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Abstract. We study here so called cuts of terms and their classes modulo the
identities of the left distributivity and the idempotency. We give an inductive
definition of such classes and this gives us a criterion that decides in some
cases whether two terms are equivalent modulo both identities.

The article deals with the left distributive (x · yz = xy · xz) and the idempotent
(x = xx) identities. The most natural example of a left distributive idempotent
(LDI) groupoid is a group G with conjugation, i.e. the operation x ∗ y = x−1yx.
However, it was proved independently by Larue [5] and Drápal, Kepka, Muśılek [2]
that there exist some terms that are not LDI-equivalent but they are equal if realised
as the conjugation in a group.

So far, the only method, that enables us to distinguish two terms, not equivalent
modulo LDI but equivalent modulo the group conjugation (GC), is the semantical
criterion, i.e. finding a suitable ad hoc counterexample. This exactly was used
in the two cited articles, they took a pair (both the same pair) of terms and a 4-
element groupoid (both the same one) and mapped the terms at different elements
of the groupoid.

The only groupoid example, that would give us a perfect answer for any pair of
terms, saying if they are LDI-equivalent or not, is the free LDI-groupoid. However,
its structure is unknown so far. Hence, to show that two terms are LDI-equivalent,
we have to find its syntactical proof, and to show that two terms are not LDI-
equivalent we either have to find a suitable counterexample or use a syntactical
criterion, i.e. we have to find an invariant of the terms that is preserved modulo
both identities.

So far, the only non-trivial invariant known is the weight of terms (see Section 3).
In this article we present a criterion that gives different results than the weight,
it means that it enables us to prove the non-equivalence of some pairs of terms
with the same weight but on the other hand there are indistinguishable terms with
different weights.

The article is organised as follows: in Section 1 we introduce basic definitions
for the work with terms, like addresses and expansions. Section 2 is the core of the
article. We present cuts of terms, techique invented by Dehornoy [1] and used to
find a quasi-order on the set of terms, the equivalence of which is exactly the LD-
equivalence (and thus the word problem of the free LD groupoid was solved). In our
case, the quasi-order equivalence encompasses properly the equivalence generated
by the left distributivity and the idempotency. Nevertheless, we can use it as a
partial criterion to detect non-equivalence of terms. For this we describe inductively
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how any upper bounded set in this quasi-order looks like. This definition is not
a construction in the sense that it does not enable us to enumerate all the terms
belonging to the set. But if we find a common property of all elements of such a
set, we can exclude effectively some terms from it. This is used in Section 3 to show
an example of two terms that are not LDI-equivalent.

Most of the article was a part of the author’s thesis [3].

1. Introductory definitions

In this section we introduce notations needed for the work with terms. The
notations are standard and hence we do not explain them too carefully here, the
reader can find thorough explanations in [1]. Recall that we work with binary
terms.

Definition: An address is a finite sequence of 0 and 1. The empty address is
denoted �. We say that an address α is a prefix of an address β, denoted α v β, if
α = βγ for an address γ. We say that α is on the right of β, denoted α >LR β, if
γ1 v α and γ0 v β for some address γ. We say that α is orthogonal to β, denoted
α ⊥ β, if α is on the right or on the left of β. We write α > β if α >LR β of α w β.

Note that > is a linear order on the set of addresses.

Definition: Let t be a term and α an address. The subterm of t at α, or an
α-subterm of t, is the term sub(t, α) defined as

(1) sub(t, α) =











t for α = �,

sub(t1, β) for α = 0β and t = t1 · t2,

sub(t2, β) for α = 1β and t = t1 · t2.

Definition: Let t be a term. We say that an address α lies in t if sub(t, α) exists.
In this case we say that α is an external address if sub(t, α) is a variable and that α

is internal otherwise. The skeleton of t is defined as the set Skel(t) of all addresses
in t and the outline of t as the set Out(t) of all external addresses.

Notation. Let α be an address in t. Then there exist unique numbers p and q

such that α0p and α1q are external. If there is no confusion we write α0∗ and α1∗

instead to avoid introducing p and q.

The aim of the article is to describe a syntactical criterion for the left distribu-

tivity and the idempotency. We denote t
LDI
= t′ the equivalence relation generated

by the left distributive and the idempotent law, that means by x · yz
LD
= xy · xz

and x
I
= xx. We look at the identities as being a rewriting system:

Definition: We say that a term t′ is a basic LD-expansion of a term t if t′ is
obtained from t by replacing a subterm of form t1 ·(t2 ·t3) by the term (t1 ·t2)·(t1 ·t3).
We say that a term t′ is a basic I-expansion of a term t if t′ is obtained from t by
replacing a subterm t1 by the term t1 · t1.
We say that a term t′ is a basic expansion of a term t if t′ is a basic LD-expansion
or a basic I-expansion of the term t.
We say, for k > 0, that a term t′ is a k-expansion of a term t (or simply an expansion,
denoted t → t′) if there exists a sequence t = t0, . . . , tk = t′ of terms such that ti is
a basic expansion of ti−1, for each 1 6 i 6 k.

The chosen rewriting system is evidently not finitely terminating, nevertheless
we can prove its confluence [5].
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Definition (iterated left subterm): For two terms t1 and t2 we write t1 < t2 if
there exists p > 0 such that t1 = sub(t2, 0

p). Analogously, t1 v t2 is the same

relation with p > 0. We write t1 vLDI t2 if there exist t′1
LDI
= t1 and t′2

LDI
= t2 with

t′1 v t′2.

The v relation is a partial order. The vLDI relation is a quasi-order; it is easy
to prove that it is not an order: we have xy < xy · x < (xy · x) · (xy · y). Since
xy → (xy · x) · (xy · y), we have xy vLDI xy · x vLDI xy. However, these two terms
cannot be equivalent since both LD and I identities preserve the rightmost variable.

The iterated left subterms are, modulo LDI-equivalence, preserved by expan-
sions:

Proposition 1.1: Let t′ be a k-expansion of a term t. If the address 0p is in t,
for some p > 0, then there exist p′ > p and k′ 6 k such that sub(t′, 0p′

) is a
k′-expansion of sub(t, 0p).

Proof. We can suppose that t′ is a basic expansion of t. We show the result by
induction on t. For t a variable, the result is true. Suppose t = t1 · t2 and t′ =
t′1 · t′2. If p = 0 then the result is trivial. Hence suppose p > 0. We have three
possibilities: if the basic expansion was t2 → t′2 then sub(t, 0p) = sub(t′, 0p). If the
basic expansion was t1 → t′1 then we use the induction hypothesis. Finally suppose
that the expansion was made in the root. Denote t2 = t3 · t4. Then we have either
t′ = (t1 · t3) · (t1 · t4) or t′ = (t1 · t2) · (t1 · t2) and the result is clear. �

2. Cuts of terms

In this section we introduce the main tool of the article—the cuts of terms. We
study the connection between cuts of terms and left iterated subterms and this
study leads to an inductive description of all the terms s with s vLDI t, for a given
term t.

Definition: Let α be an address in a term t. We define the cut of t in α as the
term cut(t, α) recursively:

(2) cut(t, α) =











t for α = �,

cut(t1, β) for α = 0β and t = t1 · t2,

t1 · cut(t2, β) for α = 1β and t = t1 · t2.

x1 x2

x3 x4

x5 x6

S

Figure 1. The cut of the term ((x1 · x2) · x3) · (x4 · (x5 · x6)) in
the address 10 is the term ((x1 · x2) · x3) · x4.

Example: To make a cut if term t in an external address α means to cut the tree
of t right after the leaf with the address α. We remove the right part and reconstruct
the term with the remainder on the left (see Figure 1). Consider t = ((x1 ·x2) ·x3) ·
(x4 ·(x5 ·x6)). One has cut(t, 000) = x1, cut(t, 001) = x1 ·x2, cut(t, 01) = (x1 ·x2)·x3,
cut(t, 10) = ((x1 ·x2)·x3)·x4, cut(t, 110) = ((x1 ·x2)·x3)·(x4 ·x5) and cut(t, 111) = t.
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The example explains how to understand cuts in the external addresses. For the
internal ones, we have

Lemma 2.1 (in [1]): Let t be a term. Then, for each α ∈ Skel(t), we have
cut(t, α) = cut(t, α1∗).

We can see easily that s v t means that s is a cut of t. The other direction is
also true, up to LDI-equivalence:

Lemma 2.2 (in [1]): Let s be a cut of a term t at an address α. Then there
exists t′, an LD-expansion of t, with s v t′.

What happens with cuts if we make different expansions? Some new cuts can
appear while all cuts of the starting term are expanded to cuts of the expanded
term:

Lemma 2.3: Let t′ be an expansion of a term t. Let α be an address in t. Then
there exists α′, an address in t′ such that cut(t, α) → cut(t′, α′).

Proof. We can suppose that t′ is a basic expansion of t at an address β. We can
also suppose that α is an external address. If α ⊥ β then evidently cut(t, α) →

cut(t′, α). Hence suppose β v α. For an LD-expansion in β, we have cut(t, β0γ) =
cut(t′, β00γ), cut(t, β10γ) = cut(t′, β01γ) and cut(t, β11γ) → cut(t′, β11γ), for all
addresses γ. For an I-expansion in β, we have cut(t, βγ) = cut(t′, β0γ), for each
address γ. �

There is a question: how can we describe those new cuts of the expanded term?
To answer this, we need an auxiliary observation. The expression x · y · z means
x · (y · z).

Lemma 2.4 (in [1]): Let α be an address in a term t. Then

(3) cut(t, α) = sub(t, α10) · sub(t, α20) · · · · · sub(t, αp0) · sub(t, α),

where α1, . . . , αp are the <-ordered set of all the prefixes of α such that α11, . . . , αp1
are prefixes of α too.

Proposition 2.5: Let t′ be a basic expansion of a term t and let α′ be an address
in t. Then one of the following possibilities holds:
- there exists α, an address in t, such that cut(t, α) → cut(t′, α′);
- there exist addresses α1 > α2 in Out(t), such that cut(t′, α′) → cut(t, α1) ·

cut(t, α2).

Proof. We can suppose α external. Let t′ be a basic expansion of t at an address β.
According to the proof of Lemma 2.3, all configurations but two fall in the first
possibility. Let us investigate the remaining two.
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If the expansion is the basic LD-expansion at β and α′ = β10γ, for an address γ,
then, according to Lemma 2.4,

cut(t′, α′) = sub(t′, β10) · · · sub(t′, βp0) · sub(t′, β0)

· sub(t′, β10γ10) · · · sub(t′, β10γq0) · sub(t′, β10γ)

= sub(t, β10) · · · sub(t, βp0) · (sub(t, β0) · sub(t, β10))

· sub(t, β0γ10) · · · sub(t, β0γq0) · sub(t, β0γ)

→ sub(t, β10) · · ·
(

sub(t, βp0) · (sub(t, β0) · sub(t, β10))
)

· sub(t, βp0)

· sub(t, β0γ10) · · · sub(t, β0γq0) · sub(t, β0γ)

→
(

sub(t, β10) · · · sub(t, βp0) · sub(t, β0) · sub(t, β10)
)

·
(

sub(t, β10)

· · · sub(t, βp0) · sub(t, β0γ10) · · · sub(t, β0γq0) · sub(t, β0γ)
)

= cut(t, β10) · cut(t, β0γ) = cut(t, β101∗) · cut(t, β0γ),

where β1, . . . , βp and γ1, . . . , γq have the same meaning as in Lemma 2.4.
If the expansion is the basic I-expansion at β and α′ = β1γ, for some address γ,

then a similar reasoning gives cut(t′, α′) → cut(t, β1∗) · cut(t, βγ). �

The proposition gives raise to the definition of the set of all such terms that can
appear as cuts of terms equivalent to a term t:

Definition: For a term t, we define Cut(t) as the smallest set of terms satisfying:
1) each cut of t belongs to t;
2) if a term s′ is equivalent to a term s from Cut(t) then s′ belongs to Cut(t) too;
3) let s and s′ belong to Cut(t), if there exists a term t′, equivalent to t, whom s is
the cut at an external address α and s′ is the cut at an external address α′ and if
α > α′ then the term s · s′ belong to Cut(t).

Corollary 2.6: Let t and t′ be two equivalent terms. Then each cut of t′ belongs
to Cut(t).

Proof. Use induction on the length of the proof t
LDI
= t′, together with Lemma 2.3

and Proposition 2.5. �

The set Cut(t) is supposed to be the set of all the cuts of all the terms equivalent
to t. We have proved one direction only, the other direction comes immediately:

Proposition 2.7: Let t be a term. For each s ∈ Cut(t) there exists a term t′,
equivalent to t, such that s is a cut of t′.

Proof. The set Cut(t) is build up inductively. For any term added to Cut(t) by
the first or by the second rule, the proposition is trivial. Hence suppose that we
have a term s added by the third rule, i.e., one has s = s1 · s2 with s1, s2 ∈ Cut(t)
and both subterms satisfy the induction hypothesis. Then there exists a term t1,
equivalent to t, with s1 and s2 as cuts. Moreover, the address of the cut s1 is on
the right of the address of the cut s2 and therefore s2 can be seen as a cut of s1.

According to Lemma 2.2, “being a cut of” is a subrelation of the relation vLDI.
We can thus rewrite the situation as s2 vLDI s1 vLDI t1. By definition, there exist

s′1
LDI
= s1, s′2

LDI
= s2 and t2

LDI
= t1 such that s′2 v s′1 v t2. We denote by α the address

of s′1 in t2 and by αβ the address of s′2 in t2. We denote by t3 the term obtained
from t2 by making the basic I-expansion at α. We have then

cut(t3, α1β) = sub(t3, α) · sub(t3, α1β) = sub(t2, α) · sub(t2, αβ) = s′1 · s
′

2

LDI
= s.
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Since t3 is equivalent to t, we have s vLDI t. Replacing the term s′1 · s
′

2 in t3 by s,
we obtain an equivalent term t′ with s v t′, making a contradiction. �

We can gather all the information gained in this section into the following theo-
rem:

Theorem 2.8: The following conditions are equivalent for two terms s and t:
(i) s vLDI t;

(ii) there exists a term t′ with t′
LDI
= t and s v t;

(iii) there exists a term t′ with t′
LDI
= t and α ∈ Skel(t) such that s = cut(t′, α);

(iv) s ∈ Cut(t);
(v) Cut(s) ⊆ Cut(t).

Proof. (i)⇒(ii) The definition says that there exist s′
LDI
= s and t′′

LDI
= t′ such that

s′ v t′′. The term t′ is obtained from t′′ replacing the subterm s′ by s. (ii)⇒(iii)
Evident. (iii)⇒(i) Lemma 2.2. (iii)⇒(iv) Corollary 2.6. (iv)⇒(iii) Proposition 2.7.
(iv)+(i)⇒(v) Due transitivity of vLDI. (v)⇒(iv) Evident. �

Remark. We can now write the third rule in the definition of Cut(t) more briefly:
if s′ vLDI s both belong to Cut(t) then s · s′ belongs to Cut(t) too.

3. The criterion

In this section we describe a syntactical method that enables us to distinguish,
in some cases, two non-equivalent terms. This method uses the weight of terms:

Definition: Let us choose a real number p ∈ [0, 1] and real numbers wx, for each
variable x. Then the weight of a term t is defined inductively:

(4) w(t) =

{

wx for t = x, a variable,

p · w(t1) + (1 − p) · w(t2) for t = t1 · t2.

It is easy to show that two equivalent terms have the same weight, whatever
constants we choose. It is also easy to find two non-equivalent terms with the
same weight but, of course, one has to find a different criterion how to prove the
non-equivalence of the terms. The criterion we will discuss here is

(5) If t
LDI
= t′ then

(

t vLDI t′ and t′ vLDI t
)

.

We have already shown in Section 1 that the condition in (5) is necessary but
not sufficient. Moreover, the example terms have different rightmost variables and
hence their non-equivalence is detected by nearly any weight. Nevertheless, there
exist couples of terms distinguishable by our criterion and indistinguishable by
weights. An example we show here is xy and (x · xy) · (yx · y).

Lemma 3.1: For any choice of constants, the weight of xy is the same as the
weight of (x · xy) · (yx · y).

Proof. w((x · xy) · (yx · y)) =

= p2wx + p2(1 − p)wx + p(1 − p)2wy + p2(1 − p)wy + p(1 − p)2wx + (1 − p)2wy

= p2wx + p(1 − p)wx + p(1 − p)wy + (1 − p)2wy = pwx + (1 − p)wy = w(xy). �
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These two terms are indistinguishable using the weight criterion. We want to
distinguish them using our criterion, more precisely, we want to show (x · xy) ·
(yx · y) 6vLDI xy. Using Theorem 2.8 (v) we want to show that there exists a term
in Cut((x · xy) · (yx · y)) not belonging to Cut(xy). For this we find a common
property of all terms in Cut(xy)—a weight.

Lemma 3.2: Let us set wx = 1, wy = −1 and p = 1

2
. Then each term from Cut(xy)

has non-negative weight.

Proof. We show the result for all three rules of Cut(xy) construction.
1) Weights of cuts: w(x) = 1, w(xy) = 0.
2) Equivalent terms have the same weights.
3) If w(s) > 0 and w(s′) > 0 then w(s · s′) > 0. �

It remains to find a term t from Cut((x · xy) · (yx · y)) with w(t) < 0.

Proposition 3.3: The terms xy and (x · xy) · (yx · y) are not equivalent.

Proof. Let us take t = (x · xy) · y, which is cut((x · xy) · (yx · y), 100). Then
w(t) = − 1

4
and, according to Lemma 3.2, the term t cannot belong to Cut(xy).

Therefore, according to Theorem 2.8, (x · xy) · (yx · y) 6vLDI xy and these terms are
not equivalent. �

4. Open problem

In the introduction, we have spoken about the group conjugation, a proper sub-
variety of LDI variety. The free algebra of the group conjugation variety is a
subgroupoid of the free group with conjugation [6] and therefore the word problem
in this algebra is easy to solve. Hence the difficulty of the word problem of the
free LDI groupoid lies outside of the group conjugation. Thus one natural ques-
tion arises: is the criterion of this article helpful when dealing with GC-equivalent
terms?

The shortest known example of GC-equivalent terms that are not LDI-equivalent
is (xy · y)x and xy · (yx · x) [5] and [2]. A straitforward calculation shows Cut((xy ·

y)x) = Cut(xy · (yx · x)); the calculation was done in [3]. Nevertheless, it seems
that the variety generated by the group conjugation is not finitely based and hence
there might be enough space to find a different pair of GC-equivalent terms where
our criterion applies to show their LDI-non-equivalence.

Open Problem 4.1: For two terms t and t′, does t
GC
= t′ imply t vLDI t′ or not?
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