Integral minimisation improvement for Murphy’s
polynomial selection algorithm

Prfemysl Jedlicka

Abstract

The first phase of the general number field sieve is the polynomial
selection. One popular method of selecting the polynomial was described
by Murphy. A step in Murphy’s polynomial selection consists of finding
a minimum of an integral. The size of the coefficients of the polynomial
causes that the classical steepest descent algorithm is not too effective.
This article brings an idea how to improve the steepest descent algorithm
so that it converges better and faster.

The currently fastest algorithm for integer factorisation is the general num-
ber field sieve. A crucial point is to find a good polynomial with a good yield.
Not much was known about how to find one since Murphy presented in his the-
sis [1] a method for polynomial selection. The method is not described precisely
and hence there is much work to be done by specifying an optimal way to deal
with each step.

One step of Murphy’s polynomial selection is the following: we start with a
polynomial and we perform a rotation and a translation on this polynomial in
order to minimise an integral. A classical algorithm for finding a minimum of
a multi-variate polynomial is the steepest descent method. However, the base
polynomial has very large coefficients (typically about 25 digits) and this brings
many problems: the method does not need to converge and when it does, it can
do so very slowly.

This article describes how to deal with this special problem. We benefit from
the special form of the function we are dealing with and compute the minimum
with respect to some (the most critical) variables. If this step is done at each
step of the steepest descent algorithm, this algorithm converges very fast.

1 Problems appearing in the steepest descent implemen-
tations

Let us denote by N the big number we want to factorize by the number field
sieve. In Murphy’s thesis [1], page 84, there is the following construction: we
have a polynomial f,, with a root m modulo N. We perform a translation by a
number t and rotation by a polynomial P to obtain

f@) = fo(xz—t)+ P(x)(z —t —m).

Then we consider the homogenius polynomial associated to f

Pe.y) = y'f(2)

and we want to find optimal values of P, ¢t and s so that the integral

Nl
/ / F?(x,y) dady
—vit s

is minimal. This is done by a multi-variate minimisation algorithm.

It is probable that every implementation of this problem should use the steep-
est descent method somehow. However, direct implementation of this method
is not very good. The coefficients of the polynomial f,,, have many digits and
hence some coefficients of F'? are extremely large (about 10°°). Such sizes are
not common in everyday numerical analysis. . .

Two types of problems can occur. In both, informally said, we have a valley,
or more precisely a very deep canyon and we start our minimisation algorithm
on a side of this valley (canyon). The side is very steep hence the differential
shows we should continue right downhill (see Figure 1).

————

/
|

Figure 1: Very deep valley in the multivariate polynomial (using contour lines)

The worse situation is when the valley is “narrower” than the minimal step.
Then making a step (even the minimal one) in the direction of the differential,
we jump over the valley reaching a spot on the opposite side of the valley that
is higher than the spot of origin. Thus the algorithm ends here, far from finding
a suitable minimum.

The better situation when the valley is not that extremely narrow. We make
a step across the valley ending on the other side in a lower spot. Now we have
to turn back and cross the valley again ending close to the spot of origin (see
Figure 1). Nevertheless, we keep getting lower hence there is no need to stop the

=

A A A\

Egigégizizégigé

B e A A R e R B

I I S S S S e B e
Jararayararayavates
B eEEEaEEa
===\
§§=§=§E§E?=§=§=
=;=vs!sv§’s’s’=

_————

Figure 2: A slow convergence in the valley

algorithm or alter the step length. We continue zig-zagging and we eventually
converge to a local minimum but after a very long time. It does not help if
we eventually try to change the step length. The sides are much steeper than

the valley itself and hence we do zig-zagging always unless we are really at the
bottom of the valley. However, even if we happen to be there in one step, there
is no guarantee we will not be on a side of the valley after the next step.

I took a look into the source code of the GGNFS implementation [2] of the
general number field sieve. It happened many times that the steepest descent
routine returned the same values as the ones we started with (due to the first
problem). The authors tried to deal with it by “perturbing” the found values,
that means by changing the values and trying luck but as you can imagine it
was not always successful.

2 Solution of the problem

Fortunately, the form of the function we are dealing with enables us to bet-
ter solve the problem. Actually, it is the coefficients of the rotation polyno-
mial P(z) that bring all the mess into the steepest descent algorithm. Let us
take, P(x) = cow? + c1x + co, for instance, the process will be analogical for
different polynomials. We have

f(@) = fom(x —t) + (22 + 12 4 co)(x — t —m).

We denote by S the rectangle [—/s, v/s] x [—\/571, \/571] and by Fg the integral

//S F%(2,y) dzdy.

It is a function in five variables: cg, c1, ¢c2, s and ¢t. From the construction of
the function Fg we easily deduce the decomposition

2 2 2
FS = B(t, S) —+ Z Bl'(t, S)Ci + Z Z Bij (t, S)Cicj'

=0 i=0 j=1

where B, B; and B;; for 0 <4 < j < 2 are functions only in variables ¢ and s.

Let us fix ¢ and s and denote b;; to be the value of B;; in these fixed values.
The graph of the function forms a quadric in R*, actually it should be a 4-
dimensional paraboloid. It is easy to compute the minimum of this paraboloid
using partial derivatives:

OF,
“5 — by + 2bgoco + borcr + boac
860
OF,
“5 — by + borco+2b11cr + biaco
861
OF,
=S5 _ by + bgaco + biocy + 2boocs
802

The minimum is the triple (co, ¢1, ¢c2) for which all three partial derivatives are
equal to 0. Therefore we have to solve the system of linear equations given by
the matrix

2000 bo1 bo2 | —bo

bor 2011 b2 | =1

boz biz 2b22 | —b2

which can be done using Gaussian elimination.

The algorithm of the steepest descent is now following: at each step we use
the values of ¢ and s to compute the numbers b; and b;;. Next we compute values
of ¢; and we obtain a point where partial derivatives with respect to ¢; should
be 0 for all ¢ (and we should be on the bottom of the valley). The values of
partial derivatives with respect to ¢ and s are “relatively reasonable” and we can
perform a step of the steepest descent changing the values of ¢ and s. After this
step, we can be again on a side of the valley hence it is necessary to recompute
the values of ¢; and so further until we converge close enough to a minimum.

3 Experimental results

I tried both approaches on my implementation of GNFS polynomial selection.
The results are in the table 1. I applied the algorithm on many polynomials
measuring the average time it took and the average value of I(F,S) obtained
(I(F,S) = In\/Fs). The degree of P(x) was chosen so that the performance
of the algorithms is optimal: if the degree of P(x) is too high, the highest
coefficients are set to zero anyway, only the computation is slower and less
exact.

degree degree | classical algorithm | improved algorithm
of fm(z) | of P(x) | I(F,S) time I(F,95) time
4 0 37.52 52.4ms 37.49 20.4ms
5 1 44.47 144.6 ms 43.94 125.6 ms
6 2 52.34 215.5ms 51.29 225.2ms

Table 1: Experimental results for the steepest descent algorithms

I interpret the results the following way: when there is only one coefficient
of P(x), the valleys are not so narrow, the classical steepest descent converges
(and is almost as good as the improved version). However it converges more
slowly. The more there are coefficients of P(x), the more problems occur and
the more probable is for the classical algorithm to stop long before reaching a
minimum. It can even finish sooner than the improved one but with much worse
result.

References

[1] B. A. Murphy, Polynomial Selection for the Number Field Sieve Integer Fac-
torisation Algorithm, Ph.D. thesis, The Australian National University, 1999

[2] C. Monico, “GGNFS”,
http://www.math.ttu.edu/ cmonico/software/ggnfs/index.html

Ptremysl Jedlicka

Departement of Mathematics

Technical Faculty, Czech Agricultural University
Kamycka 129

16521, Praha 6 Suchdol

Czech Republic

jedlicka@karlin.mff.cuni.cz

