
ON COMMUTATIVE A-LOOPS OF ORDER PQ

PŘEMYSL JEDLIČKA AND DENIS SIMON

Abstract. We study a construction introduced by Aleš Drápal, giving raise
to commutative A-loops of order kn where k and n are odd numbers. We show
which combinations of k and n are possible if the construction is based on a
field or on a cyclic group. We conclude that if p and q are odd primes, there
exists a non-associative commutative A-loop of order pq if and only if p divides
q2 − 1 and such a loop is most probably unique.

1. Introduction

A loop is a quasigroup with a neutral element 1. An inner mapping of a loop is
any composition of left and right translations (i.e. mappings x 7→ ax and x 7→ xa)
that fixes 1. If all inner mappings of a loop are automorphisms then the loop is
called an A-loop. In spite of the fact that there are some results about A-loops in
the 50’s [2], a more thorough investigation started only in the recent years, see e.g.
[8], [6], [7].

There are still not many examples of proper A-loops, for instance the only known
commutative A-loops that are neither p-loops nor direct products were introduced
by Aleš Drápal in [5]. Unfortunately, the article did not specify what orders can
and what orders cannot be achieved via this construction.

We partially fill the gap. Whereas Drápal’s construction is based upon an arbi-
trary commutative ring, we focus our attention to the rings Z/nZ only. This is done
in two steps, first we consider the p-element fields; it turns out that all the construc-
tion works exactly the same way for any fields and hence the proofs are pronounced
in a general setting. In the second step we study general rings Z/nZ. In fact, we
always consider n to be odd due to the following result: Kinyon, Vojtěchovský and
the first author proved in [6] that every finite commutative A-loop is the direct
product of its 2-component and of the rest (which is an odd order loop). Com-
mutative A-loops which are 2-loops were intensively studied in [7]. Hence in this
paper, we do not care of any ring where 2 is not invertible.

The main result, that we show here, is the description of all non-associative
A-loop orders that can be obtained if Drápal’s construction is based upon a field
or upon Z/nZ. For instance, a non-associative loop based upon a field of size q
can only have k · q elements, where k is an odd divisor either of q − 1 or of q + 1.
Moreover, such a loop is unique (based on this construction). As a corollary we
conclude that there exists a non-associative commutative A-loop of order pq, p < q
odd primes, if and only if p divides q2 − 1 and we give an argument why we think
that such a loop is the only commutative A-loop of order pq, up to isomorphism.
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An interesting feature of the paper is that although it establishes some facts in
the loop theory, except of the last section we do not consider loops en soi, we work
(nearly) entirely within the scope of fields or number rings. Hence the paper could
well be read by someone not affected by loop theory.

The paper is organised as follows: in Section 2 we introduce the construction,
especially so called 0-bijective fractional linear mappings which are the ground
stone of the construction. In Section 3 we study these mappings in the context
of projective spaces over fields which gives us necessary and sufficient conditions
for the mappings to exist. In Section 4 we do the same work not upon fields but
upon rings Z/nZ which, of course, heavily depends on the results of Section 3. In
Section 5 we prove that, in fields, A-loops of the same order obtained via different
invertible coefficients have to be isomorphic and hence there exists a unique loop
for each order. Finally, in Section 6 we deal with the case of commutative A-loops
of order pq and their associated Bruck loops.

2. Drápal’s construction

In this section we present a construction of loops introduced by Aleš Drápal in [5].
These loops were constructed so that their inner mapping groups are metacyclic.
We give some of its properties here and we clarify the aims of this paper. As the
majority of the paper does not need any loop theoretical arguments, we do not even
define properly what a loop is. If the reader wants a detailed description anyway, we
refer to [1]. Nevertheless, it should suffice to know that loops are “groups without
associativity”. We start with the definition of a mapping which is bijective on the
orbit containing 0.

Definition. Let R be a commutative ring and let f be a partial mapping R → R.
We shall say that f is 0-bijective if

(1) f i(0) is defined for each i ≥ 1;
(2) for each i ≥ 1 there exists a unique y ∈ R such that f i(y) is defined and

equal to 0—we denote this element f−i(0); and
(3) f(0) ∈ R∗.

We say that a 0-bijective partial mapping f is of 0-order k, if k is the smallest
positive integer such that fk(0) = 0. We say that it is of 0-order ∞ if fk(0) 6= 0
for all k.

In fact these 0-bijections are the structure we study through the entire article,
but only those which can be given by a formula f(x) = (sx + 1)/(tx + 1), for some
elements s and t in R, with s − t invertible. We shall denote these mappings fs,t.
They serve for the following construction:

Proposition 1 (Drápal [5]). Let M be a module over a commutative ring R and
let fs,t : R → R, for some s, t ∈ R with s − t ∈ R∗, be a 0-bijective mapping of
0-order k. Then we can define a commutative loop Q on the set M × Z/kZ as
follows:

(a, i) · (b, j) =

(

a + b

1 + tf i(0)f j(0)
, i + j

)

.

The loop is denoted M [s, t]. Its inner mapping group is the semidirect product
tM ⋊ G, where G =

〈

1 + tf i(0)f j(0)
〉

≤ R∗.

Example. Let M be a module over a commutative ring R where 2 is invertible. Let
s = 1 and t = −3. Then it is easy to see that f3

1,−3(0) = 0 and hence M [1,−3] is a
loop defined on the set M × Z/3Z.

We have not said yet that the construction gives something non-trivial, i.e. that
we obtain non-associative loops. It is almost always the case:
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Proposition 2 (Drápal [5]). Let Q = M [s, t] where M is a faithful module over a
commutative ring R. If t 6= 0 then Q is not associative, otherwise Q is a group.

As we already said in the introduction, our main aim is to describe A-loops that
can be obtained via this construction. From this point of view, the most interesting
is the case s = 1.

Theorem 3 (Drápal [5]). Let Q = M [s, t] where M is faithful module over a
commutative ring R. If s = 1 then Q is an A-loop. On the other hand, if t ∈ R∗

and Q is an A-loop then s = 1.

Hence we have many possible A-loops theoretically, the only problem is to know

• Question 1: Given a commutative ring R, which number k can appear as
a 0-order of a 0-bijective mapping f1,t?

• Question 2: Given a commutative ring R and a number k, how to find a
t such that f1,t a 0-bijective mapping of the prescribed 0-order k?

Without answers to these questions we are confined just to try luck with random
values of t and be surprised what loops do pop out from the construction.

Drápal’s paper does not give an answer to any of both questions. It gives a hint
how to construct some loops if we are not fixed neither on a specific k nor on a
specific ring, but it is far from being sufficient. Therefore it is our task to do, to
answer the questions above.

3. Orders of the mappings in fields

This section is the core of the paper. We are interested in describing the 0-orders
of mappings fs,t when the base ring is Z/nZ. Naturally, the first case to consider is
when n = p is a prime number, that is Z/pZ is the p-element field Fp. It turns out
though that there is not much difference between the behaviour of fs,t on p-element
fields and general fields. Hence we can consider K to be any field and we can even
present infinite examples. The only difference for infinite fields is the possibility to
have infinite 0-orders. Such orders will be usually ignored since they cannot appear
in finite fields.

We investigate here the questions stated in the previous section giving an answer
for both of them, in the case of fields only, of course. We start the section in a
more general setting considering s to be arbitrary because the proofs given do not
depend on s much. However, at the end of the section, there is a result that we
cannot prove but for s = 1.

In the entire section we shall work in a field K, with characteristic different
from 2. As usual, things behave differently in characteristic 2 and as we have
already explained in the introduction, this case is not very interesting.

It was observed already in [5] that a mapping fs,t = sx+1
tx+1 , with

s 6= t

can be viewed as an automorphism of the projective line P1(K) over K given by
the matrix

Fs,t =

(

s 1
t 1

)

(we keep dropping the indices when they are evident from the context). Hence we
can translate the notion of 0-order to automorphisms of projective lines. But we
shall be a bit more careful since an automorphism is always a 0-bijection.

Definition. Let F be an automorphism of the projective line P1(K). We say that F
is of projective 0-order k if k is the smallest positive integer such that F k

(

0
1

)

=
(

0
x

)

,
for some x ∈ K∗.
We say that F meets infinity at ℓ, if F ℓ

(

0
1

)

=
(

x
0

)

, for some x ∈ K∗. We say simply
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that F meets infinity if there is some ℓ at which it happens.
We say that F is of 0-order k if F is of projective 0-order k and never meets infinity.

It is immediate from the definition that a mapping fs,t is of 0-order k if and only
if the corresponding automorphism Fs,t is of 0-order k. First of all, we shall get rid
of trivial cases:

Lemma 4. The projective 0-order of Fs,t can never be equal to 1.

Proof. This is because F
(

0
1

)

=
(

1
1

)

. �

Lemma 5. Let s and t be distinct elements of K. The projective 0-order of Fs,t is
k = 2 if and only if s = −1. If s = −1, then F−1,t does not meet infinity.

Proof. From the relation F 2 =
(

s2+t s+1
st+t t+1

)

it is clear that the projective 0-order of

F is 2 if and only if s = −1. Since F
(

0
1

)

=
(

1
1

)

, we see that F does not meet infinity
at 1, hence, by periodicity, F−1,t never meets infinity. �

From now on, we will assume that s 6= −1, and hence that the projective 0–order
of Fs,t is k > 2.

Let λ = λs,t and µ = µs,t be the eigenvalues of the matrix Fs,t These are the
roots of the characteristic polynomial Ps,t = x2 − (s+1)x+ s− t and belong to the
algebraic closure of K (in fact they belong at most to a quadratic extension of K).
They satisfy λ + µ = s + 1 and λµ = s− t. Since s 6= t, none of the eigenvalues can
be 0. The discriminant of P is

Ds,t = (s − 1)2 + 4t .

This value is Ds,t = 0 if and only if t = −
(

s−1
2

)2
. This is the case we investigate

first.

Proposition 6. Assume that t = −
(

s−1
2

)2
and s 6= −1.

The projective 0-order of Fs,t depends on the characteristic of the field K and
is equal to

k =

{

p if char(K) = p, (p 6= 2)

∞ if char(K) = 0

If s = 1, then F1,0 does not meet infinity.
If s 6= 1, then Fs,t meets infinity at ℓ if and only if ℓ = 1 + 2

s−1 . In particular, in
odd characteristic p it meets infinity if and only if s belongs to the prime field Fp.

Proof. We first remark that the assumption s 6= −1 implies that t 6= s. We have

F = s+1
2 ·I+N , where N =

(

(s−1)/2 1

−(s−1)2/4 −(s−1)/2

)

and I is the identity matrix. Note

that N2 = 0 and that s+1
2 is invertible in K. Hence, using binomial expansion, we

get F i =
(

s+1
2

)i ·I + i ·
(

s+1
2

)i−1 ·N . The first coordinate of the vector F i
(

0
1

)

is then

i ·
(

s+1
2

)i−1
which is zero if and only if i is zero, whence the value of the projective

0-order.
The second coordinate of F i

(

0
1

)

is
(

s+1
2

)i
+ i ·

(

s+1
2

)i−1 ·
(

− s−1
2

)

which is equal

to zero if and only if i = 1 + 2
s−1 (if s = 1, this is never equal to zero).

In odd characteristic p, the conclusion is clear from the relation i = 1+ 2
s−1 . �

The previous proposition is in fact interesting in the case s 6= 1 only. Indeed, if
s = 1 and t = −( s−1

2 )2 then t = 0. But the choice t = 0 gives raise to a group,
according to Proposition 2.
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We are now finished with the case Ds,t = 0 and we can proceed with the generic
case Ds,t 6= 0, i.e. λ 6= µ. We recall that from the relation λµ = s− t, we have seen
that λ and µ cannot be equal to 0.

Proposition 7. Assume that Ds,t 6= 0. For i ≥ 0 we have

F i
s,t

(

0

1

)

=

(

λi
−µi

λ−µ
λi(1−µ)−µi(1−λ)

λ−µ

)

.

The projective 0-order of Fs,t is equal to the order of λ
µ in the multiplicative

group K
∗

, that is the smallest positive integer such that
(

λ
µ

)k

= 1.

If t = 0, then Fs,0 does not meet infinity. If t 6= 0, then λ− 1 and µ− 1 are both

nonzero, and the mapping Fs,t meets infinity at ℓ if
(

λ
µ

)ℓ

= λ−1
µ−1 .

Proof. Since F has two distinct eigenvalues, there exists a regular matrix S, with

coefficients in K, such that F = S
(

λ 0
0 µ

)

S−1. Hence F i
(

0
1

)

= S
(

λi 0
0 µi

)

S−1
(

0
1

)

=

λiA+µiB for some vectors A and B. From the independent linear relations F 0
(

0
1

)

=

A + B =
(

0
1

)

and F 1
(

0
1

)

= λA + µB =
(

1
1

)

, we find the solution

A =

(

1
λ−µ
1−µ
λ−µ

)

, B =

(

−1
λ−µ

− 1−λ
λ−µ

)

,

giving the first part of the proposition.
The projective 0-order of F is the smallest positive integer k such that F k

(

0
1

)

=
(

0
x

)

. From the previous relation, this is the smallest positive integer such that
λk

−µk

λ−µ = 0 and hence λk = µk.

By definition, F meets infinity at ℓ if F ℓ
(

0
1

)

=
(

x
0

)

. From the previous relation,

this is equivalent to λℓ(1−µ)−µℓ(1−λ)
λ−µ = 0. We have (1 − λ)(1 − µ) = P (1) = −t. If

t = 0 then P (1) = 0 hence either λ = 1 or µ = 1 (but not both). By symmetry,
we may assume that µ = 1 and λ 6= 1. In this case, the condition that F meets
infinity at ℓ simplifies to 1 = 0, which is clearly impossible. When t 6= 0, we have
P (1) 6= 0, hence λ and µ are different from 1. In this case, the condition that F

meets infinity at ℓ simplifies to
(

λ
µ

)ℓ

= 1−λ
1−µ .

�

This proposition gives us a first answer to our question 1 stated in section 2
when the base ring is a field.

Corollary 8. Let Fs,t be a mapping defined over a field K (of odd characteristic),
such that Ds,t 6= 0. Assume that Fs,t has projective 0-order k > 2.

• If Ds,t is a square in K, then K contains a primitive k-th root of unity.

• If Ds,t is not a square in K, then the quadratic extension K(
√

Ds,t) contains
a primitive k-th root of unity of norm 1.

Proof. From Proposition 7, it is immediate that λ
µ is a primitive k-th root of unity

in K(
√

D). If D is not a square in K, then the eigenvalues λ and µ are conjugate

in the quadratic extension K(
√

D), hence λ
µ has norm 1. �

In order to apply this corollary to a finite field, it is useful to have the following
description of the roots of unity in finite fields:

Proposition 9. Let K = Fq with q = pn (p 6= 2). For an integer k > 0, we have
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• Fq contains a primitive k-th root of unity if and only if k is a divisor of
q − 1.

• Fq2 contains a primitive k-th root of unity of norm 1 in the extension Fq2/Fq

if and only if k is a divisor of q + 1.

Proof. The first assertion is an immediate consequence of the fact that the multi-
plicative group F∗

q is cyclic of order q − 1. Consider now the second assertion. The
norm map is a surjective homomorphism F∗

q2 ։ F∗

q , hence its kernel is a subgroup

of F∗

q2 , of order (q2−1)/(q−1) = q +1. This kernel is therefore the cyclic subgroup
of order q + 1, whence the conclusion. �

By Corollary 8, we have given a partial answer to our question 1. In order to
prove that this in fact a complete answer, we need to study the converse property,
and in fact to answer our question 2.

Proposition 10. Assume that the field K contains a primitive k–th root of unity
for k > 2. Then, for each s ∈ K, s 6= −1, there exist exactly ϕ(k)/2 choices of

t ∈ K such that Fs,t is of projective 0-order k, namely t = (ζ−s)(sζ−1)
(ζ+1)2 , where ζ is

any primitive k-th root of unity.

Remark. In this proposition, ϕ(k) denotes Euler’s function.

Proof. Assume that Fs,t is of projective 0-order k > 2. Then by Proposition 7, the

quotient of the eigenvalues ζ = λ
µ is a primitive k–th root of unity. We have the

relations λ = ζµ and λ + µ = s + 1, hence µ = s+1
ζ+1 and λ = ζ(s+1)

ζ+1 . From this we

get s − t = λµ = ζ (s+1)2

(ζ+1)2 , whence t = (ζ−s)(sζ−1)
(ζ+1)2 .

Conversely, assume that t = (ζ−s)(sζ−1)
(ζ+1)2 , where ζ is a primitive k-th root of

unity in K. With this choice, we have (x− s+1
ζ+1 )(x − ζ(s+1)

ζ+1 ) = x2 − (s + 1)x + s−
(ζ−s)(sζ−1)

(ζ+1)2 = Ps,t. According to Proposition 7, the projective 0-order of Fs,t is the

smallest k′ such that
(

s+1
ζ+1

)k′

=
(

ζ(s+1)
ζ+1

)k′

or equivalently such that 1 = ζk′

. By

definition of ζ, the projective 0–order of Fs,t is exactly k.
In order to finish the proof of the proposition, it only remains to prove that the

map ζ 7→ t is 2-to-1, since there are exactly ϕ(k) primitive k-th roots of unity in
K.

We have t = (ζ−s)(sζ−1)
(ζ+1)2 =

(

(s+1)(ζ−1)
2(ζ+1)

)2

−
(

s−1
2

)2
. We look at the equality the

other way round saying

ζ − 1

ζ + 1
= ± 2

s + 1
·

√

t +

(

s − 1

2

)2

= ± 2

λ + µ
·
√

D

4
= ± 2

λ + µ
· λ − µ

2
= ±λ − µ

λ + µ

which leads to ζ = λ/µ or ζ = µ/λ. This proves that two different values of ζ give
rise to the same value of t if and only if they are inverse to one other, and that the
map ζ 7→ t is 2-to-1 when k > 2. �

Example. Let K = C. Then, for any s and k, there exists Fs,t of projective 0-order
k since all k-th roots of 1 lie in C. Furthermore, if we consider s = 1 and t = 4, the
corresponding eigenvalues are λ = −1 and µ = 3, hence λ

µ is not a root of unity in

C and F1,4 has projective 0-order k = ∞. A counting argument would prove that
almost all choice of s and t gives an Fs,t with infinite projective 0-order.

Proposition 11. Assume that a quadratic extension L of K contains a primitive
k–th root of unity for k > 2, of norm 1. Then, for each s ∈ K, s 6= −1, there exist
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exactly ϕ(k)/2 choices of t ∈ K such that Fs,t is of projective 0-order k, namely

t = (ζ−s)(sζ−1)
(ζ+1)2 , where ζ is any primitive k-th root of unity in L.

Proof. Everything in this proposition is already contained in Proposition 10 (ap-
plied to the field L), except that the given formula for t indeed gives an element of

K when s ∈ K and ζ has norm 1. Let ζ and t be the conjugates of ζ and t in the
extension L/K. We have ζζ = 1. Starting from the definition of t and multiplying
the numerator and the denominator by ζ2, we obtain

t =
(ζ − s)(sζ − 1)

(ζ + 1)2
=

(1 − sζ)(s − ζ)

(1 + ζ)2
= t .

�

Remark. This result suggests a more symmetrical expression for t:

t = − (ζ − s)(ζ−1 − s)

(ζ + 1)(ζ−1 + 1)
.

Putting things together, we have now a complete answer to our questions 1 and 2
in the case of fields. In fact, this result is only concerned with the projective 0-order
and not the general 0-order, that is it does not say anything about the question of
meeting infinity. We shall answer this question later but only when s = 1.

Theorem 12. Let K be a field and s 6= −1 be any element of K. Let k > 2 be
an integer and assume that char(K) ∤ 2k. There exists t ∈ K such that Fs,t is of
projective 0-order k if and only if a primitive k-th root of unity

• either lies in K
• or lies in a quadratic extension of K and is of norm 1 with respect to K.

If one of these conditions is fulfilled then there exist exactly ϕ(k)/2 choices of t,

namely t = (ζ−s)(sζ−1)
(ζ+1)2 , where ζ is a primitive k-th root of unity.

Example. Let us take K = R. For every k > 2, the k-th roots of unity are complex
numbers of norm 1 and hence, for every s 6= −1, there exists a t ∈ R such that Fs,t

is of projective 0-order k. This value of k is obtained for example for s = 1 and

t = − 1−cos(2π/k)
1+cos(2π/k) = − tan2(π/k).

Example. Let us take K = Q. A primitive k-th root of unity lies in a quadratic
extension of Q if and only if k = 3, 4, or 6. Hence the only possible finite projective
0-orders are respectively 3, 4, and 6. These values are made possible for example
by the values s = 1 and respectively t = −3, t = −1, and t = −1/3.

Now we are done with examining the projective 0-order and it is time to study
when Fs,t meets infinity. However it does not seem to be easy to solve, except in
the case s = 1. The mapping F1,0 was studied in Proposition 6.

Lemma 13. Let t 6= 0 be an element of K. Assume that F1,t is of projective
0-order k. Then F1,t meets infinity at ℓ if and only if k is a finite even integer and
ℓ is an odd multiple of k/2.

Proof. According to Proposition 7, F1,t meets infinity at ℓ if (λ/µ)ℓ = (λ−1)/(µ−1).
Under the condition s = 1, λ and µ are roots of the polynomial P1,t that can be
rewritten as P1,t = (x − 1)2 − t, which implies that λ − 1 and µ − 1 are equal to

±
√

t. In particular, the quotient (λ − 1)/(µ − 1) is equal to −1. We deduce from
the relation (λ/µ)ℓ = −1 that (λ/µ)2ℓ = 1, hence k is a finite even integer, and ℓ is
an odd multiple of k/2.

�
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We are now ready to write down the conclusion for the case s = 1.

Theorem 14. Let K be a field of characteristic different from 2, and k > 1 be
an integer. There exists a 0-bijection f(x) = (x + 1)/(tx + 1) of finite 0-order k,
for some t ∈ K if and only if k is odd and one of the following three conditions is
satisfied:

• k is equal to the characteristic of K;
• a primitive k-th root of unity lies in K;
• a primitive k-th root of unity is an element of norm 1 in a quadratic exten-

sion of K.

In particular, if K is the finite field Fq, for q = pn, then such a 0-bijection exists if
and only if k is odd and

• k = p
• or k | (q − 1),
• or k | (q + 1).

Proof. The fact that k has to be odd was proved in Lemma 13. The case t = 0 was
studied in Proposition 6 and corresponds to the case k = char(K) (if not 0). The
other cases, including the explicit construction of t, were established in Theorem
12. The reformulation for the finite field case results from Proposition 9. �

4. Orders of mappings in Z/nZ

Our main task is to describe the behaviour of the mappings fs,t on rings Z/nZ.
Again, we shall consider n to be odd.

As in the field case, we study first the projective version of the mapping fs,t =
sx+1
tx+1 and compute its projective 0-order. Secondly, we determine whether this
projective mapping meets infinity or not. Before we can proceed, we need to adapt
the definitions.

Let R be a commutative ring. We denote by R∗ the multiplicative group of
invertible elements of R. This group acts componentwise on R2. If (a, b) ∈ R2

is such that the ideal aR + bR is equal to R, then the same is true for the ideal
uaR + ubR when u ∈ R∗. This allows the definition of the projective line :

P1(R) = {(a, b) ∈ R2, aR + bR = R}/R∗ .

The group G2(R) of 2×2 matrices F =
(

a b
c d

)

with invertible determinant (ad−bc) ∈
R∗ acts on P1(R) by the classical formulae. Its elements define automorphisms of
P1(R). This is in particular the case for Fs,t = ( s 1

t 1 ) when

(s − t) ∈ R∗ .

We also define its characteristic polynomial Ps,t = x2 − (s + 1)x + s − t with
discriminant Ds,t = (s − 1)2 + 4t, exactly as in section 3.

Definition. Let F be an automorphism of the projective line P1(R). We say that F

is of projective 0-order k if k is the smallest positive integer such that F k
(

0
1

)

=
(

0
x

)

,
for some x ∈ R∗.
We say that F meets infinity at ℓ, if F ℓ

(

0
1

)

=
(

x
y

)

, for some (x, y) ∈ R2, y 6∈ R∗. We

say simply that F meets infinity if there is some ℓ at which it happens.
We say that F is of 0-order k if F is of projective 0-order k and never meets infinity.

When R is a field, all these definitions coincide with those defined in section 3.

As in the field case, it is immediate from the definition that a mapping fs,t is of
0-order k if and only if the corresponding automorphism Fs,t is of 0-order k.
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The work is already done in the case Z/pZ, for p prime, at least when s = 1.
This knowledge, of course, is useful when studying Z/nZ in general. There are two
cases to be considered, one of which is very easy.

Proposition 15. Let R = Z/mnZ, where m and n are coprime, and let s ∈ R.
Then there exists some t ∈ R with s − t ∈ R∗ such that fs,t is of 0-order k if
and only if the reduction modulo m of fs,t is of 0-order k1 in Z/mZ, the reduction
modulo n of fs,t is of 0-order k2 in Z/nZ, and k is the least common multiple of k1

and k2.

Proof. Use the Chinese remainder theorem. �

The other case leaves much more work and concerns the ring R = Z/prZ, for p
prime. In this context, the condition s − t ∈ R∗ is equivalent to s 6≡ t (mod p).

We consider first the situation when Ds,t ≡ 0 (mod p), and generalize Proposi-
tion 6 in Proposition 17. Before this, we need a lemma.

Lemma 16. Let A and B be 2×2 matrices, with coefficients in Z. Let p be a prime
number and α ≥ 1 be an integer. If A ≡ B (mod pα) and B ≡ ( 1 0

0 1 ) (mod p),
then Ap ≡ Bp (mod pα+1).

Proof. Let C be the matrix with integer coefficients such that A = B + pαC.
Expanding the product, we find Ap ≡ Bp + pα(Bp−1C + Bp−2CB + · · · + CBp−1)
(mod pα+1). The condition B ≡ ( 1 0

0 1 ) (mod p) implies that the sum in brackets
is Bp−1C + Bp−2CB + · · · + CBp−1 ≡ pC ≡ 0 (mod p), and we get Ap ≡ Bp

(mod pα+1). �

Proposition 17. Let s and t be elements of the ring R = Z/prZ, such that s 6≡ t
(mod p). If Ds,t ≡ 0 (mod p), then the projective 0-order of Fs,t is equal to

k =

{

pr if p ≥ 5

pr−q+1 if p = 3 and q = v3(Ds,t + 3(s − t))

If furthermore s ≡ 1 (mod p) (in which case the condition Ds,t ≡ 0 (mod p) sim-
plifies to t ≡ 0 (mod p)), then Fs,t does not meet infinity.

Remark. We use here the notation v3(x) for the valuation at the prime 3. Since it
is evaluated at elements of Z/3rZ, this valuation is always bounded by r, including
at 0.

Proof. We can assume that r ≥ 2, since the case r = 1 is contained in Proposition 6.

The condition D ≡ 0 (mod p) implies that we can write t = −
(

s−1
2

)2
+pa for some

a defined modulo pr−1. We have s − t = s +
(

s−1
2

)2 − pa =
(

s+1
2

)2 − pa, hence

u = s+1
2 is invertible. With the notation N =

(

(s−1)/2 1

−(s−1)2/4 −(s−1)/2

)

and A = ( 0 0
1 0 ),

we have F = uI + N + paA, where B = N + paA satisfies B2 = paI.
For the next argument, we have to separate the cases p ≥ 5 and p = 3.
Consider first the case p ≥ 5. For i ≥ 4, we have Bi ≡ 0 (mod p2), hence

F p ≡ upI + pup−1B + p(p−1)
2 up−2B2 + p(p−1)(p−2)

6 up−3B3 (mod p2)

≡
(

up + ap2(p−1)
2 up−2

)

I +
(

pup−1 + ap2(p−1)(p−2)
6 up−3

)

B (mod p2)

≡ upI +
(

pup−1 + ap2(p−1)(p−2)
6 up−3

)

B (mod p2)

Since p ≥ 5, the coefficient ap2(p−1)(p−2)
6 is divisible by p2 and the expression

simplifies to
F p ≡ upI + pup−1B (mod p2)

≡ upI + pup−1N (mod p2)
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This relation can be written as F p ≡ vI + pqwN (mod pq+1), where v = up and
w = up−1 are invertible, and q = 1.

If p = 3, we have F 3 = u3I + 3u2B + 3uB2 + B3 = (u3 + 9au)I + 3(u2 + a)B,
where u3 + 9au is invertible since u is invertible. By definition, we have q =
v3 (Ds,t + 3(s − t)) = v3

(

3(u2 + a)
)

. If q = r, we have directly F 3 = (u3 + 9au)I
and we get the conclusion that the projective 0-order of F is 3. If q < r, we can
write

F 3 ≡ (u3 + 9au)I + 3(u2 + a)N (mod pq+1) .

or F p ≡ vI + pqwN (mod pq+1), where v and w are invertible.
We have now exactly the same relations is both cases p ≥ 5 and p = 3, and we

can finish the proof with a common argument. The coefficient v is invertible, so
that we can apply Lemma 16 to v−1F p and get by induction

F pα ≡ (vI + pvwN)pα−1

(mod pq+α)

≡ vpα−1

I + pq+α−1wN (mod pq+α)

for all 1 ≤ α ≤ r − q + 1. For α = r − q, this gives F pr−q(0
1

)

= vpr−q−1(0
1

)

+

pr−1w
(

1
−(s−1)/2

)

. Inspecting the first coefficient reveals that the projective 0-order

of F is not a divisor of pr−q. For α = r − q + 1, this gives F pr−q+1(0
1

)

= vpr−q(0
1

)

,

hence the projective 0-order of F is exactly pr−q+1, as announced in the proposition.
So far we considered the projective 0-order and not the 0-order itself. It remains

to determine whether Fs,t meets infinity. By definition, Fs,t meets infinity at ℓ if the
reduction modulo p of Fs,t meets infinity at ℓ. When s ≡ 1 (mod p), Proposition
6 says that the reduction modulo p of Fs,t does not meet infinity, hence Fs,t does
not meet infinity at all. �

Hence the case Ds,t ≡ 0 (mod p) is finished and we can focus on the case when
Ds,t 6≡ 0 (mod p).

We first suppose that Ds,t is an invertible square in R, or equivalently that it is
a nonzero square modulo p.

Proposition 18. Let R = Z/prZ

• Let s, t be elements of R with s 6≡ t (mod p). If Ds,t is a nonzero square
modulo p, then the projective 0-order of Fs,t is of the form k = k′pm where
m < r and k′ is the projective 0-order of the reduction modulo p of Fs,t.
In particular, k′ satisfies 1 < k′ | (p − 1).
If furthermore s ≡ 1 (mod p) (and t is a nonzero square modulo p) then
Fs,t meets infinity if and only if k is even.

• Let s be an element of R with s 6≡ −1 (mod p), and k = k′pm be an integer
with m < r and 2 < k′ | (p − 1). There exist exactly ϕ(k)/2 choices of
t ∈ R, t 6≡ s (mod p), such that Fs,t is of projective 0-order k.

Proof. Consider the first part of the proposition, and let s and t be as required.
We can apply the results of the section 3 to the reduction of F modulo p. In
particular, since D 6≡ 0 (mod p), there exist exactly two distinct roots λp and µp

of the characteristic polynomial P modulo p. They satisfy λpµp ≡ s − t (mod p),
hence λp and µp are invertible. Since p is odd, an application of Hensel Lemma
implies that D is in fact a square in Z/prZ and that there exist exactly two distinct
elements λ and µ of Z/prZ such that P (λ) = P (µ) = 0. These elements satisfy
furthermore λ ≡ λp (mod p) and µ ≡ µp (mod p), and also the relation λµ = s− t,
hence are both invertible. Another useful relation is (λ − µ)2 = D, hence λ − µ is
also invertible.
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The expression of F i
(

0
1

)

in terms of λ, µ and i given in Proposition 7 still applies
in our context. Inspecting its first coefficient implies that the projective 0-order of
F is again the multiplicative order of the invertible element λ/µ, or equivalently
the smallest positive integer k such that (λ/µ)k = 1.

Now, the group (Z/prZ)∗ is cyclic of order (p − 1)pr−1, hence the projective
0-order k of F is k = k′pm with k′ | (p− 1) and m < r. More precisely, we have an
isomorphism of groups:

φ : (Z/prZ)∗ ∼= Z/(p − 1)Z × Z/pr−1Z

(the group on the left is multiplicative and the groups on the right are additive).
The first coordinate of φ in Z/(p− 1)Z is given by the reduction modulo p followed
by the isomorphism (Z/pZ)∗ ∼= Z/(p − 1)Z. This isomorphism shows that k′ is
equal to multiplicative order of λp/µp in (Z/pZ)∗, that is by the projective 0-order
of the reduction of F modulo p according to Proposition 7.

When s ≡ 1 (mod p), we can apply Lemma 13 and deduce that F meets infinity
modulo p if and only if k′ is even, hence also in R.

Consider now the second part of the proposition and let s and k be as required.
Using the isomorphism φ, we see that there are exactly ϕ(k) choices of ζ ∈ R∗ that
are of multiplicative order exactly k. Since k′ > 2, we have ζ 6≡ −1 (mod p), hence
ζ + 1 is invertible. The rest of the proof is analogous to the proof of Proposition

10. In particular, the value of t is given by the same formula t = (ζ−s)(sζ−1)
(ζ+1)2 . �

The case when Ds,t is an invertible nonsquare in R (or equivalently when it is
not a square modulo p) is similar but technically less transparent. Exactly as in the
case of fields where the eigenvalues were found in a quadratic extension, we need
to build a quadratic extension of R containing the eigenvalues.

Proposition 19. Let R = Z/prZ

• Let s, t be elements of R with s 6≡ t (mod p). If Ds,t is not a square
modulo p, then the projective 0-order of Fs,t is of the form k = k′pm where
m < r and k′ is the projective 0-order of the reduction modulo p of Fs,t.
In particular, k′ satisfies 1 < k′ | (p + 1).
If furthermore s ≡ 1 (mod p) (and t is not a square modulo p) then Fs,t

meets infinity if and only if k is even.
• Let s be an element of R with s 6≡ −1 (mod p), and k = k′pm be an integer

with m < r and 2 < k′ | (p + 1). There exist exactly ϕ(k)/2 choices of
t ∈ R, t 6≡ s (mod p), such that Fs,t is of projective 0-order k.

Proof. Let d ∈ Z be an integer which is not a square modulo p. We consider
the quadratic field L = Q(

√
d) and O its ring of integers. By construction the

polynomial x2 − d is irreducible modulo p, hence the ideal pO is a prime ideal of
O (see [3, §4.8] for more justification). In particular, O/pO is a finite field with
p2 elements and the ring R′ = O/prO contains a copy of R. There are group
isomorphisms

(O/pO)∗ ∼= Z/(p2 − 1)Z

and

(O/prO)∗ ∼= (O/pO)∗ ×O/pr−1O ∼= Z/(p2 − 1)Z × (Z/pr−1Z)2 .

The first one is the well known fact that the multiplicative group of a finite field is
cyclic and the second one is proved in [4, Prop 4.2.4 and 4.2.8].

Let us now come to the proof of the first part of the proposition, and let s
and t be elements as required. We can use exactly the same argument as for the
previous proposition: the reduction of the characteristic polynomial P has exactly
two distinct roots λp and µp in O/pO, and by a Hensel lifting, P has exactly
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two distinct roots λ and µ in R′. We can then use the formula of Proposition
7 and deduce that the projective 0-order of F is the multiplicative order of λ/µ
in (O/prO)∗. Using the isomorphism, we deduce that this order is of the form
k = k′pm with m < r and k′ | (p2 − 1). But we also deduce that k′ is the projective
0-order of the reduction modulo p of F , hence, according to the results of section
3, is a divisor of p + 1.

When s ≡ 1 (mod p), we can apply Lemma 13 and deduce that F meets infinity
modulo p if and only if k′ is even, hence also in R.

For the second part of the proposition, let s and k be as required. Following
the same proof as for Proposition 18, we see that there are exactly ϕ(k) choices of
ζ ∈ R′∗ that are of multiplicative order exactly k, and exactly ϕ(k)/2 choices of

t ∈ R′, given by the formula t = (ζ−s)(sζ−1)
(ζ+1)2 , such that Fs,t is of projective 0-order

k. It remains to prove that t is indeed in R and not only in R′.
The norm map from Q(

√
d) to Q sends prO to prZ, and defines another norm

map from R′∗ to R∗, which is a group homomorphism. Its image contains trivially
all the squares of R∗ as the norm of elements of R∗, but also contains d = norm(

√
d).

Hence the norm is surjective and its kernel is a subgroup of R′∗ of order (p+1)pr−1.
From this, we see that the elements of order p + 1 in R′∗ have norm 1. Now, the
same proof as for Proposition 11 will again give the conclusion that t ∈ R. �

Hence we can conclude what happens for any Z/nZ if s = 1.

Theorem 20. Let n = pr1

1 · pr2

2 · · · prm
m be the prime factorization of a positive odd

number and let k > 1 be an integer. Then there exists t ∈ Z/nZ such that f1,t is a
0-bijection from Z/nZ to Z/nZ of 0-order k if and only if k is odd and there exist
k1, . . . , km and ε1, . . . , εm satisfying the three conditions:

• εi ∈ {−1, 0, 1}, ki = k′

ip
ei , where 2 < k′

i | (pi + εi) and ei < ri, for all
1 ≤ i ≤ m;

• if εi = 0 and pi > 3, for some i, then ki = pri

i ;
• the least common multiple of k1, . . . , km is k.

Proof. We make an induction on m. Suppose first that m = 1. We have seen in
Lemma 13 that F1,t, for t 6≡ 0 (mod p), meets infinity if and only if its projective
order is even. But if t ≡ 0 (mod p) then k1 is a divisor of pr1

1 , according to
Proposition 17. Hence k has to be odd.

The previous three propositions ensure that the theorem holds in the case of
m = 1. The induction step can be done using Proposition 15. �

5. The question of isomorphism

From now on, we shall consider the case s = 1 only. We know already when there
exists an appropriate fractional mapping of 0-order k on R, in the case when R is a
field or a quotient of Z. Nevertheless, we do not know still if different choices of t,
that lead to the same k, give raise to different A-loops or not. The answer depends
on the ring. For fields and Z/prZ there exist a unique loop for each admissible
0-order. In the other cases there can be more isomorphism classes. We shall ignore
the case t = 0 since the associated loop is a group then, according to Proposition 2.

From now on, R is either a field or Z/nZ. We are in a special case, namely s = 1,
hence some things, that we have already established, simplify substantially. It is
useful to have a description what elements can be obtained as f i(0).

Lemma 21. Let t ∈ R∗ be such that t−1 ∈ R∗ and f1,t is of finite 0-order k. Then
k > 2 and



ON COMMUTATIVE A-LOOPS OF ORDER PQ 13

(i) t =
(

ζ−1
ζ+1

)2

where ζ is an element of multiplicative order k (in an extension

of R).

(ii) The roots of the characteristic polynomial are λ = 2ζ
ζ+1 and µ = 2

ζ+1 .

(iii) F i
1,t

(

0
1

)

=

(

λi
−µi

λ−µ
λi+µi

2

)

(iv) f i
1,t(0) =

ζ + 1

ζ − 1
· ζi − 1

ζi + 1

Proof. (i) was stated in Proposition 12 for fields; for R = Z/prZ it is the same
according to the proofs of Proposition 18 or 19. In the case of Z/mnZ, for m and
n coprime, we use the induction and the Chinese remainder theorem.

For proving (ii) just check that λ + µ = 2 and λµ = 1 − t.
(iii) Something similar was written in Proposition 7 with the exception that

the second coordinate was λi(1−µ)−µi(1−λ)
λ−µ . But 1−µ

λ−µ = ζ+1−2
ζ+1 · ζ+1

2ζ−2 = 1
2 and

analogously 1−λ
λ−µ = − 1

2 . Hence the second coordinate simplifies to (λi + µi)/2.

(iv) By (iii), we have f i
1,t(0) = λi

−µi

λ−µ · 2
λi+µi . Replacing 2 by λ+µ and using the

relation λ
µ = ζ, we get f i

1,t(0) = ζi
−1

ζ−1 · ζ+1
ζi+1 . �

As a byproduct, we can rewrite Proposition 1 in a better looking way, at least
for the case t ∈ R∗.

Proposition 22. Let M be a module over a ring R, which is either a field or the
ring Z/nZ. Suppose that there exists ζ, an element of an odd order k, lying either
in R∗, or in a quadratic extension of R and being of norm 1, with respect to R.
Then we can define a commutative A-loop on the set M × Z/kZ as follows:

(a, i) · (b, j) =

(

(a + b) · (ζi + 1) · (ζj + 1)

2 · (ζi+j + 1)
, i + j

)

.

This loop is equal to M [1, t] for t =
(

ζ−1
ζ+1

)2

.

Proof. It was described in Theorem 14 and Theorem 20 that for the specified choices
of k there exists a t such that f1,t is of 0-order k. According to Lemma 21, we have

t =
(

ζ−1
ζ+1

)2

and f i(0) = ζ+1
ζ−1 · ζi

−1
ζi+1 . Hence 1 + tf i(0)f j(0) = 2(ζi+j+1)

(ζi+1)(ζj+1) and we

insert this expression into Proposition 1. �

We are ready now to tackle the problem of isomorphism. We shall use the result
Drápal found when studying his construction.

Proposition 23 (Drápal [5]). Let M be a faithful module over a commutative
ring R. Let t, t′ ∈ R∗ be of the same finite 0-order k. Then an isomorphism
M [1, t] ∼= M [1, t′] which restricts to the identity upon M ×{0} exists if and only if
t′ = td2 for some d = f r(0), where 1 ≤ r < k, r ∈ Z∗

k. This condition is necessary
and sufficient when M(+) is a cyclic group.

We already know what elements can be f r(0) and hence we can give an immediate
answer: the construction is unique in the case of invertible elements in a field or in
Z/prZ.

Proposition 24. Let M be a faithful module over R, which is either a field or
Z/prZ. Let t, t′ ∈ R∗ be of the same finite 0-order k. Then the loops M [1, t] and
M [1, t′] are isomorphic.
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Proof. Write t =
(

ζ−1
ζ+1

)2

and t′ =
(

ζ′
−1

ζ′+1

)2

. The element ζ is of multiplicative

order k in R∗ and so is the element ζ′. Since all k-th roots of 1 belong to the cyclic
group generated by ζ, there exists some i such that ζ′ = ζi.

According to Lemma 21 we have f i(0) = ζ+1
ζ−1 ·

ζi
−1

ζi+1 which is the d we are looking

for. Indeed,

td2 =

(

ζ − 1

ζ + 1

)2

·
(

ζ + 1

ζ − 1
· ζi − 1

ζi + 1

)2

=

(

ζ′ − 1

ζ′ + 1

)2

= t′

Now the conditions of Proposition 23 are fulfilled. �

The unicity does not hold in the general case; the smallest examples, brought by
the following proposition, are two non-isomorphic loops of order 5 · 11 · 19.

Proposition 25. Let R = Z/pqZ, where p and q are distinct primes. Let and odd
k > 2 divide either p − 1 or p + 1 as well as either q − 1 or q + 1. Then there
exist exactly ϕ(k)/2 non-isomorphic loops of order kpq, obtained as R[1, t] for some
t ∈ R∗.

Proof. We have R ∼= Fp ×Fq. A mapping F is of 0-order k on R if and only if both
projections are of 0 order k on R. There exist exactly ϕ(k)/2 choices of such a tp
in Fp and there exist exactly ϕ(k)/2 choices of such a tq in Fq, thus giving ϕ(k)2/4
choices of t = (tp, tq).

We have tp = (ζp − 1)/(ζp + 1) where ζp is a primitive k-th root of 1 in Fp.
But tp = (ζ−1

p − 1)/(ζ−1
p + 1) too and these are both possibilities how to obtain tp

from a primitive k-th root of 1 in Fp. The same holds for tq and therefore there
are four possibilities how to obtain t, namely from (ζp, ζq), (ζp, ζ

−1
q ), (ζ−1

p , ζq) and

(ζ−1
p , ζ−1

q ).
Now we follow the proof of Proposition 24. The cyclic group generated by (ζp, ζq)

has ϕ(k) elements; they give raise to ϕ(k)/2 different values of t′ since (ζi
p, ζ

i
q) gives

the same t′ as (ζ−i
p , ζ−i

q ). The elements from the cyclic subgroup generated by

(ζp, ζ
−1
q ) follow the structure of the subgroup generated by (ζp, ζq), meaning that

the first coordinate is the same and the second is inverted, and therefore the same
values of t′ are obtained. Hence, according to Proposition 23, one loop with a given
t is isomorphic to exactly ϕ(k)/2 loops R[1, t′] (including itself).

We know that there are ϕ(k)2/4 choices of t which are split into isomorphism
classes of ϕ(k)/2 elements. Hence there are ϕ(k)/2 isomorphism classes. �

We do not give any result for t /∈ R∗ since the article of Drápal does not give us
a tool for studying it. Nevertheless, it seems that something similar to Proposition
23 is true here: a computer computation using the GAP package Loops [9] gives
Z/25Z[1, 5] ∼= Z/25Z[1, 20] 6∼= Z/25Z[1, 10] ∼= Z/25Z[1, 15]. In other words, they
are isomorphic if and only if t and t′ differ by a square. Another example is
Z/27Z[1, 6] 6∼= Z/27Z[1, 15] to see that it concerns 3-loops too.

A different question is whether, given a t ∈ F∗

p, there is an isomorphism between
Fpr [1, t] and Z/prZ[1, t]. The answer is easy there: according to Proposition 1, we
have Inn(Fpr [1, t]) ∼= Z/prZ⋊Z/(p−1)Z and Inn(Z/prZ[1, t]) ∼= Z/prZ⋊Z/pr−1(p−
1)Z. Hence the loops cannot be isomorphic.

6. Loops of a semiprime order

The first motivation when writing this article was to describe all commutative
A-loops of order kp, for k and p primes (not necessarily distinct). First half of the
section deals with this question; the work is nearly done up to one result which is
expected to appear till the end of 2009.
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Any construction of commutative A-loops of an odd order is helpful when study-
ing Bruck loops too: Kinyon, Vojtěchovský and the first author proved in [6] that
when (Q, ·) is a non-associative commutative A-loop of an odd order then there
exists an operation ◦ on Q defined as

x ◦ y = (x · y2/x−1)
1
2

such that (Q, ◦) is a non-associative Bruck loop. In the second half of the sec-
tion we give the explicit formula of the Bruck loop that arises this way from the
commutative A-loops studied here.

But first look at commutative A-loops of order kp.

Theorem 26. Let k ≤ p be two primes. Then there exists a non-associative
commutative A-loop of order kp if and only if k > 2 and k divides p2 − 1.

Proof. “If”: Let ζ be a primitive k-th root of 1 within Fp2 and put t =
(

ζ−1
ζ+1

)2

.

Then Zp[1, t] is a commutative A-loop of order kp, according to Lemma 21 and
Proposition 3. It is not associative according to Proposition 2.

“Only if”: It was proved in [7] that commutative A-loops of orders 2p and p2

are groups. Hence we can suppose 2 < k < p. It was already said, in the beginning
of the section, that once (Q, ·) is an odd order commutative A-loop, there exists a
non-associative Bruck loop of the same cardinality, namely (Q, ◦). And according
to Sharma [11], there exists a non-associative Bruck loop of order kp, for such k
and p, if and only if k divides p2 − 1. �

It is highly probable that such a loop is unique.

Conjecture 27. Let k and p be two primes. Then there exists at most one non-
associative commutative A-loop of order kp, up to isomorphism.

Idea of a proof: Aleš Drápal decided once to characterise all loops with metacyclic
inner mapping groups and trivial centers. It turned out that these loops fall into
six types of constructions. The construction described in Proposition 1 is the only
one of them bearing commutative A-loops.

It was proved in [7] that a commutative A-loop of order kp must have a trivial
center and a normal subloop of order p. From this, it is easy to prove that such a
loop must have a metacyclic inner mapping group. Hence it must fall into one of
the categories described by Drápal and that means that it must be achievable by
the construction of this paper. And, according to Proposition 24, all constructed
loops of order kp are isomorphic.

The only reason why we call it a conjecture here rather than a theorem, is that
the characterisation, we mentioned, has not been written yet and thus we cannot
check its correctness. �

Now we shall concentrate on the Bruck loops associated to our commutative
A-loops.

Theorem 28. Let M be a module over a ring R, which is either a field or the ring
Z/nZ. Suppose that there exists ζ, an element of an odd order k, lying either in
R∗, or in a quadratic extension of R and being of norm 1, with respect to R. Then
we can define a loop on the set M × Z/kZ as follows:

(a, i) ◦ (b, j) =

(

a · (ζi+2j + 1) · (ζi + 1) + b · ζi · (ζj + 1)2

(ζi+j + 1)2
, i + j

)

.

This loop is a Bruck loop.

Proof. The proof is a straightforward calculation only. In the beginning of the
section we explained how to associate a Bruck loop to an odd order commutative
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A-loop. Here we compute the operation ◦ associated to the operation · given in
Proposition 22. We see immediately that (a, i)−1 = (−a,−i) and (a, i)/(b, j) =
(

a · 2(ζi+1)
(ζi−j+1)(ζj+1) − b, i − j

)

. The element (a, i)
1
2 is the only element (b, j) such

that (b, j)2 = (a, i). It is again easy to check (a, i)
1
2 =

(

a · ζi+1

(ζ
i
2 +1)2

, i
2

)

. Hence we

can compute (a, i) ◦ (b, j) =
(

((a, i) · (b, j)2)/(−a,−i)
)

1
2 which gives eventually the

expression from the theorem. �

Some Bruck loops of order kp were presented in [10]. It is not difficult to show
that the Bruck loops constructed there are the same as the loops given in Theorem
28 for R = Fp. However, our construction is explicit while the construction in [10]
needed some recursive sequences to be found first.

In fact, these Bruck loops are the only known Bruck loops of order kp. It is
conjectured that there exist no more such Bruck loops than these. One possible
way to prove it is using the correspondence between commutative A-loops and
Bruck loops together with Conjecture 27. But we still do not know whether this
correspondence is a bijection.

Open Question. The mapping (Q, ·) 7→ (Q, ◦) is a mapping from the set of all
commutative A-loops of odd order to the set of all Bruck loops of odd order. Is
this mapping injective or surjective?
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