ODD ORDER SEMIDIRECT EXTENSIONS OF COMMUTATIVE
AUTOMORPHIC LOOPS

PREMYSL JEDLICKA

ABSTRACT. We analyze semidirect extensions of middle nuclei of commutative
automorphic loops. We find a less compicated conditions for the semidirect
construction when the middle nucleus is an odd order abelian group. We then
use the description to study extensions of orders 3 and 5.

An automorphic loop is a loop where all inner mappings are automorphisms.
Most of the basic properties of commutative automorphic loops were described
in [3].

In [2], Jan Hora and the author described semidirect extensions of middle nuclei
of commutative automorphic loops by abelian groups. Furthermore a few examples
of specific loops were showed, mostly assuming that the middle nucleus is a small
group. In this paper, on the contrary, we assume that the factor over the nucleus is
a small cyclic group. The case of the middle nucleus of index 2 was already resolved
in [4] and therefore we decided to focus on small odd primes.

In Section 1 we recall the notion of the semidirect product. In Section 2 we
study the commutative automorphic loops with the middle nucleus of index 3 and,
if the middle nucleus is not a complicated group, we count the number of such loops
up to isomorphism. In order to analyze extension by larger groups, we investigate
the general extensions by uniquely 2-divisible groups in Section 3, deducing shorter
conditions for the semidirect product. We use this conditions in Section 4 to study
extensions of order 5.

1. PRELIMINARIES

We expect the reader to be already familiar with basic definitions in the loop
theory. If not, we refer to [6]. Unlike most loop theory papers, we shall use the ad-
ditive notation here rather than the multiplicative one; the reason is that subgroups
of our loops will appear as aditive groups of rings.

In this section, we shall recall the semidirect construction presented in [2]. A
semidirect product is a configurations of subloops in a loop (@, +): we have H < Q
and K <@ such that K+ H =Q and K N H = 0. In [2] an external point of view
was given, assuming additionaly that K < N,(Q) and K being an abelian group.
Such loops can be constructed given a special mapping .

Proposition 1 ([2]). Let H and K be abelian groups and let us have a mapping
¢ : H? — Aut(K). We define an operation * on Q = K x H as follows:

(avi) * (ba.]) = (@i,j(a"i_b)vi_"j)'
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This loop is denoted by K x, H. Let us denote @; j 1 = @i j+k © @i k- Then Q is a
commutative A-loop if and only if the following properties hold:

(1) Pij = Pji

(2) wo,i = idg

(3) Pi,j © Pkn = Phn O Pij

(4) Pijk = Piki = Phii;
(5) ik + Pjitk T Prjivs = 1dx + 2 @i 5k

Moreover, K x 0 is a normal subgroup of Q, 0 x H is a subgroup of Q and (K X
0)N(O0x H)=0x0and (K x0)+(0x H)=0@Q.

Q is associative if and only if ¢;; = idg, for all i,7 € H. The nuclei are
N,(Q)=Kx{ie HVje H: ¢;; =1idg} and N\ = {a € K; Vj,k € H :
goj,k(a) = Cl} X {’L S I{7 VJ € H: ©ij = ldK}

The question of isomorphism classes was not tackled in [2] and hence we have to
show it here.

Proposition 2. Let Q1 = K x, H and Q2 = K xy H be two semidirect products
such that, for each i € H, there exists j € H such that @;; # idg. Then Q1 = Q2 if
and only if there exist a € Aut(K) and 8 € Aut(H) such that ap; j = Vg5
foralli,je H.

Proof. “<” An isomorphism is the mapping f : (a,?) — (a(a), 5(3)).

f((a,2)) %2 f((b,)) = (ala), B(4)) *2 ((b), B(7)) = (Yp).8)(a+b), B(i+ 7))
f(a,2) %1 (b,5)) = fpij(a+0),i+7) = (apij(a+b), B(i + )

“=" Since ¢;,_ is never trivial, the middle nucleus of Q; is K x 0. Let f be an
isomorphism @1 — Q2. Then f sends N,(Q1) to N,(Q2). We denote by a the
restriction of f on K x0. Moreover, we define mappings 5: H — H andvy: H - K

to satisfy f((0,4)) = (y(2), 8(i)). We have

(v(i+4), 8+ 7)) = f((0,i+35)) = f((0,7) *1 (0,5)) = f((0,7)) *2 £((0,5)) =
(v(4), B(7)) *2 (v(4), B())) = (piy,pi) (V@) + (1)), B + 7))

and therefore the mapping 3 is a homomorphism; it is a bijection too since f is a
bijection on the set of cosets of K x 0. Moreover, we see (i) +v(j) = w,g(li) B(j)'y(i—i—

J)-
Now we compute
f((a,i)) = f((a,0) %1 (0,4)) = (a(a),0) *2 (7(d), B(i)) = (e(a) + (i), B(4)).
We finally compute

f((ayi)) *2 f((b, 7))
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, (7)) = v(i+j) and « fixes the image
of - Now f((a’l)) *2 f((b7] ) = f((a/7 Z) *1 ( 5 )) if and only if wﬁ(’t),ﬁ(j) (a<a+b)> =
a(p; j(a+0b)). O
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It is worth noting that the condition demanding ¢, _to be non-trivial is sufficient
but not necessary for the existence of the automorphism; it was actually not needed
in the proof of the “only if” part.

A finite abelian group is a product of its prime components. Moreover, any
automorphism of the group splits on the prime components. It is hence useful to
know the impact of the splitting on the semidirect product.

Proposition 3. Let K = K1 x Ky and suppose that ¢ splits on K, meaning that,
there exist ¢ : H*> — Aut(Ki) and ¢ : H*> — Aut(K2) such that ¢; j((a1,a2)) =
(@i,5(a1), @i,j(a2)), for each i,j € H. Then K x, H is the pullback of K1 xg H
and Ko xg H. In particular, if ¢ is trivial then K x, H = K1 x (Ko x5 H).

Proof. We recall the definition of a pullback: suppose that A, B, C are two
groupoids with homomorphisms f : A — C and g : B — C. The pullback is
the groupoid A x¢ B = {(a,b); a € A, be B, f(a) = g(b)}.

In our context, A = Ky xg H, B = Ky xg H, C = H, and f, g are the natural
projections. Denote by Q = K X, H. The isomorphism A x¢ B = () should be
h: ((a1,7), (az,)) — ((a1,az2),i). The mapping is clearly a bijection, we only prove
that h is a homomorphism:

h(((a1,1), (az,1)) * ((b1,7), (b2, 7)) = h((@i,5(a1 +b1),i + ), (#i,5(az + b2), i+ j))
= ((@i,j(a1 +b1), @i j(az + b2)),i + j)
= (pi,j((a1 + b1, a2 + b2)),i + j) = ((a1,a2),) * (b1, b2), §)
= h((a1,1), (az, 1)) * h((b1, 1), (b2, ))-

The particular case is clear. (I

2. EXTENSION OF ORDER 3

The goal of the article is to understand semidirect extensions by cyclic groups
of an odd order. In this section, we start with semidirect extensions by groups of
order 3. This case is rather simple and therefore it will be tackled directly, without
a deeper theory. From now on, we expect K, H and ¢ to play the same role as in
Section 1. Moreover K will be understood to wear a ring structure and we shall
identify elements of K with their multiplication endomorphisms (and, in particular,
1 with the identity mapping).

Proposition 4. Let H = Z3. Then ¢ satisfies Conditions (1)—(5) if and only if
there exists an automorphism o of K such that 4a® —5a +1=0, ¢12 = ¢21 = «
and ¢1,1 = P22 = 2a — 1.

Proof. “=": Settingi = j =1 and k = 21in (5), we get @2 9+2 = 1+2-1-¢1 o, which
means @22 = 2p12—1. Settingi =j =2and k=1, we get 11 +2=1+2-1-¢1 2,
which means 11 = 2p12 — 1. Hence 1,1 = p2.0.

Now, setting ¢ = j = k = 1, we get 3¢1,2 = 1 4 21 2¢1,1. Substituting 11 =
212 —1, we get 3¢1.2 = 1421 2(2¢1,2 — 1) and this leads to 44,0%2 —5p12+1=0.

“<”: Properties (1)—(3) are clear. For (4) we have 22011 = (2a — 1)? =
402 —doa+1l=a= ©1,091,2. The other non-trivial option is similar.

Property (5) is trivially fulfilled, if one of the indices is 0. Suppose now i = j = k.

Then 3p; 2; = 3 and 1+ 2¢; 2;0:; = 1 +2a(2a—1) = 1+ 4a? — 2 and both sides
are equal. If 4 :j = 2k then ©2i,2i +2=2a+1=1+ 2()0@22‘. U
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Lemma 5. Let Q1 = K X, Z3 and Q2 = K Xy Z3 be two automorphic loops. Then
Q1 = Q2 if and only if w12 and Y12 are conjugate in Aut(K).

Proof. If @15 = atp1 2o ! then, according to Proposition 4, ¢; ; = at; ™!, for
any 1,7 € Zs and (1 and @2 are isomorphic due to Proposition 2.

On the other hand, if @12 =1 then ¢ is trivial, according to Proposition 4, and
the resulting loop is a direct product. But this means that ¢ is trivial too and

P12 = 77211,2~

Suppose hence 12 = 2,1 # 1. Proposition 4 states, that ¢; ; = 1¥g(;),3(;), for
both the possible automorphisms S and any i, j € Zs. Now, if api 2 = 91 2 then
11 = Y11 since 1,1 and ;¢ are already determined. O

If K is a ring with a transparent structure, we can easily count the number of
loops so obtained.

Proposition 6. Let K be a vector space over a field F of dimensionn. If char(F) =
2 then every semidirect product K X Zsz yielding an automorphic loop is direct. If
char(F') = 3 then there exist, up to isomorphism, [5] semidirect products K x Zs
that are automorphic loops. Otherwise, there are n + 1 such loops, up to isomor-
phism.

Proof. The case of characteristic 2 is trivial since the equation 4a? —5a 4+ 1 = 0
reduces to @ = 1. We shall hence suppose different characteristic.

Let o now be a solution of the quadratic equation 4x? — 52 + 1 = 0. The
minimal polynomial of o divides 4x? — 52 4+ 1 and therefore, if the characteristic
differs from 3, « is similar to a diagonal matrix with entries in {1, %} There are
n + 1 such matrices, up to similarity, which is, according to Lemma 5, the only
criterion for an isomorphism.

In characteristic 3, the roots are not distinct since i = 1. On the other hand,
we can use the Jordan blocks (§1). O

It is useful to note that, in the previous case, the fundamental loop construction is
the semidirect product K x,Z3 with dim K = 2 and ¢1 2 = (} 1) in characteristic 3
1

and dim K = 1 and ¢ = 3 in different characteristic. The other constructions

can be obtained using pullbacks and direct products as stated in Proposition 3.

Next we shall focus on rings Z’; . A standard tool for computing roots of poly-
nomials modulo p* is Hensel’s lemma:

Lemma 7 (Hensel). Let f be a polynomial in Z[x] let p be a prime, let m,k € N
and let r € Z such that

f(r)y=0 (mod p*) and  f'(r)#0 (mod p").
Then there exists s € Z such that

f(s)=0 (mod pFtm) and r=s (mod p*).
Moreover, such s is unique modulo p*+™.

Proposition 8. Let K = Zyk, for some odd prime k. Then there exist two non-
isomorphic automorphic loops Z,x X, Z3 for p > 3, one for pk =3, three for p* =9
and siz such loops if p =3 and k > 2.
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Proof. Every automorphism is equivalent to multiplication by an invertible element
and all the automorphisms commute. Hence distinct automorphisms never conju-
gate and different constructions give rise to different loops, according to Lemma 5.
If p > 5 then the polynomial 422 — 5z + 1 from Proposition 4 has two distinct roots,
according to Hensel’s lemma.

In Zs there is only one root. In Zg we have three roots, namely 1, 4 and 7.
Suppose now p = 3 and k > 2. We compute first all the the roots x of the form
=9y + 1, where y € [0,3¥72 — 1].

4-(9y+1)2=5-(9y+1)+1 =324y + 27y = 27y - (12y + 1).

This expression is congruent to 0 modulo p* if and only if y - (12y +1) = 0
(mod 3¥=3), that means if and only if y = 0 (mod 3*=3) and there are exactly
3 such options, namely 0, 3*73 and 2 - 353,

Now comes x = 9y + 4, where y € [0,3%72).

4-9y+4)>—5-(9y+4)+1=2324y* +243y + 25 =27- (124> + 9y + 1) + 9
and we see that these numbers are not congruent to 0 modulo 27.

Let us take finally x = 9y + 7, where y € [0,3%72).

4-(y+7)2 =59y +7) +1 =324y + 459y + 162 = 27 - (125> + 17y + 6).

This expression is congruent to 0 modulo 3* if and only if 12y% + 17y + 6 = 0
(mod 3¥=3). The polynomial 12y? 4+ 17y + 6 is linear modulo 3 and its only root
can be lifted using Hensel’s lemma giving a unique root in [0,3*~2). Hence we
obtain three solutions in [0, 3~2) again. O

It was already observed in Proposition 3 that the decomposition of K gives the
decomposition of K %, H as a pullback. This means that the only case left to count
the number of different K x, Zs, for an arbitrary finite K, is the case K = [] Zye, .
However this would need the description of conjugacy classes of isomorphisms in
such groups and this is out of the scope of this article.

3. EXTENSION OF 2-DIVISIBLE GROUPS

It was shown in [3] that a finite commutative automorphic loop always splits
as a direct product of a 2-loop and a uniquely 2-divisible loop (a loop is uniquely
2-divisible, if the mapping x — x +x is a bijection). In this paper, we are interested
in extensions of finite commutative automorphic loops by odd order abelian loops
and the only way how to extend a 2-loop with an odd order group is then the trivial
one. We can thus assume that every abelian group, taking place here from now on,
is uniquely 2-divisible.

In this section we analyze the semidirect extensions by uniquely 2-divisible loops
and we present simpler conditions to replace Conditions (1)—(5).

Lemma 9. Let ¢ satisfy (1)—(5). Then

iy F Qi+ 0y — 1
(6) Pij = P—i—j = Pithrted TP T ¥
2pitj,—i—j

)

foranyi,je H.
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Proof. Putting j =i and k = —i — j in (5) we obtain @4 _i—; + @i i + @ _; =

14204 —ijipi; and hence @;; = (Piyj—i—j + i @55 — Doprl , /2.
Substituting i — —i and j — —j gives the same expression due to symmetry. [

Lemma 9 states that, for a uniquely 2-divisible group K, any ¢;; can be ex-
pressed in terms of mappings ¢y, —x; for the sake of brevity, we shall write ¢}, as an
abbreviation for ¢, . Note that ¢; = p_;.

It is now necessary to express conditions (1)—(5) in terms of mappings ¢y; there
are much less automorphisms to check and it is possible that new induced conditions
may be simpler. For this, we need to find alternative expressions for products and
for Pi,g,k-

Lemma 10. Let i,j,k € H and let ¢ satisfy (1)~(5). Then

(7) dpip; =20 + 205 + pitj + i — 2,
() o i = LTI Ort i T+ Piee ¥ Pk ¥ Pijk -3
z7 bl - :

/ 4pitjtk

Moreover, (1), (2), (3), (6) and (7) are only needed to prove (8).

Proof. We set k = —j in (5) to obtain

Pitj—j +Pio T @ji-5 =1+2¢5_j0pig

Vi + it T — 1 T4 0i+ @ +ij—1
2¢; 204

©i + Qir; to; =1+ @i +p; +@i—j — 1 =4p;p;

:1+2<,0j

which is (7). For (8) we compute
Qi j+kPi gk = APitj+kPijPitik
Civj+ @it @i —1 Qigjpr+ @iy +or—1
200+ 20itj+k
= 4(QiyjPitjrr + SD?J”- + Piti Pk — Piti + CiPitjrk + QiPitjt+
+ PiPk = Pi T PjPitjrk T PPt
+ @itk — @i — Pititk — Pits — Pk + 1)/ (dpitj)
= Qitjtk + Qi+ o — 1+ @i+ @; — 14+ 4(QiPitjrk + QiPr—
— @i + Qi Pitj+k T 0Pk — Pj — Pitj+k — ok + 1)/ (4pit;)
= Qitjt+k + Pitj T Pk T @i +0j — 2+ (20i + 20itj 4k + P2itj+rt
+ @itk — 2420 + 20k + Qivk T ik — 2 — 4p; + 25+
+ 20itj+k + Pir2jrk + Qitk — 2+ 205 + 20k + @1kt
+0jk —2— 4o — dpitjin — 4ok +4)/(4pivs)
= Qitjtk T Pitj 06+ @i + 0 — 2+ (P2i4j+ht
+ 2054k + 20i4k + @ik + Viv2jik + @ik — 4)/(4piy;)
= Qitj+k T Pitj T Pk + 0i T 05 = 3+ (20it) + 20itk + P2itjt+k
+ @ik — 24 20i45 + 2054k + Qivojrk + Qick — 2)/(4piy)
= Qitj+k + Pitj + 0k + @i + 05 — 3+ (4pitj itk +40itjPj1k)/ (40it;)
= Qitjtk + Pitj T Ok + @i + @5 — 3+ Qigk + ©jtk O

=4k
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Theorem 11. Let K and H be uniquely 2-divisible abelian groups and let ¢ : H? —
Aut(K). Then ¢ satisfies condition (1) to (5) if and only if

(6) ors = Vit + i+ p;— 1,

204
(7) dpip; = 20 + 205 + Pitj + Qimj — 2,
(9) wo =1,

for each i,j € H, where ¢; = ¢; _;.

Proof. The necessity of the conditions was already proved in Lemmas 9 and 10 and
hence we prove the sufficiency only. Conditions (1) and (2) follow immediately from
(6) and (9). Condition (7) shows that the subring generated by all the ¢;, i € H is
commutative, thus giving (3). In Lemma 10 we proved (1), (2), (3),(6), (7) = (8)
and we clearly see (8) = (4). The only remaining condition is thus (5).

Pitik t Pitki t Cjtki =
Pitjtk T Qits T or—1

Gitjik + Pirk +; —1 | Pitith + @itk +pi—1

+
20ivj+k 20itjtk 2Pitj+h
1y PPt Pk Qi ¥ itk T ik + itk —1+2p,,, O
20itj+k

4. EXTENSION OF ORDER 5

In this section we use the result of the previous section to study semidirect
extensions by the cyclic group of order 5. We keep the notation of Section 3.

Proposition 12. Let Q = K x,Zs5 be a semidirect product. Then Q is automorphic
if and only if there exists @ € Aut K such that 1 = @4 = o, g = (3 = 4a® —4da+1
and 160> — 28a + 13 — 1 = 0.

Proof. “=": Setting i = j = 1 in (7) we get 4¢? = 4¢; + po — 1 and therefore
o = 4p?—4p1+1. Settingi = 2 and j = 11in (7) we get 4pap1 = 202+301 +p3—2.
We know that o3 = @9 = 497 — 41 + 1 and this leads to 4(4¢3 — 41 + 1)p; =
3(4¢? —4p1+1)+3p1 —2 which is eventually simplified to 163 —2807+13¢p; —1 = 0.

“«<” We check (7) for all combinations of 4,j. If i = 0 or j = 0 then (7) holds
trivially. If i = 1 and j € {1,4} then (7) leads to 40 = 4a + (40 —4a+1) — 1. If
i=1and j € {2,3} then (7) is 4a(4a® — 4o + 1) = 3a + 3(3a® —4a + 1) — 2 and
this holds. The case ¢ = 4 is similar to i = 1.

If i =2 and j € {2,3} then (7) gives
4(40® —da+1)* =4(4a® —4a+1) +a—1
64a* — 128> + 96a% — 320 + 4 = 16a* — 150+ 3
64a* — 12802 + 800 —17Ta+1=0
(4a — 1) - (160> — 28+ 13a — 1) =0

and this holds. The remaining case ¢ = 3 is similar. d

In the general odd cyclic case, that means when H is a cyclic group of an odd
order k, it seems that there always exists a polynomial, let us say f, such that
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1 is a root of the polynomial. Moreover, further calculations suggest that f, =
(x — 1)% (mod k).

Open problem. Characterize the necessary and sufficient conditions for existence
of an extension with a cyclic group.

We finish the section with enumeration of the loops of type Z, x, Zs.

Proposition 13. Let K = Z,, for some odd prime p. Then there exist two non-
isomorphic automorphic loops Zy, X, Zs if and only if 5 is a quadratic residue in
Zy,. Otherwise there exists only one.

Proof. The polynomial f = 1623 — 2822 + 13z — 1 can be factored as f = (z — 1) -
(163:2 — 12z + 1). The quadratic factor has roots %. If v/5 does not exist in Zy,
then f has only one root. Moreover, in Zs we have f = (z—1)® (mod 5) and hence
there exists only one root too.

Suppose now that 5 is a quadratic residue. There are 3 possible choices of ¢,
according to Proposition 12, namely

e P =2 =3 =p4=1,

o o1 = o4 = 3t¥%A 0o = 3 = 4,(3t¥%)2__4, styﬁ +1 = 9+6&§+5<_
12+4¢g+§7 3—V5
8 8 8 7

o o1 =ps=205 gy =3 = 315,

The latter two choices give isomorphic loops due to Proposition 2; we can set a = 1
and 8 = 2. Hence we have two isomorphism classes, one associative and one non-
associative. ([

Remark. It was proved in [5] that a non-associative commutative automorphic
loop of order 5p with a p-element middle nucleus, for an odd prime p, exists if and
only if there exists a non-trivial solution of z° = 1 in GF(p?). This condition is
equivalent to the condition presented here: it is well known that 2% — 1 can be
factored using the golden ratio ¢ = 1+T\/5 asad —1=(x—1) - (22 + ¢z +1)-
(z?2 — ¢7'x +1). A non-trivial solution of 2° = 1 in GF(p?) thus exists if and
only if 5 is a quadratic residue in Zs. It is also worth mentioning that the roots of
1623 — 2822 4 13z — 1 can be nicely expressed using the golden ratio: % = %2
and % = ¢T2'
Open problem. Find the connection between the existence of an extension by Z,
and the roots of P — 1.
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