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Abstract

Let W be a (finite or infinite) Coxeter group and Wx be a proper standard
parabolic subgroup of W. We show that the semilattice made up by W equipped
with the weak order is a semidirect product of two smaller semilattices associated
with Wx.

1 INTRODUCTION

Let W be a Coxeter group. The weak order on W, considered in [2], is a partial
order < on W which forms a meet-semilattice, i.e., each pair of elements of W admits
a greatest lower bound. When its edges are labelled by the generators, the Hasse
diagram of this semilattice is the Cayley graph of W with respect to the standard
presentation.

For each standard parabolic subgroup Wx of W, there exists a natural decomposition
of the elements of W involving Wx. The point of this paper is to show that this
decomposition preserves the weak order well enough to reconstruct the weak order
of W from that of Wx together with certain data on the group Wx.

We use a general construction called semidirect product of semilattices, which was
introduced in [7] and investigated in [8], to determine the semilattice of W starting
from two smaller semilattices. This result is as follows:

Theorem: Let (W, S) be a Coxeter system and let X be a subset of S. Let Wx be
the standard parabolic subgroup of W associated with X and let WX be the set of
shortest-leght right coset representatives relative to Wx. Then the meet-semilattice
(W, X) is isomorphic to the semidirect product (Wx, <) Xy (WX, %), where ¢ is some
explicit mapping from W% to End(W¥X).

As an application, we deduce an algorithm for computing the lattice operations, i.e.,
the infimum and the supremum of two elements.

In the case of a finite Coxeter group, a similar inductive construction was developed
by Le Conte de Poly-Barbut in [10] from a different approach. She shows that the
weak order of W can be constructed starting from the subgroup Wy, the set W* and
a certain mapping from WX x X to S U {#}. One advantage of our approach is that
it enables us to cover the infinite case as well, at the expense of using the notion of a
semidirect product of semilattices. Another advantage is that our approach does not
only give an abstract description of the weak order but it also gives an algorithmic
method for computing the (semi)lattice operations.



Another decomposition appears in [5] too, where the Cayley graph of W is expressed as
a semidirect product of two smaller graphs, corresponding to Wx and WX as above.
However, contrary to the approach of [10] and the current approach, this approach
only describes the relation between the larger graph and the smaller ones, and does
not enable one to reconstruct the larger one from its parts.

The paper is organized as follows: in Section 2 we recall some basic facts about the weak
order and standard parabolic subgroups in a Coxeter group. In Section 3 we give a brief
general description of the semidirect product of (semi)lattices. This definition is used in
Section 4 to present our construction of the Cayley graphs of Coxeter groups. Finally,
in Section 5 we develop some examples of our construction, namely the types B,
and As.

2 THE WEAK ORDER OF COXETER GROUPS

Definition 2.1: Let W be a group generated by a finite set S. For all s,t in S, let us
denote by m ; the order of the element st in W; we write m,; = oo if st is of infinite
order. We say that W is a Cozeter group if it admits a presentation of the form

(8; s> =1, (st)™* =1, for all 5,¢in S and m,; < c0).

For each element g in W, we define the length ¢(g) of g to be the least k such that g
can be written as s18s...5k, with all s; in S. We then call such a decomposition a
reduced decomposition of g. This length has some nice properties: We have £(g) = 0
if and only if g is the neutral element. We have also £(g) = £(g™'), and for each g, h
in W we have the inequality (g) + £(h) > £(gh).

Definition 2.2: Let W be a Coxeter group. For g, h in W, we write g < h if we have
¢(g) + £(g~*h) = £(h). This relation is called the weak order.

We can equivalently define this order saying: g < h holds if there exist u, a reduced
decomposition of g, and s1, s, ..., in S such that us;ss...sk is a reduced decom-
position of h. Regarding this definition it is obvious that the relation < is a partial
order. In the following text the words: “g is less than h”, for g, h two elements of a
Coxeter group, will always refer to the weak order so defined.

Proposition 2.3 [2]: Let W be a Coxeter group. Then the set (W, <) is a meet-
semilattice. The element 1 is its least element. Moreover, if W is finite, then (W, %)
is a lattice.

We denote by V and A the (partial) lattice operations associated with the weak order,
i.e., we define g A h to be max{a € W; a<ganda =< h}, and gV h to be min{a €
W; g < a and h < a}, if the set is nonempty.

Notation 2.4: We write [s,s’)™ for ss'ss’--- and (s, s'|™ for :--ss'ss’.
S—— S——

m factors m factors



Lemma 2.5 [3]: Let g be in W, and let s # s’ be in S.

(¢) If £(gs) = (gs’) = £(g) + 1 holds, then (gs) V (gs') exists if and only if ms s is
finite; in this case we have (gs) V (gs') = g[s, s') ™.

(73) If £(gs) = £(gs’) = £(g) — 1 holds, then m, , is finite and we have (gs) A (gs') =
gls,s') e

We denote by < the strict weak order, i.e., a < b is equivalent to a < b and a # b.
We say that an element b covers an element a in W if b is an immediate successor
of a, i.e., we have a < b and there is no other element ¢ in W verifying a < ¢ < b. We
observe that, in the set (W, <), an element h covers g only if h = gs holds, for some s
in S. Conversely, if we have h = gs, for some s in S, then either h covers g or g covers
h. Hence, the Hasse diagram of (W, x) is nothing but the unlabelled Cayley graph of
W. So, when we construct a Hasse diagram of the lattice (W, x) and we label each
edge by the appropriate generator, we obtain the Cayley graph of the group W.

When we say “the Cayley graph of a Coxeter group W”, we mean the Cayley graph of W
with respect to the presentation (2.1). Because all generators in this presentation are
involutive, for each edge there exists a backward edge labelled by the same generator.
That is why it is common to draw unoriented edges (see Figure 1).

Figure 1: Example—the Cayley graph of &, drawn as the Hasse diagram
of the weak order: The black edges represent the transposition (1,2), the
gray ones represent the transposition (2,3) and the dashed ones represent
the transposition (3,4).

Now we recall some basic facts about standard parabolic subgroups, namely a decom-
position associated with a parabolic subgroup.

Proposition 2.6 [6]: Let W = (S;R) be a Coxeter group. Let X be a subset of S.
Then the subgroup generated by X is a Coxeter group generated by X as the set of
Coxeter generators.



The subgroup mentioned in Proposition 2.6 is usually denoted Wx and called a stan-
dard parabolic subgroup of W generated by X.

It is useful to mention that the definition of £ does not depend on the group, in the
sense that for each g in Wx the lengths in W and in Wx are the same and we need
not distinguish them. The same is true for the weak order.

In the sequel, we fix a Coxeter group W with the Coxeter presentation (S; R), we fix
a subset X of S and we let Wx be the associated standard parabolic subgroup of W.

Definition 2.7: We say that an element g in W is X -reduced if £(zg) = £(g) + 1 holds
for each z in X. We denote by WX the set of all X-reduced words in W.

The following result is standard (see [3]):

Lemma 2.8: Let g be an element of W. Then the following conditions are equivalent:
(7) The element g is X -reduced;

(74) The element g has the shortest length among the class Wx g;

(7it) The element g is the only one with the shortest length among the class Wxg;
(2v) For each h in Wx we have £(hg) = £(h) + £(9);

(v) For each h in W, whenever h < g holds then h is X -reduced;

For each element g in W we can find exactly one element g” which is the only X-reduced
element of the set Wxg. If we denote gg”~! by g', we have a unique decomposition of
g of the form g = ¢'g"”, where g’ belongs to Wx and g” belongs to WX.

Definition 2.9: We define mappings ax : W — Wx and wx : W — WX so that
g = ax(g)wx(g) holds for each g in W.

Using Definition 2.9 and Lemma 2.8 we obtain the following proposition:

Proposition 2.10: The mapping g — (ax(g),wx(g)) is a bijection between the
set W and the set Wy x WX.

3 SEMIDIRECT PRODUCTS OF SEMILATTICES

In this section we describe a general (semi)lattice construction called semidirect prod-
uct. It is an analog of the semidirect product of the group theory. We shall not give
here a detailed proof of all properties as this is not needed for our current purposes.
A more complete study can be found in [8]. We recall that the set End(H), for a
meet-semilattice H, is the set of all its meet-semilattice endomorphisms, i.e., the set
of all mappings from H to H compatible with the meet operation.



Proposition 3.1 [8]: Let K,H be two meet-semilattices and let 1 be a mapping
from K x K to End(H) satisfying for all k, k', k" in K:

Yk =idg (1)
Yk k! Ak" = VkAk! K © Vi k! (2)

Then the set K x H equipped with the operation A defined as
(ks k) A (K D) = (kA K i (R) A i i (R)), ®3)

is a meet-semilattice. This semilattice is denoted by K x H.

It is well-known that the semidirect product of groups can be introduced both from
an internal and an external point of view, according to whether we wish to decompose
a group in terms of subgroups, or to construct a new group starting from two groups.
The same is true for the semidirect product of semilattices. If we start with the
semidirect product K X H, we can recover K and H as follows: consider the relation
~ such that (k,h) ~ (k',h') means k = k'; this relation is a congruence, its quotient
is isomorphic to K and all congruence classes are isomorphic to H. But we can also
start from the other end, i.e., we can start with a lattice equipped with a specific
congruence.

Proposition 3.2 [8]: Let L be a meet-semilattice and let 6 be a congruence on L. Let
K denote the factor lattice L/y. Assume that each class of congruence is isomorphic to
a meet-semilattice H and that, for each h in H, the set {h' € H; (3k, k' € K)((k,h) >
(k',h"))} has an upper bound. Then there exists a mapping v from K x K to End(H),
satisfying the conditions (1) and (2), such that the semidirect product K x4 H is
isomorphic to the lattice L.

Here we intend to work with the weak order semilattices in Coxeter groups, which have
a good property, namely that each interval is finite. In this case we have the following
additional results:

Lemma 3.3 [8]: Let K, H be meet-semilattices and let ¢ be a mapping from K x K
to End(H) such that K x, H exists.

() For each k < k' in K, the mapping vy, x+ acts identically.

(#3) For each k' incomparable to k in K, we have ¥y = Vi knk’-

(7,7,2) For each k < k' < k" in K, we have wk”,k = /lj)kl,k ] "/}k”,k’-

(7v) If each interval in K is of finite length then the mapping v is uniquely defined by
the mappings vy 1, where k' covers k in K.

(v) If each interval in H is of finite length then, for all k, k', where k' covers k in K
and each h in H, we have

Vi k(h) = Yi i (max{h’ € H: (h' < h) and ((k',h") covers (k, i k(R")))}).



How to understand the previous lemma? Suppose that we have a meet-semilattice
K x4 H with all its intervals finite. Then the mapping % is uniquelly defined once we
know when (k, ¥ (k') is covered by (k',h") for all possible A’ in H and all pairs &’
covering k in K. If we have this little information on v then we can recover entire
Yy for an arbitrary pair k' covering k (Part (v)) and hence also all 9y ; for all
k' > k (Parts (4i¢) and (iv)) and therefore arbitrary vy (Parts (¢) and (i3)). Using
different words, we can say that the mapping v is uniquelly defined given a certain set
of certain pairs (k, h), (k',h'). Actually, we are going to construct the Cayley graphs
of Coxeter groups and therefore we want to know not only what covers what, i.e.,
where are the edges in the Cayley graph, but also what generator we have to multiply
by, to obtain the first element from the latter one, i.e., we want also to know the

label of the considered edge in the Cayley graph. Hence we consider certain triples
((k, ), (K', 1), s):

Definition 3.4: Let W be a Coxeter group with presentation (S; R) and let K, H
be two sublattices of (W, x). We call a triple ((k, h), (', h’), s) a covering triple, if ¥’
covers k in K, the elements h, A’ are in H and the element s from S satisfies khs = k'h/.

We will see later that we have h = h’ whenever ((k, k), (k’,h’), s) is a covering triple.

In the sequel, we shall use a lattice version of the semidirect product. Here, two
auxiliary mappings, ¢ : K x K — End((H,V)) and ¢ : K x K — End((H, A)), are
necessary. We define the lattice operations V, A as follows:

(k,h) V (K' 1) = (kVE' pr i (R) V orr i (R)),
(k, h) A (k’, h’) = (k A k’, lpk,k’(h) A wk’,k (h/))

Again, see [8] for the complete description. The semidirect product of the lattices
K, H associated with ¢, is denoted K D(ﬁ H.

Proposition 3.5 [8]: Let L be a finite lattice and let ~ be a congruence on L such
that all its congruence classes are isomorphic. Let us denote by K the factor lattice
L/. and by H one of the congruence classes. Then there exist mappings ¢, such
that L is isomorphic to K xﬁ H.

4 SEMIDIRECT PRODUCTS IN COXETER GROUPS

Now we will investigate the connection between the mappings ax and wx from Def-
inition 2.9 and the weak order and show that these mappings are connected with a
semidirect product of (semi)lattices.

The following lemma is a classical stuff:

Lemma 4.1 [4]: Let h be in WX and let s be in S. Then exactly one of the following
three possibilities occurs:



(i1) £(R)

<
(iii) £(h) < £(hs) and hs not in WX | in this case we have hs = s'h for some s’ € X.

Lemma 4.2: Let g,h be in W. Then

(7) g < h implies ax(g) < ax(h) and wx(g) <X wx(h);

(49) if h covers g in W then we have either ax(g) = ax(h) or wx(g) = wx(h);
(7it) we have ax(g Ah) = ax(g) N ax(h).

PROOF: Parts (¢) and (i7) are consequences of Lemma 4.1.

(79t) According to Part (i) we have ax(g A h) < ax(g) A ax(h). However we
have ax(g) < g and ax(h) < h and therefore ax(g) A ax(h) < g A h holds. Us-
ing a on this inequality we obtain ax(ax(g9) A ax(h)) < ax(g A h). But ax acts
identically on Wx and therefore ax(g) A ax(h) < ax(g A h) holds. |

Thus ax is compatible with the meet, i.e., it is an endomorphism of the semilat-
tice (W, A). This mapping is, in the case of finite Coxeter group, compatible with the
join too, i.e., it is a lattice endomorphism as will be shown below (see Lemma 4.5).

In the following proposition we assume that the Hasse diagram of (W, x) is a Cayley
graph of W, i.e., its edges are labelled by the appropriate generators.

Lemma 4.3: Let W be a finite Coxeter group. For g,h in W, let us write g ~ h if
ax(g) equals ax (h). This relation ~ is a congruence of the semilattice (W, <) and the
semilattice (W, %)/~ is isomorphic to (Wx,<). All congruence classes are isomorphic
lattices and, moreover, their Hasse diagrams are isomorphic labelled graphs.

PROOF: We know that ax is a homomorphism from (W, <) onto (Wx, <). Hence ~
is congruence and (W, x)/.. is isomorphic to (Wx, <). We only need to show that all
the congruence classes are isomorphic.

If we have a # b in Wx then there exists a natural bijection between the class containing
a and the class containing b. This bijection sends ag to bg for each g € WX. But this
bijection preserves the order <: for all g,h € WX we have ag < ah < g < h < bg < bh.
Therefore it is a semilattice isomorphism. It is evident that this isomorphism preserves
also the labelling of edges: the edge from ag to agx is labelled by the generator z and
so is the edge from bg to bgzx. [

All needed preliminary results are now at hand and we can prove the main result.
Applying Proposition 3.2, together with Lemmas 4.2 and 4.3, we obtain:

Theorem 4.4: Let W be a Coxeter group with the presentation (S; R). Let X be a
subset of S. Then the semilattice (W, \) is isomorphic to a semidirect product of the
semilattices (Wx,A) and (WX, A).

In the case of finite Coxeter groups, the ordered set (W, <) is a lattice. We would like
to prove that this lattice is a semidirect product of lattices. To this aim, we need to
know that ax is compatible with the join.



Lemma 4.5: Let g, h be in W such that gV h exists. Then ax(g)V ax(h) exists and
we have ax(g) V ax(h) = ax(gV h).

PrOOF: We have ax(9) < ax(gV h) and ax(h) < ax(g V k) hence the join has to
exist. Moreover, we have ax(g9)Vax(h) X ax(gVh). From g < gVh and the definition
of 9 we obtain wx (9) <X Yay(gvh),ax(g)(@Wx(gV h)). Now consider the element j =
Yax (gVh),ax (g)vax (h) (Wx(gVh)). The previous observation along with Lemma 3.3 (#74)
gives wx (9) X Yax (g)vax (h),ax(g)(d) which implies g < (ax(g) V ax(h)j). The same
can be said about h and therefore ax(g) V ax(h)j is an upper bound of g and h and
we have ax(gV h) < ax(9) Vax(h). |

Thus the mapping « is compatible with both lattice operations, forming a lattice
endomorphism. Therefore we can apply Proposition 3.5 and obtain:

Theorem 4.6: Let W be a finite Coxeter group with the presentation (S; R). Let X
be a subset of S. Then the lattice (W, X) is isomorphic to a semidirect product of the
lattices (Wx, <) and (WX, ).

We know at this point that the Cayley graphs are semidirect products but we do
not know what products they exactly are, i.e., we still have to describe the map-
ping 9. As was observed after Lemma 3.3, it suffices to describe the covering triples
((k,h), (K', 1), s), i.e., the triples satisfying k'h’ = khs, where k' covers k in K. Ac-
cording to Lemma 4.2 (i7), we know that in this case we have h = h’.

Lemma 4.7: Let g be in WX and let s be in S such that gs is not X -reduced. Assume
that a generator s’ in S satisfies g < gs', the element gs' is X-reduced and ms o is
finite. Then the element g[s,s')™s=.#" covers the element g[s’, s)™==' "' and the element
g[s', s)™+' 71 is X-reduced.

PROOF: We know that gs is not X-reduced and, according to Lemma 4.1, the element
t =ax(gs)isin S. Now Lemma 2.5 gives (gs)V (gs’) = g[s, s’)™=’". Since ax is com-
patible with the join, we find ax(g[s,s’)™+') = t. Necessarily ax(g[s’,s)™=+"1) g ¢t
holds. If this relation were an equality, the element (g[s’,s)™=+'~!) A (gs), which is g,
would not be X-reduced. Hence ax(g[s’,s)™=+'~!) is strictly smaller than ¢ and this
means that g[s’, s)™=+ "1 is X-reduced. ]

Lemma 4.8: Let g # 1 be in WX and assume that s is in S and gs is not X -reduced.
Then there exist g’ < g and s’ in S such that m, o is finite, g'[ss’)™ss’ = gs holds
and either the element g's or the element g's’ is X -reduced.

PROOF: There exists an s’ in S such that gs’ < g holds. According to Lemma 4.1 there
exist a t from S satisfying tg = gs. Hence gss’ = tgs’ < tg = gs holds. Let us denote
g = g A gss'. According to Lemma 2.5 we have ¢’ = gss A gss’ = gsls, ') s’ =
gls',s)™=+'=1 The elements g’ and g[s’,s)™=+'"? are X-reduced, according to
Lemma 2.8 (v). Now, the element g's is one of the elements g[s’, s)™=+' =2, g[s, s')™s.
and the element ¢'s’ is then the other one. Since we have gs = ¢'[s, s')™s' = g'sVg's’,
necessarily g[s, s')™s" is not X-reduced. [ ]

’



Proposition 4.9: Let W be a Coxeter group with presentation (S;R). Let X be a
subset of S. Let k be in Wx and assume that s in X satisfies k < ks. Let h # 1 be
in WX. Then ksh covers kh if and only if there exist g < h and s',s" in S such that
mg v is finite, and we have kg[s',s")™"" =1 = kh and ax(kgs") = ks. Moreover,
we have ksh = khs', for m odd, and ksh = khs", for m even.

PRrROOF: Nothing changes if we multiply all the elements by k~! on the left. Then
the equivalence is formulated as: sh covers h if and only if there exist g < h and
s',s" in S such that mg ¢ is finite, g[s’,s”)™s.+"~! = h holds and ax(gs”) is equal
to s. But ‘<=’ direction follows directly from Lemma 4.7 and ‘=’ direction follows from
Lemmas 4.2 (i7) and 4.8. Hence we need to establish only the equality sh = hs' (resp.
sh = hs'""). Assume that m is odd. We know that ax(gs”) is s. Hence there exists g’
in WX such that sg’ covers g. According to Lemma 4.2 we have g’ = g. Now we find

’Insl,sufl msl’snfl —

sh = Sg[SI,SH> — gs"[s',s")

Mgt g1 mgr g1 —1 1

=g[s',s") =g[s', s")™" s’ = hs'.

The case of m even is similar. [ ]

We denote by T - the set of all covering triples for a pair k, k' in Wx, that means the
set of all covering triples ((k, h), (k’,h), s'), for some h in WX and s’ in S, satisfying
khs' = k'h. We deduce from Proposition 4.9 an algorithmic method for inductively
constructing the set T} x-. As as we observed after Lemma 3.3, this set determines the
mapping ¥ of the considered semidirect product completely.

Algorithm 4.10: Let W be a Coxeter group, with S the set of Coxeter generators,
and let X be a proper subset of S. Fix a linear ordering < on WX that extends <.
Let k < k' be two elements in Wy, with ¥’ = ks for some s in S. We construct a set T
of triples of the form ((k,h), (k',h),s’), with h in WX and s’ in S, as follows. We
initialize T to {((k, 1), (k’,1),s)}. We enter the induction on the length of h in WX,
starting with h = 1. Assume ((k,h),(k',h),s’) € T. We successively consider all
elements s” in S satisfying hs” in WX and my 4» < oo: for each of them, we add to T
the triple

((kv h[su, Sl>m51’5”_1)a (klv h‘[s”, Sl>msl's”_1)> sl)a (4)

if mgy v is even, or the triple
((k, h[s”,sl>ms"5"—1), (kl, h[S”, s’>ms',s”_1)’ 8”), (5)

if mg ¢ is odd. Then we go to the next h in the sense of <.

Lemma 4.11: Algorithm 4.10 computes the set Ty, j-.

PROOF: We first show that each element of T' belongs to Ty . We have ks = k' and
therefore ((k,1),(k’,1),s) is a covering triple. Next, whenever ((k,h), (k',h),s') is a
covering triple then, according to Proposition 4.9, the construction (4) or (5) yields a
covering triple.



On the other hand, suppose that there exists a triple ((k,h),(k',h),s") in Ty s
not belonging to 7. Assume that h is <-minimal with this property. Each in-
terval for < is finite, and therefore so is each interval for <. Hence such a min-
imal h exists. Proposition 4.9 guarantees the existence of an s’ in S and g <X h
in WX verifying g(s’,s"]™s"+"~! = h and k’g = kgt, where t is either s’ or s”.
The triple ((k,g),(k’,g),t) is a covering triple, and we have g < h. Therefore it
belongs to T . But then the triple ((k, k), (k',h),s’) is reached from the triple
((k,g),(K',g),t) using (4) or (5), and therefore it belongs to Tk s, making a con-
tradiction. ]

Proposition 4.12: Let W be a Coxeter group with the presentation (S;R). Let X
be a subset of S. Then the infimum operation in (W, <) can be computed from the
infimum operations in the semilattices Wx and WX.

PROOF: The definition (3) of the meet in the semidirect product is:
(k,h) A (k’, h’) = (kA k’,’(/)k’k/(h) AN Yt i (h/)).

We know how to compute the meet in the sublattices, so we need the mapping v only.
This mapping is computed, according to Lemma 3.3, as follows:

- for k' < k, this mapping is the identity mapping;

- for k, k' incomparable, we have ¥/ = Yr kak;

- for k < k', we find a reduced decomposition of the element k~'k’ of the form
$189 -+ - 8, and compute:

"/}k’,k = ¢sl,1 © ws1s2,81 © 7/}818233,3132 0:-+0 1/}5132"'Sk73132"'3k—1; (6)
- for k' covering k, we have:

Vi k(h) = max{h’ € WX; (k' < h) and (((k, 1), (k',R'),s) € Ty, for some s € S}.
(7)

The construction of the sets T ;s is made by Algorithm 4.10. [ |

The same proposition can be also formulated for the supremum operation in the case
of a finite Coxeter group. This operation is computed similarly.

The structure of the set Ty ;s depends on the element k~'k’, denoted s, only, not on
the pair k, k' itself. More precisely, for h in WX and s’ in S, a triple ((k, k), (k’, h), s")
belongs to Ty k- if and only if the triple ((1, k), (s, h), s") belongs to the set T7 ;. Hence
we deduce that the mapping vy 1 is the same as the mapping ;-1 1 and therefore it
suffices to describe the mapping 1 (and the covering pairs) for the pairs (s,1), with s
in X.

Remark 4.13: In [10], the weak order lattice of a finite Coxeter group W is con-
structed using the mapping f from WX x X to S U {0} defined as follows: if ks
covers k in Wx, with s in X, then, for each h in WX, if f(h,s) is empty, then ksh
does not cover kh; otherwise we have ksh = khf(h,s). This method is equivalent to

10



our description using covering triples: if we have the set of covering triples, we can
define f(h,s) to be either s' if ((1,h),(s,h),s’) is a covering triple or to be @ if sh
does not cover h. The difference is that Le Conte de Poly-Barbut presents her method
using a direct combinatorial approach and it is not clear how to compute the lattice
operations A and V from the mapping f.

5 APPLICATIONS

Let us consider the cases of the type B, and the type A,. We construct these Cayley
graphs inductively using the method above.

Example 5.1: Consider the Coxeter group of type B, for n > 2, i.e., the group with
presentation

(81,82, -, Sn; s2=1 for each 1 < i < n,
(si5;) =1 for i — j| > 2,
(sisi41)> =1  for2<i<n,
(s182)* = 1).

We choose X to be {s1,52,...,5,_1}. The set WX is the set of all elements smaller
than s,8,_1...83528158283...8,_15,. Our aim is to construct the sets of covering
triples Ty ,,, for all i < n. The set WX is already a chain (see [5]) and therefore we do
not need to linearize the order < on WX. We write b; as a shortcut for s,,8,,_1 - - - Si+18;
and ¢; for sgs3---8;_18;.

Let us start with the element s;: this element commutes with all elements s;, for 2 <
J < n, and hence all triples ((1, b;), (s1, b;), s1) belong to T7 5,. Now we have my, 5, = 4
and hence we add the triple ((1, b1s2), (s1,b152), 1) to T1s,. Now again s; commutes
with all elements s, for 2 < j < n, and hence all triples ((1,b1¢;), (s1,b1¢5), 51) belong
to T1,s,. The result is shown in Figure 2.

Sp—1  Sn
S3
81
DRI sl Sl
S1
8
Spn—1 n
83

Sn

Figure 2: The mapping 1),, 1 of the group of type B,

Consider now an element s;, with ¢ > 1. This element commutes with all s;,
with ¢ +1 < j < n. Hence the triples ((1,b;), (si,b;),s;) belong to T;,,. Now
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we have m,,; ,,., = 3 and we add to Ty, the triple ((1,b;),(si,bi),5i41). The ele-
ment s;,1 commutes with all s;, for j < i and therefore all triples ((1,b;), (si,b;), Si+1)
and ((1,b1¢5), (ss,b1¢5),8i41) belong to T1,,. Now we have again m,,,,,, = 3 and
therefore we add the triple ((1,b1¢;+1), (8i,b1¢it1), $;) to T1 s,. Finally the element s;
commutes with all s;, for j > i+ 1 and we add ((1, bic;), (si,b1¢5), ;) to T15,. The
result is shown in Figure 3.

Sn—1 Sn
52
s i+l .
k2
Sit1 Si - Si
... o, sn
e
i
i

s Si4+1

s
Sit+1

Figure 3: The mapping s, 1, for ¢ > 2, of the group of type B,

So, the lattice of the group of type B,, is a semidirect product of the lattice associated
with the group of type B,,_; and a 2n-element linear lattice. The Cayley graph of the
group of type B, can be drawn followingly: we take the Cayley graph of the group of
type B,—1 and we replace each edge by the corresponding “drawings” from pictures 2
and 3. As an example, we show the Cayley graph of the group of type Bs in Figure 4.

Example 5.2: Let us consider the Coxeter group As, i.e., the group with presentation
(s1, 52, 83; sle foreach 1 <i<3
(sis;)*=1  for each i # j).

We choose X to be {s1, s2}. It is well-known [5] that the set WX can be described as

WX = {535251838281 ...; m > 1}U{s35152838182...; m > 1}U{g € W; 5351525, < g}.
m m

We compute the covering triples, according to Algorithm 4.10: As s; is an atom, the
element (sq1,1) covers (1,1). Now the only generator s in .S such that 1s is X-reduced
is s = s3. We have m,, 5, = 3 and, applying Lemma 4.7, we deduce that s;s3s;
covers s3s,. There are no other X-reduced elements of length 1 and hence we move
forward to the triple ((s1, s381), (1,5351), s3). The element s3s; 2 is the only successor
of s3s1 which is X-reduced. We have m,, s;, = 3 and this implies that s1s3515253
covers S3s1S283. We continue in this way infinitely many times and obtain that the
covering triples for the mapping 1, 1 are the triples (see Figure 5):

((1,(s35152)™), (51, (s35152)™), 81),
((1, (538182)m8381), (81, (838182)m5351), 83),
1

(( s (838182)m+183), (81, (838182)m+183), 82),
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Figure 4: The Cayley graph (and also the weak order lattice) of the group
of type Bj: the black edges represent s;, the gray s and the dashed sj3

Figure 5: The mapping v,,,1 of the group of type Aj,. The mapping s, 1
is similar—it suffices to switch the labels s; and sy only.

with m > 0. Similarly, the covering triples for the mapping v, 1 are

((1,(s38281)™), (52, (538251)™), 82),
((1,(s35251)™s352), (52, (535251)™5352), 53),

((1, (s38281)™s3), (52, (s35281)™ ' s3), 81).

with m > 0. The resulting picture is shown in Figure 6.
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Figure 6: The Cayley graph (and also the weak order semilattice) of the
group of type As: the black edges represent s;, the gray so and the dashed
53

Let g = 5152535152515381 and g’ = 5983525153825381, for instance. Let us compute the
infimum of g and ¢’ using Proposition 4.12. Using an algorithm of [10] we find ax(g) =
s182 and ax(g') = s2 . These elements are incomparable and hence we have ¥, 5, s, =
Y1551 and Ygy 515, = Vsy,1. Now we compute s, s, s, (535152818351) using (7). It
consists of finding the greatest element h in WX satisfying h < s3s182515351 and
((1,h), (s2,h),t) in Ty 4,, for some ¢t € {s1, 52, s3}. Such an element must be of the form
(s352)%(5153)%(5251)%, with a > b > ¢ > a—1, and the greatest of them, but still smaller
than s3s152515351, iS s3S2. So we have ¥g, 5,5, (S35152515351) = S382. Similarly we
obtain s, 1(s3s2) = 1 and therefore, using (6), we conclude ¥, 5, 1(s35152515351) = L.
In the same way we obtain v, 1(s3525153525351) = s3525183. Finally, equation (3)
gives
gAg = (s182 As2)(1 A s3s2s183) = 1.
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