
Semidirect products of lattices
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Abstract: The semidirect product of lattices is a lattice analogue of the
semidirect product of groups. In this article we introduce this
construction, show some basic facts and study a class of lattices
closed under semidirect products. We also generalise this notion
presenting the semidirect product of semilattices.

1 Introduction

The semidirect product of lattices was first introduced in [6]. This construction is inspired by
the semidirect product in the group theory with the aim to have “the same” properties as its
group counterpart: each lattice, constructed by the semidirect product, possesses a canonical
congruence; this congruence is isoform, which means, all congruence classes are isomorphic
sublattices. On the contrary, nearly all lattices with an isoform congruence can be expressed
as semidirect products of smaller lattices.

The condition of the isoform congruence seems to be very limiting. However, for finite lat-
tices we prove that given a lattice L with a congruence θ, we can embed L into a lattice L′

extending θ to an isoform congruence θ′. A stronger result was proved by Grätzer, Quack-
enbush and Schmidt in [3] where they embedded any finite lattice into a lattice with all its
congruences isoform, extending any congruence to an isoform one.

The notion of the semidirect product can be generalised for semilattices. Actually, the very
first idea of the semidirect product appeared when studying lattices and semilattices of the
weak order in a Coxeter group. The author described in [5] how to construct the (semi)lattice
of the weak order of a Coxeter group using the semidirect product, starting with the weak
order (semi)lattices of a parabolic subgroup and of the corresponding coset.

In this paper, some technical straightforward calculations are omitted. All the detailed
calculations are written in the author’s thesis [6].

Acknowledgement: The author wishes to thank Friedrich Wehrung, Patrick Dehornoy and
the unknown referee for their help during the preparation of the text and their comments.

2 Semidirect product of lattices

We recall the definition of the semidirect product of groups: let (G, ·) be such a group with
a subgroup K and a normal subgroup H that we have K ∩ H = ∅ and KH = G. In this
case we can define such a mapping ϕ from K to Aut(H) that the product K ×H with the
operation •, defined as

(k1, h1) • (k2, h2) = (k1 · k2, h1 · ϕ(k1)(h2)),

is a group isomorphic to G.

Let now L be such a lattice and let θ be a congruence of L that all congruence classes of θ
are isomorphic. This congruence is called isoform (see [4]). We denote by H one of these
congruence classes, and we assume that H has a least element 0H and a greatest element 1H .
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We denote by K the factor lattice L/θ. There is a natural bijection between the sets L
and K×H : let a be in L and let [a]θ be the congruence class of θ containing a. For each [a]θ,
let η[a]θ = ηa be a fixed isomorphism from [a]θ to H . Thus the mapping a 7→ ([a]θ, ηa(a))
is the mentioned bijection from L to K ×H . Therefore we do not distinguish in the sequel
between the sets L and K ×H and we write the elements of L to be pairs (k, h) for k in K
and h in H . And we also assume the set K ×H to be equipped with an order—the image of
the order of L.

Our goal is to build two binary operations, let us say t and u, on the set K ×H in order to
achieve an isomorphism between (L,∨,∧) and (K ×H,t,u). In the case of groups, we have
the mapping ϕ there which enables us to reconstruct the operation · of the group G starting
with the two subgroups. In the case of lattices, we have two operations and hence we need
two mappings, let us call them ϕ and ψ.

The mappings ϕ and ψ from K ×K to HH are defined by the following equations; we recall
that we do not distinguish the set L and the set K × H and therefore the order on L is
naturally mapped to an order on K ×H .

(k, h) ∨ (k ∨ k′, 0H) = (k ∨ k′, ϕ(k, k′)(h)), (1)

(k, h) ∧ (k ∧ k′, 1H) = (k ∧ k′, ψ(k, k′)(h)). (2)

Actually, we write ϕk,k′ (h) and ψk,k′ (h) rather than ϕ(k, k′)(h) and ψ(k, k′)(h), considering
that for all k, k′ in K, the mappings ϕk,k′ and ψk,k′ are mappings from H to H . You can
also notice that in general there can be h′ with (k, h) < (k, h′) 6 (k′, ϕk,k′ (h)).

Lemma 2.1: The mappings ϕ and ψ defined in (1) and (2) are well defined and they satisfy,
for all k, k′, k′′ in K and h, h′ in H , following conditions:

ϕk,k = ψk,k = idH , (3)

ϕk,k′∨k′′ = ϕk∨k′,k′′ ◦ ϕk,k′ , (4)

ψk,k′∧k′′ = ψk∧k′,k′′ ◦ ψk,k′ , (5)

h 6 ψk,k∧k′ ◦ ϕk∧k′,k (h), (6)

h > ϕk,k∨k′ ◦ ψk∨k′,k (h), (7)

ϕk,k′ (h ∨ h′) = ϕk,k′ (h) ∨ ϕk,k′ (h
′), (8)

ψk,k′ (h ∧ h′) = ψk,k′(h) ∧ ψk,k′ (h
′). (9)

Proof: We prove only one half of the lemma since the other one follows from the duality.
First let us notice that the element (k, h) ∨ (k ∨ k′, 0H) is of the form (k ∨ k′, h′) for some h′

in H .

Condition (3) follows from the definition.

Now we have to notice assuming (3) that Condition (4) is equivalent, for all k, k′, k′′ in K,
to the following two conditions:

ϕk,k′ = ϕk,k∨k′ , (10)

ϕk,k′′ = ϕk′,k′′ ◦ ϕk,k′ for k 6 k′ 6 k′′. (11)

The implication (4) ⇒ (10) and (11) is easy to see. So we want to prove the opposite
direction. Let us have arbitrary k, k′, k′′ in K. Thus k 6 k ∨ k′ 6 k ∨ k′ ∨ k′′ implies
ϕk,k∨k′∨k′′ = ϕk∨k′,k∨k′∨k′′ ◦ ϕk,k∨k′ . Using Condition (10) we obtain Condition (4).

Hence, for proving (4) it is sufficient to prove (10) and (11). Condition (10) follows from
the definition, so let us prove Condition (11). For k 6 k′ 6 k′′ in K, we have clearly
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(k, 0H) 6 (k′, 0H) 6 (k′′, 0H). Therefore we can write, (k′′, ϕk,k′′ (h)) = (k, h) ∨ (k′′, 0H) =
(k, h)∨ (k′, 0H)∨ (k′′, 0H) = (k′, ϕk,k′ (h))∨ (k′′, 0H) = (k′′, ϕk′,k′′ ◦ϕk,k′(h)), for each h in H .

Let us study now Condition (6). Without any loss of generality we can suppose k′ 6 k. We
have

(k′, ψk,k′ ◦ ϕk′,k(h)) = (k, ϕk′,k(h)) ∧ (k′, 1H) (by 2)

= ((k′, h) ∨ (k, 0H)) ∧ (k′, 1H) (by 1)

> ((k′, h) ∧ (k′, 1H)) ∨ ((k, 0H) ∧ (k′, 1H)) (dist.)

> (k′, h) ∧ (k′, 1H) = (k′, h)

Finally, a straightforward computation gives Condition (8).

It is useful to mention that we can prove similarly as in the proof, assuming (3), that Con-
dition (5) can be expressed equivalently by conditions:

ψk,k′ = ψk,k∧k′ , (12)

ψk,k′′ = ψk′,k′′ ◦ ψk,k′ for k > k′ > k′′. (13)

Example 2.2: The mapping ϕ is not compatible in general with the meet, i.e., we do not
have in general ϕk,k′ (h ∧ h) = ϕk,k′ (h) ∧ ϕk,k′ (h′). We can see an example on Figure 1. We
have ϕ0K ,1K

(a) = ϕ0K ,1K
(b) = 1H but the meet of a and b is 0H and ϕ0K ,1K

(0H) is 0H .

0K

1K

K

0H

1H

ba

H (0K , 0H)

(1K , 0H)

(1K , 1H)

(0K , 1H)(0K , a)

(0K , b)

(1K , a)

(1K , b)

L

Figure 1: Example—the mapping ϕ is not compatible with ∧

We have seen that the mappings ϕ and ψ satisfy some conditions. This means that these
conditions are necessary. But they are also sufficient for reconstructing the lattice L.

Proposition 2.3: Let K,H be two lattices, and let ϕ, ψ : K ×K → HH be two mappings
satisfying Conditions (3)–(9). Then the set K ×H . with binary operations t, u defined as

(k1, h1) t (k2, h2) = (k1 ∨ k2, ϕk1,k2(h1) ∨ ϕk2,k1(h2)), (14)

(k1, h1) u (k2, h2) = (k1 ∧ k2, ψk1,k2(h1) ∧ ψk2,k1(h2)) (15)

forms a lattice.

Proof: First we notice the following two properties for all k, k′ in K and h, h′ in H :

h 6 h′ ⇒ ϕk,k′ (h) 6 ϕk,k′ (h
′), (16)

ϕk,k′ (h ∧ h′) 6 ϕk,k′ (h) ∧ ϕk,k′ (h
′). (17)

The first one follows from Condition (8) and the latter one from Condition (16). Analogically:

h 6 h′ ⇒ ψk,k′ (h) 6 ψk,k′ (h
′), (18)

ψk,k′ (h ∨ h′) > ψk,k′ (h) ∨ ψk,k′ (h
′). (19)
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A set equipped with two binary operations is a lattice, if they satisfy the laws of idempotency,
commutativity, associativity and absorption. Idempotency holds here by Condition (3), com-
mutativity follows from the definition. Now we prove associativity:

(

(k1, h1) t (k2, h2)
)

t (k3, h3)

=
(

k1 ∨ k2 ∨ k3, ϕk1∨k2,k3
(

ϕk1,k2(h1) ∨ ϕk2,k1(h2)
)

∨ ϕk3,k1∨k2(h3)
)

(by 14)

=
(

k1 ∨ k2 ∨ k3, ϕk1∨k2,k3 ◦ ϕk1,k2(h1) ∨ ϕk1∨k2,k3 ◦ ϕk2,k1(h2) ∨ ϕk3,k1∨k2(h3)
)

(by 8)

=
(

k1 ∨ k2 ∨ k3, ϕk1,k2∨k3(h1) ∨ ϕk2∨k3,k1 ◦ ϕk2,k3(h2) ∨ ϕk3∨k2,k1 ◦ ϕk3,k2(h3)
)

(by 4)

=
(

k1 ∨ k2 ∨ k3, ϕk1,k2∨k3(h1) ∨ ϕk2∨k3,k1
(

ϕk2,k3(h2) ∨ ϕk3,k2(h3)
))

(by 8)

= (k1, h1) t
(

(k2, h2) t (k3, h3)
)

. (by 14)

For the absorption we need to prove

ϕk1∧k2,k1(ψk1,k2(h1) ∧ ψk2,k1(h2)) 6 h1. (∗)

We obtain this by:

ϕk1∧k2,k1
(

ψk1,k2(h1) ∧ ψk2,k1(h2)
)

6 ϕk1∧k2,k1 ◦ ψk1,k2(h1) ∧ ϕk1∧k2,k1 ◦ ψk2,k1(h2) (by 17)

6 ϕk1∧k2,k1 ◦ ψk1,k2(h1) = ϕk1∧k2,k1 ◦ ψk1,k1∧k2(h1) 6 h1. (by 12), (by 7)

And now the absorption:

(k1, h1) t
(

(k1, h1) u (k2, h2)
)

=
(

k1, ϕk1,k1∧k2(h1) ∨ ϕk1∧k2,k1
(

ψk1,k2(h1) ∧ ψk2,k1(h2)
))

(by 15), (by 14)

=
(

k1, h1 ∨ ϕk1∧k2,k1
(

ψk1,k2(h1) ∧ ψk2,k1(h2)
))

= (k1, h1) (by 10), (by 3), (by ∗)

Dual associativity and absorption laws could be proven similarly.

Definition 2.4: The lattice constructed in Proposition 2.3 is called a semidirect product of
lattices and is denoted K n

ϕ
ψ H .

Proposition 2.5: Let K,H,ϕ, ψ be as in Proposition 2.3. Than there exist a congruence θ
on the semidirect product K n

ϕ
ψ H which has K as the factor lattice and each congruence

class is isomorphic to H .

Proof: The considered congruence θ is the following one: ((k, h), (k′, h′)) ∈ θ is equivalent
to k = k′.

Example 2.6: Let K,H be arbitrary, let ϕk,k′ =
ψk,k′ = idH for all k, k′ ∈ K. Then we can see im-
mediately from Definitions (14) and (15) that we get
K n

ϕ
ψ H = K ×H .

Example 2.7: Let K,H be arbitrary, for all k 6 k′,
h ∈ H let ϕk,k′ (h) = 0H , ψk′,k(h) = 1H . Then we
have (k, h) 6 (k′, h′) if and only if we have k <
k′ in K or k = k′ and h 6 h′ in H . Therefore
the semidirect product consists of |K| copies of the
lattice H arranged in the form of the lattice K.
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Example 2.8: Let K, H be arbitrary, for all k 6 k′

let ϕk,k′ (h) = 1H whenever h > 0H ; ψk′,k(h) = 0H ,
whenever h < 1H . In this case, if K has at least two
elements and H at least three elements, we always
get a nonmodular lattice.

As we have seen, the applications ϕ and ψ defined in (1) and (2) define a lattice on K ×H .
However we still need to prove that this lattice is isomorphic to the lattice L. In Lemma 2.1
we supposed that the lattice H possesses a least and a greatest elements. This is not much
limiting in the lattice theory but we can still require weaker conditions. Recall that there
exists a bijection between the lattices L and K×H and therefore the latter can be naturally
equipped with an order associated with the order of L.

Proposition 2.9: Let L be a lattice with an isoform congruence θ. Let K be the factor
lattice L/θ and let H be one of the congruence classes. If the following two conditions are
fulfilled:

for each h ∈ H, the set Eh = {h′ ∈ H ; ∃ k, k′ ∈ K: (k, h) 6 (k′, h′)} is lower bounded (20)

for each h ∈ H, the set Eh = {h′ ∈ H ; ∃ k, k′ ∈ K: (k, h) > (k′, h′)} is upper bounded
(21)

then there exist mappings ϕ and ψ satisfying the conditions of the Proposition 2.3 and the
lattice K n

ϕ
ψ H is isomorphic to L.

Proof: First we denote, for each h in H , by h a lower bound of the set Eh and by h an
upper bound of the set Eh. We can define the mappings similarly as we did it above:

(k ∨ k′, ϕk,k′ (h)) = (k, h) ∨ (k ∨ k′, h), (22)

(k ∧ k′, ψk,k′ (h)) = (k, h) ∧ (k ∧ k′, h). (23)

However we have to prove that the definitions do not depend on the choice of the bounds.
But that is true because we have ϕk,k′ (h) = min{h′; (k ∨ k′, h′) > (k, h)} and ψk,k′ (h) =
max{h′; (k∧k′, h′) 6 (k, h)}. Now the proof does not differ much from the proof of Lemma 2.1
and it is thus left to the reader.

Since we have proven that the operation t, resp. u are identical with the operation ∨, resp. ∧,
we use no more the symbols t, u and keep using the standard lattice symbols.

Example 2.10: Conditions (20) and (21) cannot be avoided. Consider, for instance, the
set L = {0, 1} × Z with the lexicographic order. It is a totally ordered set and hence a
lattice which has an evident isoform congruence: the factor is {0, 1} and both the classes are
isomorphic to Z. However, no choice of ϕ would satisfy Condition (14): for a < ϕ0,1(b) we
have (1, a) = (0, b) ∨ (1, a) = (1, ϕ0,1(b) ∨ a) = (1, ϕ0,1(b)), giving a contradiction.

3 Relations between ϕ and ψ

The semidirect product construction uses two mappings, ϕ and ψ, to equip the set K ×H
with a lattice structure. Nevertheless, the lattice order depends on one operation only which
is, according to Condition (14), defined by

(k, h) 6 (k′, h′) ⇐⇒ (k 6 k′) and (ϕk,k′ (h) 6 h′). (24)
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Hence, one of those mappings has to be sufficient to describe the lattice structure. Therefore,
in this section we describe the relation between ϕ and ψ. This relation is similar to the Galois
correspondence or the adjoint mappings, with the difference that these notions are defined
for complete lattices only.

At the beginning of this section (until Lemma 3.4) we suppose the following situation: we have
a lattice L = K n

ϕ
ψH and we have fixed k1 6 k2 ∈ K. We denote ξ = ϕk1,k2 and ω = ψk2,k1 .

We are going to investigate what the relations between the mappings ξ and ω are.

Lemma 3.1: Let us define mappings Ξ : H → H ; Ξ = ω ◦ ξ and Ω : H → H ; Ω = ξ ◦ ω.
Then we have: Ξ(h) = max{ j ∈ H ; ξ(j) = ξ(h) } and Ω(h) = min{ j ∈ H ; ω(j) = ω(h) }.

Proof: From the inequality (6) we obtain h 6 Ξ(h). Then we use Condition (16) obtaining
ξ(h) 6 ξ(Ξ(h)). And from (7) we gain ξ(h) > ξ ◦ ω(ξ(h)) = ξ(Ξ(h)). Hence, for all h ∈ H ,
we have ξ(Ξ(h)) = ξ(h) and h 6 Ξ(h).

The properties of Ω would be proven analogically.

We obtain immediately from the proof of the previous lemma:

Corollary 3.2: ξωξ = ξ and ωξω = ω.

Lemma 3.3: The mapping ξ|Imω is a set bijection between Im ω and Im ξ. The mapping
ω|Im ξ is the inverse bijection to ξ|Imω.

Proof: Let h be in Im ω. Then there exists h′ in H satisfying ω(h′) = h. But then we have
ωξ(h) = ωξω(h′) = ω(h′) = h. Hence ωξ = idImω holds. Analogically we have ξω = idIm ξ.

Lemma 3.4: The mapping ω is uniquely defined by the mapping ξ.

Proof: The reader himself can check that ω(h) = max{j ∈ H ; ξ(j) 6 h}.

Using this result we can conclude generally:

Proposition 3.5: Let K,H,ϕ, ψ be as in Proposition 2.3. Then the mapping ψ is uniquely
defined by the mapping ϕ.

Proof: From Condition (12) we know that if k is incomparable with k′ then ψk′,k = ψk′,k∧k′
holds. Next, k > k′ implies ψk′,k = idH and the case k < k′ is solved in Lemma 3.4.

Once we know that one mapping is determined by the other one, we can omit one mapping
from the definition of the semidirect product. We recall that we denote by (h ] the principal
ideal generated by h.

Proposition 3.6: Let K,H be two lattices and let ϕ be a mapping from K × K to HH

satisfying ϕk,k = idH , for all k in K, and Conditions (4) and (8), and also the condition

the set ϕ−1
k1,k2

(

(h ]
)

has its greatest element. (25)

Let us define a mapping ψ : K ×K → HH as follows:

ψk1,k2(h) =











h; for k1 6 k2,

max (ϕ−1
k2,k1

((h ])); for k1 > k2,

ψ(k1, k1 ∧ k2)(h); otherwise.

(26)

Then the set K ×H equipped with operations t,u defined in (14) and (15) forms a lattice.
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Proof: The whole calculation is quite straightforward. The only important thing to notice
is that the set ϕ−1

k1,k2
(h ] is always an ideal, due to (16).

Now we can define semidirect products of lattices using only one mapping. Hence we denote
the semidirect product K n

ϕH (respectively K nψH) if the mentioned mapping is that one
which describes the join (respectively the meet).

As we mentioned in the proof of Proposition 3.6, the set ϕk1,k2(h ] is an ideal and hence
Condition (25) is trivial in finite lattices.

4 Semidirect product of semilattices

We have just seen that the semidirect product of lattices can be described using only one
mapping. The same idea can be used for constructing semidirect products of semilattices.

Proposition 4.1: (i) Let K,H be two join-semilattices and let ϕ be a mapping from K×K
to HH satisfying ϕk,k = idH , for all k in K and also Conditions (4) and (8). Then the set
K ×H equipped with the operation t defined in (14) is a join-semilattice.
(ii) In addition, if K,H are complete ones and if the mapping ϕ verifies Condition (25)
then (K ×H,t) is a complete join-semilattice.

Proof: The proof of part (i) is the same as the one of Proposition 2.3. So let us begin with
the part (ii). Let us denote 0H and 1H the least and the greatest element of the semilatticeH .

Since, for all k1, k2 in K, the set ϕ−1
k1,k2

(0H) is an ideal, we have ϕk1,k2(0H) 6 0H , and
therefore ϕk1,k2(0H) = 0H holds. Hence, for all k1 6 k2 and h ∈ H , we have (k1, 0H) 6

(k2, h). This gives us a remark, that (0K , 0H) is the least element of (K ×H,t).

Now consider a nonempty set M , a subset of K×H . Denote A = { k ∈ K; ∃h ∈ H : (k, h) ∈
M } and a = sup(A). Denote also B = { j ∈ H ; ∀(k, h) ∈M : (a, j) > (k, h) }. The set B is
nonempty, because (a, 1H) is surely greater than or equal to each element of M . Hence we
can define b to be inf(B). Evidently b ∈ B.

Now, knowing that (a, b) is an upper bound of M , we want to prove (a, b) 6 (k, h), for (k, h),
another upper bound of M . Clearly a 6 k; the case a = k is evident. Suppose thus a < k.
According to (25), the set ϕ−1

a,k((h ]) has its greatest element, let us say m. For each (l, j)
in M we have h > ϕl,k(j) = ϕa,k ◦ ϕl,a(j) giving ϕl,a(j) 6 m. Therefore we have m ∈ B
and b 6 m, giving (a, b) 6 (a,m) 6 (k, h).

Corollary 4.2: A semidirect product of complete lattices is a complete lattice.

Proof: Every complete semilattice is already a complete lattice.

We have constructed the semidirect product of semilattices, we denote it the same way as the
semidirect product of lattices, that means K n

ϕ H or K nψ H . There can be no confusion,
since lattices, as well as semilattices, are nothing but partially ordered sets. Hence the
semidirect product is also a partially ordered set, its properties depend only on the sets K
and H and the considered mapping.

Example 4.3: Condition (25) is needed in order to achieve a lattice: consider the lattice H
to be the closed real interval [0, 2], the lattice K to be {0, 1} and ϕ0,1 to be the mapping x 7→
bxc. Both lattices are complete however the semidirect product K n

ϕ H is a semilattice
only—the set {(1, 0), (0, 1)} has not an infimum.
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Proposition 4.4: Let L be a join-semilattice and let θ be an isoform congruence of L. Let
us denote K = L/θ and by H one of the congruence classes. If L verifies Condition (20) then
there exists such a mapping ϕ from K ×K to End(H) that L is isomorphic to K n

ϕ H .

Proof: We need to prove that the conditions of Proposition 4.1 are fulfilled. However the
proof is just a copy of the one of Proposition 2.9.

5 Arbitrary congruence

In this section we show how to embed an arbitrary finite lattice with an arbitrary nontrivial
congruence into a semidirect product, namely a semidirect product of the quotient and classes
of the congruence.

Definition 5.1: Let L1, L2, . . . , Lκ be lattices. We denote by
∑

i<κ Li the ordinal sum of
lattices, defined to be the disjoint union

⊎

i<κ Li equipped with the following order 6:

a 6 b in L⇐⇒ ((a, b ∈ Li) and (a 6Li
b)) or ((a ∈ Li, b ∈ Lj) and (i < j)).

It is clear that this structure is a lattice again, that this operation is associative and that if
we produce an ordinal sum of ordinal sums then it is the same as doing one big ordinal sum
at once. We use ordinal sums for gluing together all classes of an arbitrary congruence.

Proposition 5.2: Let L be a finite lattice and let θ be a nontrivial congruence on L. Then L
embeds into a semidirect product of L/θ and an ordinal sum made by congruence classes of θ
and one-element lattices in such a way that this embedding extends θ into the canonical
congruence of the semidirect product.

Proof: We denote by K the lattice L/θ and by [a]θ the congruence class containing a in L.
We denote α the homomorphism from L onto K, Let us choose now an ordering E, a linear
extension of the order 6K . (By C we denote the strict version of E.) Using this order, we
construct a lattice H to be an ordinal sum of congruence classes of θ′:

H
def
=

∑

k∈K, ordered by E

α−1(k).

We denote by γ the natural mapping fromH toK which sends each summand to its associated
element k in K. Finally, we denote 0k and 1k the least and the greatest element of the class k.

Each summand of H is a copy of α−1(k), for some k in K. Therefore there exists a natural
bijection βk between the sets α−1(k) and γ−1(k). This mapping is clearly an isomorphism.
If we unite all betas we obtain a bijection of the sets L and H : we define β(a) = βα(a)(a).

We define now a mapping ϕ from K ×K to HH , which, as we will see, forms a semidirect
product. We define ϕk,k′ for all k <K k′ in K as follows (for illustration, see Example 5.3):

ϕk,k′ (h) = β(0γ(h)) for h 6H β(0k) or β(1k′ ) <H h (27)

ϕk,k′ (h) = β(1k′) for β(1k) 6H h 6H β(1k′ ) (28)

ϕk,k′ (h) = β(β−1(h) ∨L 0k′) for β(0k) <H h 6H β(1k) (29)

We have to check first that this mapping involves a semidirect product. We start to prove
that in is compatible with the join, for all k <K k′ ∈ K, ϕk,k′ .
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We investigate whether the expression ϕk,k′ (h)∨H ϕk,k′ (h′) is equal to ϕk,k′ (h∨H h′), for all
h, h′ in H . We assume γ(h) E γ(h′), without loss of generality. Since we have γ(ϕk,k′ (h)) E

γ(ϕk,k′(h
′)), the claim has to be true for γ(h) C γ(h′).

So, let us assume γ(h) = γ(h′). The case γ(h) 6= k is evident hence suppose γ(h) = γ(h′) = k.
If one of h, h′ is equal to 0k or 1k then it is clear. Hence suppose it is not so. Then we have

ϕk,k′ (h) ∨H ϕk,k′ (h
′) = βk′(β

−1
γ(h)(h) ∨L 0k′) ∨H βk′(β

−1
γ(h′)(h

′) ∨L 0k′) (by 29)

= βk′(β
−1
γ(h)(h) ∨L β

−1
γ(h′)(h

′) ∨L 0k′)

= βk′(β
−1
γ(h)(h ∨H h′) ∨L 0k′) = ϕk,k′ (h ∨H h′). (by 29)

We used the facts that the mapping β is an isomorphism, when restricted to only one congru-
ence class, and that we have γ(h) = γ(h′) and α(β−1(h)∨L0k′) = k∨K k′ = α(β−1(h′)∨L0k′).

Now we prove that ϕk,k′′ = ϕk′,k′′ ◦ϕk,k′ holds, for all k <K k′ <K k′′ in K. Really, we have

ϕk′,k′′ ◦ ϕk,k′ (h) = β(β−1(β(β−1(h) ∨L 0k′)) ∨L 0k′′) (by 29)

= β(β−1(h) ∨L 0k′ ∨L 0k′′) = ϕk,k′′ (h), (by 29)

for all h ∈ H with β(0k) <H h <H β(1k). But the other cases are simple.

We have proven all conditions needed for ϕk,k′ , where k < k′ ∈ K and now it suffices to define
ϕk,k = idH and ϕk,k′ = ϕk,k∨k′ , for all k, k′ in K, and we have defined all the mapping ϕ.
And we have also proven that this mapping involves the construction of the lattice K n

ϕH .

Now let us consider the set L̃ = {(k, h); k ∈ K, h ∈ H, γ(h) = k}. We claim that this set is
a sublattice of K n

ϕ H and it is isomorphic to L.

Let (k, h), (k′, h′) be arbitrary elements of L̃. Then (k, h) ∨Kn
ϕH (k′, h′) is, by definition

(k ∨K k′, ϕk,k′ (h) ∨H ϕk′,k(h
′))

= (k ∨K k′, βk∨k′ (β
−1(h) ∨L′ 0k∨k′ ) ∨H βk∨k′ (β

−1(h′) ∨L′ 0k∨k′))

= (k ∨K k′, βk∨k′ (β
−1(h) ∨L′ β−1(h′) ∨L′ 0k∨k′))

= (k ∨K k′, β(β−1(h) ∨L′ β−1(h′))).

We can see that α(β−1(h)∨L′ β−1(h′)) is k ∨K k′. Therefore (k, h)∨Kn
ϕH (k′, h′) belongs to

L̃.

For proving the same thing about the meet we need a similar definition of the dual map-
ping ψ as we have for the mapping ϕ. However, we have already proven that, accord-
ing to Definition (26), for each k, k′ ∈ K, 0k 6= β−1(h) 6= 1k and γ(h) = k, we have
ψk′,k(h) = β(β−1(h) ∧L′ 1k). Hence the proof saying that (k, h) ∧Kn

ϕH (k′, h′) remains in L̃
is the same as the one for the join.

The only thing left at the moment, is to prove L ∼= L̃. We define a mapping f : L→ L̃ which
sends a to (α(a), β(a)). This mapping is clearly a bijection and it is a homomorphism since β
is a bijection on congruence classes. It is hence an isomorphism and the lattice L embeds
into K n

ϕ H .

Example 5.3: Here we show an example how the construction works in a specific case.
Let L be as in Figure 2. We have chosen one nontrivial congruence and thick edges represent
classes of this congruence. Then we construct the lattices K and H .

We construct the semidirect product, we have considered in Proposition 5.2 (see Figure 3).
The lattice L is finite, hence we need not to embed it into another lattice L′ first in order to
guarantee that all congruence classes have its least and greatest elements. We can see that L
embeds directly into the semidirect product K n

ϕ H (the black vertices).
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L:

↪→

K: H:

Figure 2: Lattices L, K and H

Figure 3: The lattice L embeds into K n
ϕ H
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