
Integral minimisation improvement for Murphy'spolynomial selection algorithmP°emysl Jedli£kaAbstractThe �rst phase of the general number �eld sieve is the polynomialselection. One popular method of selecting the polynomial was describedby Murphy. A step in Murphy's polynomial selection consists of �ndinga minimum of an integral. The size of the coe�cients of the polynomialcauses that the classical steepest descent algorithm is not too e�ective.This article brings an idea how to improve the steepest descent algorithmso that it converges better and faster.The currently fastest algorithm for integer factorisation is the general num-ber �eld sieve. A crucial point is to �nd a good polynomial with a good yield.Not much was known about how to �nd one since Murphy presented in his the-sis [1] a method for polynomial selection. The method is not described preciselyand hence there is much work to be done by specifying an optimal way to dealwith each step.One step of Murphy's polynomial selection is the following: we start with apolynomial and we perform a rotation and a translation on this polynomial inorder to minimise an integral. A classical algorithm for �nding a minimum ofa multi-variate polynomial is the steepest descent method. However, the basepolynomial has very large coe�cients (typically about 25 digits) and this bringsmany problems: the method does not need to converge and when it does, it cando so very slowly.This article describes how to deal with this special problem. We bene�t fromthe special form of the function we are dealing with and compute the minimumwith respect to some (the most critical) variables. If this step is done at eachstep of the steepest descent algorithm, this algorithm converges very fast.1 Problems appearing in the steepest descent implemen-tationsLet us denote by N the big number we want to factorize by the number �eldsieve. In Murphy's thesis [1], page 84, there is the following construction: wehave a polynomial fm with a root m modulo N . We perform a translation by anumber t and rotation by a polynomial P to obtain
f(x) = fm(x − t) + P (x)(x − t − m).Then we consider the homogenius polynomial associated to f

F (x, y) = ydf(x
y
)and we want to �nd optimal values of P , t and s so that the integral

∫

√

s
−1

−

√

s
−1

∫

√

s

−

√

s

F 2(x, y) dxdy1



is minimal. This is done by a multi-variate minimisation algorithm.It is probable that every implementation of this problem should use the steep-est descent method somehow. However, direct implementation of this methodis not very good. The coe�cients of the polynomial fm have many digits andhence some coe�cients of F 2 are extremely large (about 1050). Such sizes arenot common in everyday numerical analysis. . .Two types of problems can occur. In both, informally said, we have a valley,or more precisely a very deep canyon and we start our minimisation algorithmon a side of this valley (canyon). The side is very steep hence the di�erentialshows we should continue right downhill (see Figure 1).

Figure 1: Very deep valley in the multivariate polynomial (using contour lines)The worse situation is when the valley is �narrower� than the minimal step.Then making a step (even the minimal one) in the direction of the di�erential,we jump over the valley reaching a spot on the opposite side of the valley thatis higher than the spot of origin. Thus the algorithm ends here, far from �ndinga suitable minimum.The better situation when the valley is not that extremely narrow. We makea step across the valley ending on the other side in a lower spot. Now we haveto turn back and cross the valley again ending close to the spot of origin (seeFigure 1). Nevertheless, we keep getting lower hence there is no need to stop the

Figure 2: A slow convergence in the valleyalgorithm or alter the step length. We continue zig-zagging and we eventuallyconverge to a local minimum but after a very long time. It does not help ifwe eventually try to change the step length. The sides are much steeper than2



the valley itself and hence we do zig-zagging always unless we are really at thebottom of the valley. However, even if we happen to be there in one step, thereis no guarantee we will not be on a side of the valley after the next step.I took a look into the source code of the GGNFS implementation [2] of thegeneral number �eld sieve. It happened many times that the steepest descentroutine returned the same values as the ones we started with (due to the �rstproblem). The authors tried to deal with it by �perturbing� the found values,that means by changing the values and trying luck but as you can imagine itwas not always successful.2 Solution of the problemFortunately, the form of the function we are dealing with enables us to bet-ter solve the problem. Actually, it is the coe�cients of the rotation polyno-mial P (x) that bring all the mess into the steepest descent algorithm. Let ustake, P (x) = c2x
2 + c1x + c0, for instance, the process will be analogical fordi�erent polynomials. We have

f(x) = fm(x − t) + (c2x
2 + c1x + c0)(x − t − m).We denote by S the rectangle [−

√
s,
√

s]×[−
√

s
−1

,
√

s
−1

] and by FS the integral
∫∫

S

F 2(x, y) dxdy.It is a function in �ve variables: c0, c1, c2, s and t. From the construction ofthe function FS we easily deduce the decomposition
FS = B(t, s) +

2
∑

i=0

Bi(t, s)ci +

2
∑

i=0

2
∑

j=i

Bij(t, s)cicjwhere B, Bi and Bij for 0 6 i 6 j 6 2 are functions only in variables t and s.Let us �x t and s and denote bij to be the value of Bij in these �xed values.The graph of the function forms a quadric in R
4, actually it should be a 4-dimensional paraboloid. It is easy to compute the minimum of this paraboloidusing partial derivatives:

∂FS

∂c0

= b0 + 2b00c0 + b01c1 + b02c2

∂FS

∂c1

= b1 + b01c0 + 2b11c1 + b12c2

∂FS

∂c2

= b2 + b02c0 + b12c1 + 2b22c2The minimum is the triple (c0, c1, c2) for which all three partial derivatives areequal to 0. Therefore we have to solve the system of linear equations given bythe matrix




2b00 b01 b02 −b0

b01 2b11 b12 −b1

b02 b12 2b22 −b2



which can be done using Gaussian elimination.3



The algorithm of the steepest descent is now following: at each step we usethe values of t and s to compute the numbers bi and bij . Next we compute valuesof ci and we obtain a point where partial derivatives with respect to ci shouldbe 0 for all i (and we should be on the bottom of the valley). The values ofpartial derivatives with respect to t and s are �relatively reasonable� and we canperform a step of the steepest descent changing the values of t and s. After thisstep, we can be again on a side of the valley hence it is necessary to recomputethe values of ci and so further until we converge close enough to a minimum.3 Experimental resultsI tried both approaches on my implementation of GNFS polynomial selection.The results are in the table 1. I applied the algorithm on many polynomialsmeasuring the average time it took and the average value of I(F, S) obtained(I(F, S) = ln
√

FS). The degree of P (x) was chosen so that the performanceof the algorithms is optimal: if the degree of P (x) is too high, the highestcoe�cients are set to zero anyway, only the computation is slower and lessexact. degree degree classical algorithm improved algorithmof fm(x) of P (x) I(F, S) time I(F, S) time4 0 37.52 52.4ms 37.49 20.4ms5 1 44.47 144.6ms 43.94 125.6ms6 2 52.34 215.5ms 51.29 225.2msTable 1: Experimental results for the steepest descent algorithmsI interpret the results the following way: when there is only one coe�cientof P (x), the valleys are not so narrow, the classical steepest descent converges(and is almost as good as the improved version). However it converges moreslowly. The more there are coe�cients of P (x), the more problems occur andthe more probable is for the classical algorithm to stop long before reaching aminimum. It can even �nish sooner than the improved one but with much worseresult.References[1] B.A. Murphy, Polynomial Selection for the Number Field Sieve Integer Fac-torisation Algorithm, Ph.D. thesis, The Australian National University, 1999[2] C. Monico, �GGNFS�,http://www.math.ttu.edu/~cmonico/software/ggnfs/index.htmlP°emysl Jedli£kaDepartement of MathematicsTechnical Faculty, Czech Agricultural UniversityKamýcká 129165 21, Praha 6 � SuchdolCzech Republicjedlicka@karlin.mff.cuni.cz 4


