutory [ €
Aut K. Then ¢ is a bilinear mapping.
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Proof. Let us take a basis B of the space H. The restriction ¢|gz is symmetric and
hence induces a symmetric bilinear form, let us say ', from H? to {idg, f} = Z,.
According to Proposition 4, the mapping ¢’ satisfies the conditions (1)—(5). Since
¢'|g2 = ¢| g2, Corollary 9 gives ¢ = ¢'. O

We are finally ready to prove Theorem 1.

Proof of Theorem 1. Conditions of Proposition 2 are met and hence there exists a
mapping ¢ : H? — Aut K satisfying (1)—(5).

If ¢, ; is an involution, for some %,j € H, then |Imy| = 2, due to (1), since
involutions in AutZ3 commute only with themselves and with the identity. Then
Proposition 10 gives that ¢ is bilinear.

On the other hand, if no involution appears in Im¢ then Im ¢ C {idg, f, f?},
where f and f? are the automorphisms of order 3. And Proposition 7 states that
the middle nucleus is a subgroup of index at most 2. O

What if K is a larger elementary abelian group? There are three more types of
subgroups even in Aut Z3 and therefore it is likely that some new construction type
will be needed.
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